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ABSTRACT:
Auditory evoked potentials (AEPs) include the auditory brainstem response (ABR), middle latency response (MLR),

and cortical auditory evoked potentials (CAEPs), each one covering a specific latency range and frequency band. For

this reason, ABR, MLR, and CAEP are usually recorded separately using different protocols. This article proposes a

procedure providing a latency-dependent filtering and down-sampling of the AEP responses. This way, each AEP

component is appropriately filtered, according to its latency, and the complete auditory pathway response is conve-

niently represented (with the minimum number of samples, i.e., without unnecessary redundancies). The compact

representation of the complete response facilitates a comprehensive analysis of the evoked potentials (keeping the

natural continuity related to the neural activity transmission along the auditory pathway), which provides a new per-

spective in the design and analysis of AEP experiments. Additionally, the proposed compact representation reduces

the storage or transmission requirements when large databases are manipulated for clinical or research purposes. The

analysis of the AEP responses shows that a compact representation with 40 samples/decade (around 120 samples) is

enough for accurately representing the response of the complete auditory pathway and provides appropriate latency-

dependent filtering. MATLAB/Octave code implementing the proposed procedure is included in the supplementary

materials. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001673
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I. INTRODUCTION

Auditory evoked potentials (AEPs) are registered by

presenting an auditory stimulus and recording the neural

activity elicited by the stimulus. Due to the noise affecting

the recording procedure and the low amplitude of the

responses (typically in the range of microvolts), a number of

responses are synchronously averaged in order to improve

the signal to noise ratio (SNR) (Thornton, 2007).

Conventional recording procedures configure a minimal

separation between consecutive stimuli greater than the

response duration in order to avoid interference among adja-

cent responses (Woldorff, 1993). This requirement has con-

ditioned the protocols for recording AEP responses, with

different configurations for each portion of the response. For

instance, the auditory brainstem response (ABR) includes

waves I, II, III, IV, V, and VII, with latencies in the range

1–10 ms. Conventional ABR recording protocols configure

an inter-stimulus interval (ISI) greater than 15 ms, and a

band-pass filtering of the electroencephalogram (EEG) in

the band 100–3000 Hz, removing the later responses (in the

frequency band below 100 Hz) as well as the high frequency

noise (above 3 kHz) (Burkard and Don, 2007). Similarly, the

middle latency response (MLR) includes waves N0, P0, Na, Pa,

Nb, and Pb in the latency range 10–100 ms. Therefore, record-

ing windows of 100 ms, ISI greater than 120 ms, and EEG

band-pass filtering in the band 10–300 Hz are considered in

the conventional MLR recording protocol (Pratt, 2007).

Finally, the cortical auditory evoked potentials (CAEP), with

waves P1, N1, P2, N2, and P3 between 50 and 500 ms, are con-

ventionally recorded with protocols using recording windows

of 1 s, ISI greater than this window, and EEG band-pass filter-

ing in the band 1–30 Hz (removing high frequency noise as

well as earlier responses) (Martin et al., 2007). The bandwidth

limit (due to the band-pass filtering) allows EEG acquisition at

appropriate sampling rates (10 kHz, 1 kHz, and 100 Hz for

ABR, MLR, and CAEP, respectively) without information

loss, according to the sampling theorem.

In the last decades, AEPs evoked by stimuli presented

at high rate have offered new perspectives in audiology. The

possibility of recovering the evoked response when the

interval between stimuli is shorter than the response dura-

tion allows the study of different adaptation mechanisms

(Gillespie and Muller, 2009; Thornton and Coleman, 1975)

as well as the analysis of the AEP response to progressively

more natural stimuli (Maddox and Lee, 2018). Some proce-

dures have been proposed for recording evoked potentials at

high stimulation rates: maximum length sequences (MLS)

(Eysholdt and Schreiner, 1982; Thornton and Slaven, 1993),

adjacent-responses (ADJAR) (Woldorff, 1993), quasi-
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periodic sequence deconvolution (QSD) (Jewett et al.,
2004), continuous loop averaging deconvolution (CLAD)

(Bohorquez and Ozdamar, 2006; Ozdamar and Bohorquez,

2006), linear deconvolution for baseline correction (LDBC)

(L€utkenh€oner, 2010), randomized stimulation and averaging

(RSA) (Valderrama et al., 2012), iterative randomized stim-

ulation and averaging (IRSA) (de la Torre et al., 2019;

Valderrama et al., 2014b; Valderrama et al., 2016), and

least-squares deconvolution (LS) (Bardy et al., 2014a;

Bardy et al., 2014b).

The overcoming of the ISI restriction allows the simul-

taneous recording of the different portions of the AEP

response (ABR, MLR, and CAEP) at moderate or high stim-

ulation rate (de la Torre et al., 2019; Holt and Ozdamar,

2016; Kohl et al., 2019). The analysis of such response pro-

vides information about the whole auditory pathway, taking

into consideration all the involved waves, instead of a sepa-

rated analysis of the different groups of waves in different

representations. The simultaneous analysis of all the waves

(and their changes associated with the modification of the

stimulation parameters) provides new perspectives in the

study of the auditory system and its response to stimulation

patterns progressively more complex, from those as simple

as quasi-periodic sequences of clicks to those as complex as

natural speech. Additionally, the analysis of the complete

auditory pathway response eliminates the discontinuity usu-

ally established among the different groups of waves. This

discontinuity does not exist in the generation of the neural

activity and is a consequence of the conventional protocols

for the acquisition of the evoked responses.

The acquisition of evoked responses from the whole

auditory pathway (including ABR, MLR, and CAEP)

presents some difficulties. On one hand, the appropriate fil-

tering is different for each portion. This is usually solved by

applying the less restrictive filtering to the EEG (using the

band 1–3000 Hz), but the late portion of the response is

more affected by noise (compared with conventional record-

ing procedures). On the other hand, the representation of the

whole response requires a high sampling rate associated to

the bandwidth of the earlier waves (10 kHz) and a long dura-

tion of the response associated to the latencies of the later

waves (1000 ms), which implies a large number of samples

to represent the response (typically around 10 000 samples)

(de la Torre et al., 2019). In order to illustrate the highly

redundant representation of the whole response, we can

compare these 10 000 samples with those required for repre-

senting each portion separately: 100 samples for ABR

(10 ms at a sampling rate of 10 kHz), 100 samples for MLR

(100 ms at 1 kHz), and 100 samples for CAEP (1000 ms at

100 Hz), i.e., a total of 300 samples.

Of course, the reason behind these differences is the

application of specific filtering and sampling rate to each

component (ABR, MLR, and CAEP) when they are inde-

pendently represented, according to the expected frequency

content (which changes with the latency). This allows

specific filtering of each portion, providing appropriate noise

reduction and compact representation (independent for

ABR, MLR, and CAEP) but generates the discontinuity in

the representation of the auditory pathway response.

In general, a band-limited signal can be low-pass fil-

tered (to remove high-frequency noise) and sampled with a

sampling rate at least twice the maximum frequency compo-

nent (to reduce the number of samples required to represent

it) without information loss, since the sampling theorem

guarantees that the original signal can be recovered from the

samples. Similarly, the evoked response of the complete

auditory pathway, with a band limit depending on the

latency (the later the waves, the narrower bandwidth), can

be processed to apply a latency-dependent low-pass filtering

and down-sampling in order to improve both the filtering (to

reduce the high-frequency noise) and the representation (to

reduce the number of samples required for properly repre-

senting the response). This article proposes a digital proce-

dure to provide this latency-dependent low-pass filtering

and down-sampling for the evoked response of the complete

auditory pathway. The procedure is based on a non-uniform

sampling (involving a compression of the latency axis) of

the signal representing the AEP response. The compression,

approximately logarithmic, provides a bandwidth limitation

in terms of the maximum number of oscillations per decade,

as well as the sampling rate in terms of number of samples

per decade (where a decade in the latency axis is the interval

between a latency t0 and a latency 10 � t0).

The proposed procedure is described with a matrix for-

mulation, where the evoked response is represented as a sig-

nal with J samples (or a J-component column vector), the

reduced representation of the evoked response (after the

latency-dependent filtering and down-sampling) as a signal

with Jr samples (or a Jr-component column vector, with

Jr < J), and the latency-dependent filtering and down-

sampling procedure is represented as a matrix with Jr rows

and J columns. The matrix processes the original AEP

response and provides its reduced representation, and also

allows to recover, from the reduced representation, the fil-

tered AEP response in the original representation (i.e., from

the compact representation with Jr samples, it provides the

signal in the conventional representation with J samples at

the original sampling rate, including the latency-dependent

filtering).

The proposed procedure is described in this article, and

the MATLAB/Octave code used to generate the latency-

dependent low-pass filtering and down-sampling matrix is

provided in the supplementary materials. The procedure has

been evaluated in experiments involving the simultaneous

recording of ABR, MLR, and CAEP using clicks as stimuli,

presented at different stimulation rates.

II. FORMULATION OF THE LATENCY-DEPENDENT
LOW-PASS FILTERING AND DOWN-SAMPLING

A. Matrix formulation of filtering and down-sampling

Let’s suppose a digital signal x(j) representing an AEP

response. Low-pass filtering is obtained as the convolution
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of the signal x(j) with the impulsive response of the filter,

hlpðjÞ, as:

xlpðjÞ ¼ hlpðjÞ � xðjÞ ¼
X

j0
hlpðj0Þ � xðj� j0Þ; (1)

where * represents convolution. If the signal x(j) contains J
samples (j ¼ 0;…; J � 1), it can be represented as a J-com-

ponent column vector, and filtering can be represented as a

matrix product:

xlp ¼ Hlpx; (2)

where xlp is a J-component column vector representing the

filtered signal, and Hlp is the J� J convolution matrix with

elements Hlpðj1; j2Þ ¼ hlpðj1 � j2Þ. The matrix product can

be interpreted as a linear operator in the J-dimensional vec-

torial space representing the digital signals: each filtered

sample xlpðjÞ is obtained as a linear combination of the sam-

ples of the original signal, according to the jth row of the

convolution matrix.

The low-pass filtered signal can be down-sampled with-

out information loss if the new sampling rate is, at least,

twice the maximum frequency component (according to the

sampling theorem). In order to down-sample the filtered sig-

nal with a factor q, from every q samples, 1 sample should

be preserved and q – 1 samples should be discarded:

xrðjrÞ ¼ xlpðjr � qÞ; (3)

where jr ¼ 0;…; Jr � 1 (with Jr ¼ J=q), and r refers to the

reduced representation after down-sampling. The low-pass

filtering and down-sampling operation can also be repre-

sented in matrix notation:

xr ¼ Hrx; (4)

where Hr is the matrix Hlp preserving 1 of every q rows (i.e.,

a Jr � J matrix). Again, this matrix product can be consid-

ered a linear transformation from the original representation

of the signal (with J components) to a reduced representa-

tion (with Jr components), where each new component

xrðjrÞ is obtained as a linear combination of all the original

components x(j) according to the jthr row of the matrix Hr.

The supplementary materials1 (Sec. 1) describe in detail the

matrix formulation of filtering and down-sampling.

B. Latency-dependent filtering and down-sampling

A latency-dependent filtering implies that each filtered

component xlpðjÞ is obtained using a different impulsive

response, depending on its latency. In other words, while in

conventional filtering all the rows of the matrix Hlp are iden-

tical except for the delay (and all the elements in each direct

diagonal of the matrix are identical), latency-dependent fil-

tering can be implemented using a different impulsive

response for each row of the matrix. This way, each filtered

sample at latency j can be obtained with a latency-specific

bandwidth (using an appropriate impulsive response) as a

linear combination of the original samples around this

latency.

Similarly, latency-specific down-sampling can be

implemented by selecting the new samples with a latency-

dependent down-sampling factor q (according to the

latency-dependent bandwidth, in order to locally follow the

sampling theorem condition and prevent information loss).

The latency-dependent down-sampling can also be imple-

mented as a matrix operation, using a reduced matrix Hr, in

which the rows are non-uniformly selected from the matrix

Hlp. Section 2 of the supplementary materials1 describes in

detail the matrix formulation of the latency-dependent filter-

ing and down-sampling.

C. Bandwidth required at each latency

The latency-dependent low-pass filtering and down-

sampling has to be designed taking into account the

expected frequency content (and therefore the required

bandwidth) of the AEP responses at each latency. The dif-

ferent waves of the AEP responses are narrower at earlier

latency and wider at later latency, and the required band-

width decreases as the latency increases. Taking into

account the latency range of the waves and the typical cutoff

frequencies used for recording ABR, MLR, and CAEP

responses, the required bandwidth can be determined for

each latency. The waves of ABR are observed at latencies

between 1 and 10 ms, and recording protocols apply typi-

cally a 3 kHz low-pass filtering in order to preserve the

waves and reduce the high frequency noise. Similarly, MLR

recording procedures, with waves between 10 ms and

100 ms typically apply 300 Hz low-pass filtering. Finally,

CAEP are usually recorded with a 30 Hz low-pass filtering

to preserve waves in the latencies between 50 ms and 1 s and

remove the high frequency noise. Therefore, a latency-

dependent filtering preserving a bandwidth of 3 kHz at 1 ms,

300 Hz at 10 ms, and 30 Hz at 50 ms would be enough for an

appropriate representation of the AEP responses.

D. Compression of the latency axis

The latency-dependent low-pass filtering and down-

sampling can be implemented as a uniform low-pass filter-

ing and down-sampling performed after a compression of

the latency axis. The progressive reduction of the bandwidth

with the latency suggests a logarithmic scaling of the

latency axis, which would be described as a non-uniform

sampling with Kdec samples per decade (i.e., a constant num-

ber of samples between a given latency t0 and a latency

10 � t0). The response in the original representation contains

samples at the time values:

tj ¼ j Ts; (5)

where Ts ¼ 1=fs is the sampling period and fs is the sam-

pling rate. The uniform sampling in a logarithmically com-

pressed latency axis, for Kdec samples per decade, would be

described with the equation:
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jrðtÞ ¼ Kdec log10ðt=TsÞ; (6)

where the samples should be taken at those values of t pro-

viding an integer value of jrðtÞ. This latency compression

would be appropriate for large latencies (much greater than

Ts) (since an increment of t in a factor 10 would produce an

increment of Kdec samples, providing Kdec samples per

decade). However, it is not appropriate at small latency,

because the sampling rate would be very large when t is

small compared with Ts. Instead, a linear-logarithmic (lin-

log) compression can be applied to the latency axis, provid-

ing a linear sampling at small latency (compared with the

original sampling period) and a logarithmic sampling at

large latency. The equation providing the relation between

the original time axis and the compressed samples, with a

linear compression at small latency (with a maximum sam-

pling rate equal to fs) and Kdec samples per decade at large

latency, is:

jrðtÞ ¼ Kdec log10

t

Ts

ln ð10Þ
Kdec

þ 1

� �
; (7)

where ln ðÞ is the natural logarithm (the mathematical deri-

vation of this equation is included in the supplementary

materials1, Sec. 3). The sampling period can be estimated

from this equation as the derivative @tðjrÞ=@jr, or equiva-

lently as the inverse of the derivative @jrðtÞ=@t. The latency-

dependent sampling period and sampling rate are,

respectively:

T0sðtÞ ¼
@tðjrÞ
@jr

����
t

¼ Ts þ t
ln ð10Þ
Kdec

f 0sðtÞ ¼
1

T0sðtÞ
: (8)

As can be observed from this equation, for small latency

(t� Ts), the sampling period is minimum and equal to Ts

(the sampling rate takes the maximum value, fs) and for

large latency (t� Ts), the sampling rate is f 0sðtÞ
� Kdec=ðt � ln ð10ÞÞ, and therefore, it decreases as the

latency increases, and it depends on the latency but not on

the original sampling rate.

The bandwidth preserved at each latency depends on

the local sampling rate and the frequency response of the

latency-dependent low-pass filter. Even though the sampling

theorem limits the bandwidth to half of the sampling rate,

i.e., f 0sðtÞ=2, a slightly smaller bandwidth is recommended in

order to allow a reasonable implementation of the filters

(otherwise the duration of the impulsive response would be

too long). Table I shows the local sampling rate f 0sðtÞ for

original sampling rates of 14.7 and 25 kHz, and for resolu-

tions of 40 and 60 samples/decade. All these configurations

provide enough bandwidth for the representation of the AEP

responses.

E. Design of the low-pass filters

For the latency-dependent low-pass filtering, a root

raised-cosine (RRC) filter in the compressed latency axis

has been designed (Proakis and Salehi, 2008). Filters in the

RRC family (commonly used in digital communications)

are low-pass filters specified by two parameters: the symbol

period T0 and the roll-off factor a. They provide a constant

frequency response up to ð1� aÞ=ð2T0Þ, a monotonic decay

up to ð1þ aÞ=ð2T0Þ, and a null response for frequencies

above this value. Although its theoretical impulsive

response is infinite, a truncated version of an RRC filter can

be implemented as a linear phase finite impulsive response

(FIR) using a time span including a sufficient number of

symbol periods. Additionally, RRC responses are orthogo-

nal when they are delayed an integer number of symbol

periods. Detailed information about RRC filters is provided

in the supplementary materials1 (Sec. 4). In this work, RRC

filters with a roll-off of a¼ 0.2 are used with an impulsive

response length of 614 symbol periods, containing the

99.9980% of the total energy of the theoretical impulsive

response. Its frequency response is constant in the range

½0; 0:4=T0	, monotonically decreasing in the range

½0:4=T0; 0:6=T0	, and null for frequency greater than 0:6=T0.

A non-causal zero-phase implementation of the filters has

been considered in order to avoid delay of the filtered AEP

waves.

In order to achieve the latency-dependent low-pass fil-

tering, the time axis of the impulsive response is scaled

according to Eq. (7) (the impulsive response is invariant in

the compressed latency axis given by jr). This latency-

dependent low-pass filtering can be represented as a matrix

operation Hlp, where the impulsive response for each latency

(represented by each row) is wider as the latency increases

(i.e., as we move from top to bottom in the matrix rows).

Similarly, the latency-dependent down-sampling can be rep-

resented as a reduced matrix Hr, obtained from Hlp, where

only those rows corresponding to the latencies tðjrÞ (with jr
integer) are selected.

The RRC filters are designed with a symbol period T0

matching the sampling period T0sðtÞ, constant in the com-

pressed latency axis and therefore increasing with the

latency according to Eq. (8). This preserves (without distor-

tion) the frequency range ½0; 0:4	 � f 0s, removes all the fre-

quency components above 0:6 � f 0s, and produces

interference (by aliasing) with the frequency components in

TABLE I. Latency-dependent sampling rate f 0sðtÞ for different original sam-

pling rates (fs) and resolutions (Kdec) in the compressed latency axis.

Kdec¼ 40 samp/dec Kdec¼ 60 samp/dec

Latency fs¼ 14.7 kHz fs¼ 25 kHz fs¼ 14.7 kHz fs¼ 25 kHz

1 ms 7.96 kHz 10.25 kHz 9.40 kHz 12.76 kHz

2 ms 5.46 kHz 6.45 kHz 6.91 kHz 8.57 kHz

5 ms 2.81 kHz 3.05 kHz 3.85 kHz 4.31 kHz

10 ms 1.55 kHz 1.62 kHz 2.21 kHz 2.36 kHz

20 ms 820.1 Hz 839.4 Hz 1.20 kHz 1.24 kHz

50 ms 339.4 Hz 342.7 Hz 503.3 Hz 510.5 Hz

100 ms 171.7 Hz 172.5 Hz 256.0 Hz 257.9 Hz

200 ms 86.3 Hz 86.6 Hz 129.1 Hz 129.6 Hz

500 ms 34.7 Hz 34.7 Hz 51.9 Hz 52.0 Hz

1000 ms 17.4 Hz 17.4 Hz 26.0 Hz 26.0 Hz
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the range ½0:4; 0:6	 � f 0s. If the signal of interest contains, at

latency t, only frequency components below 0:4 � f 0sðtÞ, the

signal is preserved without distortion, and the aliasing only

affects the noise components in the range ½0:4; 0:6	 � f 0s.
Figure 1 represents the bandwidth preserved by the latency-

dependent filtering using the proposed RRC filters, for dif-

ferent resolutions (Kdec between 10 and 200 samples/

decade) and original sampling rate fs¼ 14 700 Hz. For

instance, for Kdec¼ 40 samples/decade, the preserved band-

width is 3185, 621, 68.6, and 6.94 Hz at latencies 1, 10, 100,

and 1000 ms, respectively. A detailed description of the

latency-dependent low-pass filtering and down-sampling

using RRC filters is provided in Sec. 5 of the supplementary

materials.1

F. Orthonormalization of the latency-dependent
filtering and down-sampling matrix

The use of a symbol period T0 equal to the sampling

period T0sðtÞ in the definition of the RRC filters provides

orthogonality between the impulsive responses associated to

each sample in the compressed latency axis. However, due to

the non-linear compression of the latency axis, the impulsive

responses are quasi-orthogonal but not orthogonal in the not-

compressed latency axis. Orthonormalization (i.e., orthogo-

nalization and normalization) of the matrix Hr providing the

latency-dependent low-pass filtering and down-sampling is

highly recommendable because, this way, the matrix provides

an equivalent representation of the signals in the subspace of

the band-limited signals that preserves the metric in the

reduced representation subspace (i.e., the energies or the dis-

tances between signals in the original and the reduced repre-

sentation space are invariant). The representation obtained

with an orthonormal matrix is equivalent to the original repre-

sentation, and therefore, all the estimations or algorithms can

be equivalently performed either in the original J-dimensional

representation space or in the Jr-dimensional reduced repre-

sentation space (if the matrix was not orthonormal, the metric

in the reduced representation space would be distorted and

the results could not be equivalently obtained in the original

and the reduced representations).

In order to orthonormalize the matrix Hr, a Gram-

Schmidt process is applied. Since the number of remaining

rows in the filtering and down-sampling matrix is signifi-

cantly smaller than the number of columns, an orthonormal-

ization based on Gaussian elimination is proposed. After the

orthonormalization, the rows of the matrix Vr constitute an

orthonormal basis of functions describing the subspace of

the latency-dependent band-limited signals. If Vr is the

matrix resulting from the orthonormalization of the Hr

matrix, then the product VrV
T
r (where VT

r is the transposed

of Vr) is the Jr � Jr identity matrix. The orthonormal matrix

Vr can be used to project the original signal to the subspace

of the latency-dependent band-limited signals:

xr ¼ Vrx: (9)

This matrix operation removes all the components that are

out of the subspace defined by the basis of functions and

provides a compact representation of those components

within the subspace of the latency-dependent band-limited

signals. A MATLAB/Octave function providing the orthonor-

malized latency-dependent low-pass filtering and down-

sampling matrix Vr has been implemented (included in the

supplementary materials,1 Sec. 6). This function includes

the compression of the latency axis according to Eq. (7), the

definition of Jr responses uniformly distributed in the com-

pressed latency axis, and the orthonormalization of the

resulting functions in order to provide the matrix Vr contain-

ing the orthonormal basis of the reduced representation

space.

Figure 2 represents the functions of the orthonormalized

basis (i.e., the rows of the matrix Vr) for the latency-

dependent low-pass filtering and down-sampling procedure

designed for J¼ 500 samples and Kdec¼ 25 samples/decade

(resulting in Jr¼ 41). The RRC shape (in the compressed

latency axis) can be appreciated in the function represented

with the thicker line (corresponding to the 28th function).

Section 7 of the supplementary materials1 includes some

examples of the sampling functions in the matrices Hr and

Vr (i.e., before and after the orthonormalization).

G. Reconstruction of the signal in the original
representation

Since the matrix Vr is orthonormal, it can be directly

applied to transform the reduced representation to the origi-

nal representation:

xlp ¼ VT
r � xr ¼ VT

r � Vr � x: (10)

This matrix operation provides the latency-dependent fil-

tered signal in the original representation (i.e., at the original

sampling rate). Section 8 of the supplementary materials1

includes some examples comparing the xlp signal recovered

from the previous equation and that obtained by filtering
FIG. 1. Bandwidth preserved by the latency-dependent filtering using RRC

filters with a ¼ 0:2.
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with Hlp. Slight differences associated to aliasing are also

discussed.

The representation of the latency-dependent low-pass

filtered response at the original sampling rate is highly

redundant, because at late latency, the bandwidth of the

response is very small compared with the sampling rate.

Instead, the response can be reconstructed at specific laten-

cies. In order to estimate the filtered signal at a specific

latency ti, the contribution of each component in the reduced

representation must be considered:

xlpðtiÞ ¼
XJr�1

jr¼0

xrðjrÞVrðjr; jðtiÞÞ; (11)

where xrðjrÞ is the jr-th component of the reduced represen-

tation xr and Vrðjr; jðtiÞÞ is the jrth function of the basis

(given by the jrth row of the matrix Vr) evaluated (or inter-

polated) at the latency ti. This way, from the reduced repre-

sentation, the filtered response xlpðtÞ can be evaluated at a

reasonable set of latencies ftig (for example, with 200 sam-

ples per decade in the interval of 1 ms to 1 s) providing a

representation more natural than the reduced representation

xr (which modifies the amplitudes depending on the latency

due to the orthonormalization of the matrix) and more com-

pact than the representation at the original sampling rate.

The reconstruction of the response at specific latencies

has been implemented as a matrix operation. A MATLAB/

Octave function providing the reconstruction matrix for spe-

cific latencies is included in the supplementary materials1

(Sec. 9). Some examples are also included.

III. EXPERIMENTAL RESULTS

The proposed latency-dependent filtering and down-

sampling has two objectives: on one hand, to provide a fil-

tering adapted to the AEP spectral content (which changes

with the latency) in order to appropriately reduce the high

frequency noise; on the other hand, to provide a compact

representation of the AEP responses, with a sampling rate

adapted to the spectral content (and therefore also changing

with the latency), in order to reduce the number of samples

required for representing the responses.

The evaluation of the proposed procedure has been per-

formed using both simulations and real AEP responses.

Simulations are based on synthetic EEGs, generated with an

AEP response used as reference and contaminated with

noise. Therefore, since the reference response is available,

the noise affecting the estimated responses (either the not-

filtered or the latency-dependent filtered) can accurately be

evaluated in terms of the SNR. An evaluation of the noise

reduction provided by the latency-dependent filtering is

more difficult in experiments with recorded EEGs (since the

reference response is not available) but provides more real-

istic results.

A. Experimental design

For the experiments involving simulations, an AEP

response has been prepared as reference. This response cor-

responds to the grand average (estimated from 4 subjects) of

an AEP response to 0.1 ms rarefaction clicks presented at

74 dB (hearing level) at an average rate of 1.39 Hz, with a

random inter-stimulus interval (ISI) with uniform distribu-

tion in the range 480–960 ms. The acquisition procedure and

the response are described in detail in de la Torre et al.
(2019). In spite of the grand average process, this response

contains some noise (particularly at late latency) due to the

noise contaminating the EEGs. For this reason, the AEP

response was latency-dependent filtered with a resolution of

40 samples/decade, using the corresponding orthonormal-

ized matrix Vr:

xref ¼ VT
r � ðVr � x0Þ; (12)

where x0 is the original grand-average AEP response and

xref is the filtered response used as reference. This resolu-

tion has been selected taking into account the spectral

content of the AEP responses expected at each latency.

The AEP response xref (with 14 700 samples at a sampling

rate of 14.7 kHz, i.e., corresponding to a response length of

1 s.) is described in detail in the supplementary materials1

(Sec. 10).

The reference response xref was used to generate a syn-

thetic EEG using a random ISI with uniform distribution in

the interval 480–960 ms. The EEG was contaminated with

pink noise (i.e., with power spectral density decreasing with

3 dB/octave), with a level providing a AEP response with a

SNR around 10 dB (which is a typical noise level in AEP

experiments). The AEP response x was estimated from the

synthetic EEG using the IRSA algorithm (de la Torre et al.,
2019; Valderrama et al., 2014b; Valderrama et al., 2016).

The latency-dependent low-pass filtering was applied to the

response with resolutions between 10 and 200 samples/

decade (xlp ¼ VT
r � Vr � x). The SNR was evaluated as the

ratio between the energy of the reference response xref and

the energy of the noise n contaminating the evaluated

response, i.e., n ¼ x� xref for the non-filtered response,

n ¼ xlp � xref for the filtered responses. The required

FIG. 2. (Color online) Functions of the orthonormalized basis for J¼ 500

samples and Kdec¼ 25 samples/decade.
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number of samples in the reduced representation xr ¼ Vr � x
was also evaluated.

In the experiments based on real EEGs, six stimulation

rates ranging between 1.39 Hz (for ISI 480-960 ms) and

44.44 Hz (for ISI 15-30 ms) were considered. For each ISI

condition, 3 portions of EEG with 228 s were recorded

(which accumulates 684 s). Rarefaction clicks of 0.1 ms pre-

sented at 74 dB (hearing level) were used as stimulation.

The clicks were delivered diotically through ER-3A insert

earphones. These transducers (using a delivery tube to sepa-

rate the electromagnetic interference from the response)

cause a group delay of around 1 ms (Elberling et al., 2012).

The response estimation is synchronized with the start of

each stimulus in the transducer (which allows the apprecia-

tion of the stimulation artifact at the beginning of the esti-

mated responses), and therefore, since the group delay was

not compensated, a delay of about 1 ms is expected in the

waves of the evoked responses. The electrical response was

recorded with surface electrodes located at Fz (upper fore-

head, active), Tp10 (right mastoid, reference), and Fpz (mid-

dle forehead, ground) using an instrumentation preamplifier

(gain 70 dB; bandwidth 1-3500 Hz) (Valderrama et al.,
2014a, 2013; Valderrama et al., 2014b). The preamplified

EEG was digitized (44 100 Hz sampling rate, 16 bits/sam-

ple), low-pass filtered (4000 Hz cutoff frequency), and

down-sampled in a factor 3 (14 700 Hz final sampling rate).

Eye-blinking artifacts were eliminated with the iterative

template matching and suppression algorithm (ITMS)

(Valderrama et al., 2018). Eight subjects (aged 26–58 yr)

participated in this study. The protocol followed in this

study is in accordance with the Code of Ethics of the World

Medical Association (Declaration of Helsinki) for experi-

ments involving humans, and it was approved by the

Research Ethics Committee of the University of Granada,

reference 961/CEIH/2019. The EEG recordings used in this

study are an extension of the database used in a recent study

(de la Torre et al., 2019), in which more details about the

experimental procedure can be found.

As in the case of synthetic EEGs, the AEP responses

were obtained from the real EEGs with the IRSA algorithm

(de la Torre et al., 2019; Valderrama et al., 2014b;

Valderrama et al., 2016). The latency-dependent low-pass

filtering has been applied with resolutions between 5 and

200 samples/decade. In order to evaluate the quality

improvement provided by the latency-dependent filtering,

we have used the three AEP responses estimated from each

EEG portion of 228 s: for each subject and ISI condition, the

average from the three responses, filtered with Kdec¼ 40

samples/decade, was used as reference, and the SNR was

estimated for each individual response (using the corre-

sponding reference). The resulting individual SNR estima-

tions have been averaged (across subjects, ISI conditions,

and repetitions). In addition to this estimation of the SNR

(independent for each subject), a grand-average-based SNR

was estimated: For each ISI condition, the grand-average

across subjects from each of the EEG portions of 228 s were

used as individual responses, and the average of them,

filtered with Kdec¼ 40 samples/decade, was used as refer-

ence. The SNR was estimated from each grand-average

response using the corresponding reference, and the result-

ing SNR estimations were averaged across ISI conditions

and repetitions. The utility of the SNR estimated with these

procedures is limited, but they provide an objective compar-

ison of the effect of the latency-dependent filtering under

two noise conditions (subject-based responses are more

affected by noise than grand-average-based responses).

B. Experimental results with simulations

Figure 3 shows the effect of the latency-dependent low-

pass filtering in the experiments involving simulations. The

plots represent the AEP responses: reference xref , not fil-

tered x, and latency-dependent filtered xlp with resolutions

of 200, 80, 40, and 10 samples/decade. Compared with the

clean reference response, the not filtered response is affected

by noise due to the noise added to the EEG. As observed,

the latency-dependent filtering improves the quality of the

responses by removing the high frequency noise. The noise

reduction is more effective as the latency-dependent filtering

is more restrictive. The last plot (for 10 samples/decade)

provides the most effective noise reduction, but this filtering

is excessive and causes an important distortion in the AEP

response. The resolution of 40 samples/decade provides the

best balance between noise reduction and distortion. The

representation of the not filtered AEP response includes

14 700 samples. In the case of resolutions of 200, 80, 40,

and 10 samples/decade, representing the AEP response

requires 446, 210, 117, and 35 samples, respectively, which

implies a substantial reduction of the dimensionality.

The noise reduction provided by the latency-dependent

filtering has been evaluated in terms of the SNR. Figure 4

represents the SNR (using the AEP response xref as refer-

ence) as a function of the resolution applied in the latency-

FIG. 3. From top to bottom, the reference AEP response, the IRSA estima-

tion (without filtering), and the latency-dependent filtered responses with

200, 80, 40, and 10 samples/decade. Simulation using a synthetic EEG gen-

erated with a real response (for ISI in the range 480–960 ms), contaminated

with pink noise.
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dependent filtering (solid line with circles). The dashed line

is the SNR for the not filtered response (10.52 dB). As

observed, the latency-dependent filtering improves the qual-

ity by appropriately removing the high frequency noise. The

noise reduction is more effective as the filtering is more

restrictive, increasing from 13.08 dB (at 200 samples/

decade) to around 15 dB (at 40, 35, and 30 samples/decade).

As expected, the resolution providing the best results is

around 40 samples/decade (which is the resolution used for

preparing the reference AEP response). A resolution below

30 samples/decade reduces the SNR due to the distortion

caused for so restrictive latency-dependent filtering.

Section 11 of the supplementary materials1 contains

more detailed results involving simulations. Figures similar

to Figs. 3 and 4 are provided for simulations using white

noise and real EEG noise. The behavior with real noise is

similar to that with pink noise, with the best performance

around 30–40 samples/decade and improvements greater than

4 dB (suggesting pink noise as a reasonable model for EEG

contamination). The improvement is more important in the

case of white noise (around 20 dB), because high frequency

noise is more aggressive in this case (even though this is not

a realistic noise model for EEGs). As observed, thanks to the

latency-dependent filtering and down-sampling, as the resolu-

tion decreases (from 200 to around 40 samples/decade), both

the SNR and the dimensionality reduction improve. Beyond

40 samples/decade, the latency-dependent filtering is exces-

sive and produces some distortion in the AEP waves.

C. Effect of the latency-dependent filtering with real
responses

Taking into account the expected spectral content of the

AEP responses, the analysis of Table I, and the responses

estimated in the simulations, a resolution Kdec¼ 40 samples/

decade has been selected for filtering the AEP responses in

the experiments with real recordings. Figure 5 shows the

AEP responses for subject 1. The results are represented for

different ISI configurations from 480 to 960 ms (top) to

15–30 ms (bottom). Three plots are shown for each configu-

ration (for consistency evaluation), each one corresponding

to the estimation from an EEG portion of 228 s. The plots in

the left panel correspond to the not filtered AEP responses,

while those in the right panel correspond to the latency-

dependent filtered ones. At early latency, the plots without

and with filtering are similar. However, at late latency, the

not filtered responses are strongly affected by noise, and the

latency-dependent filtering provides an effective noise

reduction with an evident quality improvement. Section

12.1 of the supplementary materials1 includes similar plots

FIG. 4. SNR of the AEP responses as a function of the resolution Kdec used

in the latency-dependent filtering (solid line with circles). The dashed line

represents the SNR for the not filtered response. Results corresponding to

simulations; SNR evaluated using xref as reference.

FIG. 5. AEP responses for Subject 1 without and with latency-dependent low-pass filtering (left and right panels, respectively).
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for the eight subjects included in this study. The results in

Fig. 5 are consistent with those in the simulations and also

with those for the rest of subjects.

Figure 6 shows the SNR results with real AEP responses,

for both the grand-average-based (averaged for the six stimu-

lation conditions) and the subject-based (averaged for the six

stimulation conditions and the eight subjects) estimations, as

a function of the resolution. In the case of subject-based esti-

mations, the SNR progressively increases as the resolution

decreases, from 7.54 dB (not filtered responses) up to

10.74 dB (for resolution Kdec¼ 15 samples/decade) because

the high-frequency noise is more effectively reduced by a

more restrictive latency-dependent low-pass filtering. Below

this resolution, the SNR decreases due to the distortion

caused by the application of a too restrictive low-pass filter-

ing. In the case of the grand-average-based estimations, the

SNR is higher (for both the not-filtered and the latency-

dependent filtered responses) and the maximum SNR

(15.93 dB) is achieved at Kdec¼ 25 samples/decade. Since the

noise level is smaller in the grand-average responses, the

highest SNR is achieved at a resolution slightly greater than

in the previous case, and as expected, the best resolution

depends on the noise level. According to this analysis, the

most appropriate resolution depends on the noise level and

would be in the range between 15 and 40 samples/decade,

requiring 50 and 117 samples in the reduced representation,

respectively. The supplementary materials1 (Sec. 12.2 and

12.3) include detailed results of the latency-dependent filtered

AEP responses and SNRs at different resolutions.

D. Representation of the complete auditory pathway
response

The compact representation with 117 samples (for

Kdec¼ 40 samples/decade) for each AEP response is appro-

priate for data storage or for advanced data processing

procedures [for instance classification or parameterization of

responses (Valderrama et al., 2014c)], since it minimizes the

redundancy without relevant information loss. However, the

compact representation xr ¼ Vr � x is not appropriate for a

visual inspection by an audiologist or for comparison with

conventional AEP responses, because the orthonormalization

produces a latency-dependent alteration of the amplitude (as

discussed in Sec. II G). The reconstructed version (in the orig-

inal representation) is easily obtained as xlp ¼ VT
r � xr, but

this representation is extremely redundant (14 700 samples

required for each AEP response). In order to minimize this

redundancy and at the same time provide a representation

appropriate for an audiological analysis, we have recon-

structed the responses with a resolution of 200 samples/

decade in the interval 1–1000 ms (i.e., three decades), there-

fore obtaining a representation requiring 600 samples.

Figure 7 represents the AEP responses for the eight sub-

jects included in this study, latency-dependent filtered with

resolution of 40 samples/decade and reconstructed in the inter-

val 1–1000 ms with 200 samples/decade. For each stimulation

condition, three responses are shown (estimated from each

228 s EEG portion) as well as the average (from the whole

684 s EEG) in order to allow the evaluation of the responses’

consistency. The most relevant waves are marked in the plot

for subject 1. As observed in this figure, most of the AEP

waves (including ABR, MLR, and CAEP components) are

consistently identified in all subjects. Additionally, some

changes in the AEP response morphology associated to the

stimulation rate are appreciated, particularly for the MLR and

CAEP components. These changes are consistent across sub-

jects and reflect how both peripheral and central structures of

the ascending auditory pathway respond to different acoustic

scenarios. This figure also shows that the responses obtained

from subject 7 are affected by the post-auricular muscle

(PAM) artifact, a strong component of myogenic origin that

appears at around 15 ms from stimulus onset (Pratt, 2007).

Figure 8 provides the grand-average of the AEP

responses obtained from the eight subjects filtered with a res-

olution of 40 samples/decade and reconstructed in the interval

between 60 ls and 1000 ms (in order to provide, in addition

to the evoked response, the stimulus artifact and some pre-

stimulus response). According to the synchronization config-

uration, the AEP waves in this figure (as in the rest of figures)

are affected by a group delay of about 1 ms. The stimulation

artifact in the interval 100–600 ls can be observed before the

ABR waves. Since the different stimulation conditions only

differ in the stimulation rate (but not in the stimulation level)

the artifact is similar for all the conditions. This figure clearly

shows changes in the morphology of the MLR and CAEP

components associated to the stimulation rate. The supple-

mentary materials1 (Sec. 13) compares the grand-average

responses with and without the latency-dependent filtering.

E. Spectral distribution of the energy in the AEP
responses

The expected morphology of the AEP responses sug-

gests a limit for the number of oscillations per decade

FIG. 6. (Color online) SNR of the real AEP responses as a function of the

resolution Kdec used in the latency-dependent filtering, for both grand-aver-

age-based and subject-based estimations. The dashed lines represent the

SNR for the not-filtered responses.
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associated to the response waves. On the other hand, the

latency-dependent low-pass filtering and down-sampling

with 40 samples/decade have provided consistent AEP

responses. In order to investigate the spectral distribution of

the energy in the AEP responses, we propose a spectral

analysis with a logarithmic compression of the latency axis,

which allows the estimation of the power spectral density

(PSD) as a function of the number of oscillations per

decade. We have estimated the spectrogram of the AEP

responses filtered with Kdec¼ 200 samples/decade and

FIG. 7. (Color online) AEP responses estimated for all the subjects with latency-dependent filtering. Filtering configured with 40 samples/decade and

responses reconstructed with 200 samples/decade between 1 and 1 000 ms. Thin lines are the individual AEP responses estimated from 228 s EEG portions;

thick lines are the average AEP responses from the three EEG portions (684 s) for each subject and stimulation condition.
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reconstructed with 200 samples/decade in the interval

0.6–1000 ms. Figure 9 shows the spectrogram (resulting

from averaging the spectrograms for the eight subjects and

the six stimulation conditions). The colormap represents the

PSD as a function of the latency (log-scaled, in the horizon-

tal axis) and the number of oscillations per decade (in the

vertical axis). In this diagram, the frequency can be esti-

mated as f ðt; fdecÞ ¼ fdec=ðt � ln ð10ÞÞ, where t is the latency

and fdec is the frequency expressed in oscillations per

decade.

As observed in the average spectrogram, most of the

energy is below 15 oscillations/decade [which is consistent

with the spectral content expected in the evoked potentials

at different latencies (Burkard and Don, 2007; Martin et al.,
2007; Pratt, 2007)]. This supports the use of resolutions

around 30 or 40 samples/decade in the latency-dependent

low-pass filtering and down-sampling procedure.

Additionally, this figure shows that AEP responses (which

are not stationary processes since the spectral content

strongly depends on the latency) can be considered a quasi-

stationary process in the interval 2–300 ms when represented

as a function of the compressed latency axis. This supports

the latency-dependent filtering and down-sampling proce-

dure proposed in this article. The energy above 10 oscilla-

tions/decade observed for latency greater than 300 ms

corresponds to brain waves (not synchronized with auditory

stimulation, and therefore, noise of neural origin for the

AEP responses). Taking into account the frequency content

of this noise, this activity probably corresponds to alpha or

beta brain waves (the band 10–30 oscillations/decade at

500 ms latency corresponds to the band 8.6–26 Hz). The

portion with the lowest energy (below 40 dB) at early

latency and high frequency is associated to frequency com-

ponents above 7350 Hz (i.e., half of the original sampling

rate). Section 14 of the supplementary materials1 provides a

more complete analysis of the spectral distribution of the

AEP responses, including the average PSD as a function of

the number of oscillations per decade.

F. Comparison with the conventional filtering of AEP
components

The proposed latency-dependent filtering was compared

with conventional filtering applied to the ABR, MLR, and

CAEP portions of the AEP responses. In order to compare

both, each portion was represented in the corresponding

latency range, with a linearly scaled latency axis. In this

comparison, the conventional filtering was implemented

with band-pass zero-phase FIR filters with bandwidths

100–3000 Hz for the ABR portion, 10–300 Hz for the MLR

portion, and 1–30 Hz for the CAEP portion. The latency-

dependent low-pass filtering was configured for a resolution

Kdec¼ 40 samples/decade. Figure 10 compares the conven-

tional and the latency-dependent filtering for the ABR,

MLR, and CAEP portions. The not-filtered responses are

also included as reference. This response corresponds to the

AEP estimation from a 228 s EEG portion recorded from

subject 1 at ISI configuration 480–960 ms. Since the

response was estimated from a relatively short EEG portion,

it is strongly affected by noise, and the effect of the noise is

better observed. Similar figures for a response estimated

from a longer EEG (684 s), and grand-average responses

from the eight subjects (less affected by the noise) can be

found in the supplementary materials1 (Sec. 15).

As can be appreciated in this figure, both the conven-

tional and the latency-dependent filtering provide an effec-

tive reduction of the high frequency noise and a good

synchronization of the waves (there is no latency distortion

FIG. 8. Grand average of the AEP responses filtered with a resolution of 40

samples/decade reconstructed in the interval between 60 ls and 1 000 ms.

FIG. 9. (Color online) Average spectrogram of the log-scaled-latency AEP

responses: power spectral density as a function of the number of oscillations

per decade (vertical axis) and the log-scaled latency (horizontal axis).
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since both methods apply zero-phase filters). However, there

are differences between the filtered responses provided by

both methods. The conventional filtering is too restrictive at

the early portion of the responses and too permissive in the

late portion. This produces a distortion of the ABR compo-

nents in the MLR plot and of the MLR components in the

CAEP plot, while noise is insufficiently attenuated at the

late portions of the responses. The better preservation of the

wave components and the more effective noise reduction

provided by the latency-dependent filtering is associated

with the continuous variation of the bandwidth with the

latency. Additionally, the proposed method avoids the dis-

continuity imposed on the conventional AEP analysis,

allowing a more comprehensive interpretation of the

responses of the complete auditory pathway (as can be

observed in Figs. 7 and 8).

There are also slight differences in the low-frequency

components of the responses filtered by both methods. Since

the conventional filter applies band-pass filtering (but the

proposed latency-dependent filtering is low-pass), some

low-frequency components are attenuated in the former but

are not in the latter (this is evident, for example, in the last

portion of the ABR response). High-pass filtering is particu-

larly necessary when an isolated portion (for example,

ABR) is estimated with stimulation at a high rate in order to

avoid the interference from late components elicited from

the adjacent stimuli. However, in the experiments included

in the present study, this interference is minimized since the

whole AEP response (including ABR, MLR, and CAEP

components) is modeled and a deconvolution procedure

(rather than a simple average) is applied for the response

estimation, and the estimations provided by the latency-

dependent low-pass filtering are appropriate. In any case,

the proposed method could be easily adapted in order to pro-

vide band-pass filtering instead of low-pass filtering.

IV. DISCUSSION AND CONCLUSIONS

In this article, we present a procedure that provides

latency-dependent low-pass filtering and down-sampling to

be applied to AEP responses from the complete auditory

pathway. The procedure is formulated as a matrix operation.

An orthonormal matrix Vr applied to the original AEP

response provides its projection in the subspace of the

latency-dependent band-limited functions, i.e., a compact

representation of the filtered signal. The compact representa-

tion can be transformed to the original representation (using

the transposed VT
r matrix) or, alternatively, the response can

be reconstructed at a specific set of latencies.

The latency-dependent filtering and down-sampling is

implemented by applying a uniform filtering and down-

sampling in the compressed latency axis, using root-raised

cosine sampling functions. A linear-logarithmic compres-

sion (with a resolution specified in terms of the number of

samples per decade) has been applied.

The proposed procedure has been evaluated with both

simulations and real AEP responses. In the experiments pre-

sented in this paper, the dimensionality has been reduced

from 14 700 samples (in the original representation) to 117

samples (in the compact representation for a resolution of

40 samples/decade). The procedure provides a significant

quality improvement of the AEP responses, associated with

FIG. 10. (Color online) Conventional representation of the AEP responses for ABR, MLR, and CAEP components. Responses from a 228 s EEG portion

from subject 1, with stimulation configured for ISI¼ 480–960 ms. In each figure, the not-filtered response (top) the response filtered with conventional filter-

ing (middle) and the latency-dependent filtered response (bottom) are compared.
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the reduction of the high-frequency noise at late latency.

This improvement is clearly observed in the appearance of

the responses and was objectively measured in terms of the

SNR. For resolutions from 200 to 40 or 30 samples/decade,

the dimensionality reduction is accompanied of quality

improvement. Below 30 or 20 samples/decade (depending

on the noise affecting the responses), the dimensionality can

be reduced but the quality degrades due to the distortion of

the waves.

The proposed method allows an adequate filtering and

representation of the complete auditory pathway response.

When the auditory response is estimated separately (i.e.,

when ABR, MLR, or CAEP are independently measured),

the conventional filtering and the uniform sampling are

appropriate (because each portion is contained in just one

decade of latency). However, conventional filtering and

sampling are not appropriate for the response of the com-

plete auditory pathway (covering almost three decades)

because of the noise effect and the redundant representation.

The alternative of representing each portion of the auditory

response separately creates an artificial discontinuity

between the waves in the different portions, not appropriate

for global analysis and interpretation of the evoked

responses. The latency-dependent filtering and down-

sampling locally approaches the filtering and sampling-rate

conventionally applied for ABR, MLR, and CAEP, but at

the same time eliminates the discontinuity between the dif-

ferent portions. This way, the proposed procedure offers

new perspectives on the design of audiological experiments

and for the analysis of evoked responses, allowing the

simultaneous study of all the waves generated by the com-

plete auditory pathway. While conventional filtering applies

band-pass filtering, the proposed latency-dependent filtering

applies a low-pass filtering. This is not a strong limitation

for the representation of the complete auditory pathway,

since the deconvolution applied to obtain the AEP responses

avoids the interference of the late components over the early

components. However, the proposed latency-dependent fil-

tering can be adapted for band-pass filtering and is of poten-

tial utility for other audiological experiments. The proposed

filter design with zero-phase RRC filters guarantees that the

latencies of the waves are not delayed by the procedure, but

the non-causality associated zero-phase filters should be

taken into consideration, depending on the purpose of the

AEP analysis (de Cheveigne and Nelken, 2019).

This manuscript includes a study of the spectral content

of the AEP responses. From the responses represented in the

log-scaled latency axis, the AEP responses can be consid-

ered a quasi-stationary process, at least in the interval

2–300 ms. This quasi-stationarity of the responses has

allowed the effective reduction of the noise without distor-

tion by applying the latency-dependent filtering. The spec-

tral analysis with the log-scaled latency axis also reveals

that the spectral range below 7 oscillations/decade accumu-

lates 95% of the AEP energy (see the supplementary materi-

als,1 Sec. 14). This suggests that in the case of responses

severely affected by noise, a more aggressive latency-

dependent filtering (for instance with 20 or 15 samples/

decade) would be useful (since in spite of the distortion of

some waves, most of the shape of the AEP would be

preserved).

In this article, the compression of the latency axis was

performed with the relatively simple linear-logarithmic

compression. More flexible compression functions could be

applied in order to obtain a more accurate control of the

local sampling frequency for each latency, or even for

including pre-stimulus negative latency also with compres-

sion (i.e., including, with appropriate latency compression,

portions where the response is expected to be null) in order

to help the audiologist in the verification of the AEP

response consistency, or in order to allow an evaluation of

the SNR based on the pre-stimuli response (Polonenko and

Maddox, 2019).

The advantages of the proposed procedure are obtained

with a minimum computational cost, since only a matrix

product is required. Additionally, the procedure provides a

compact representation of the AEP responses (i.e., with the

minimum number of samples and without information loss),

which reduces the requirements for storage or transmission

of AEP databases (of potential utility, for example, for

remote AEP recording or monitoring). It can be also applied

for reducing the computational cost of deconvolution algo-

rithms for AEP responses (for example, the IRSA algorithm

could be equivalently applied in the original or in the

reduced representation space, with a substantial reduction of

the memory requirements and execution time in the reduced

representation space). On the other hand, the concentration

of the relevant information in a reduced number of samples

simplifies the post-processing of AEP data. Algorithms for

classification, characterization, or parameterization of waves

or AEP responses (Bradley and Wilson, 2005; Fridman

et al., 1982; Kamerer et al., 2020; Valderrama et al.,
2014c), as well as procedures based on artificial intelligence,

involving deep artificial neural networks or designed under

the perspective of big-data analysis (Dobrowolski et al.,
2016; Mosqueda-C�ardenas et al., 2019) would benefit from

compacting the relevant information in low-dimensionality

vectors (Trunk, 1979).

The procedures for latency-dependent low-pass filtering

and down-sampling, and for the response reconstruction,

have been implemented as MATLAB/Octave functions and

are provided in the supplementary materials1 (Secs. 6 and 9,

respectively). A MATLAB/Octave script has also been pre-

pared for running a demonstration involving the proposed

procedures (see the supplementary material,1 Sec. 16). The

script reads an AEP response, estimates the latency-

dependent filtering and down-sampling matrix and the

reconstruction matrix for the specified resolutions, and rep-

resents the not filtered responses as well as the filtered

responses (a) in the reduced representation, (b) in the origi-

nal representation, and (c) at the latencies specified for

reconstruction. The script also plots the functions of the

basis. Additionally, in order to provide the community with

these computational tools, MATLAB/Octave functions and
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scripts as well as data with examples have been included in

a compressed directory in the supplementary materials.1
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