
Informatica 29 (2005) 13–32 13

A Survey of Forecasting Preprocessing Techniques using RNs

J.M. Górriz and J.C. Segura-Luna
Dpt. Signal Theory Daniel Saucedo s/n E-18071
gorriz@ugr.es web: hal.ugr.es

C.G. Puntonet and M. Salmerón
Dpt. Architecture and Computer Tech. Daniel Saucedo E-18071
carlos@atc.ugr.es web: atc.ugr.es

Keywords: Regularization Networks, Independent Component Analysis, Principal Component Analysis

Received: October 28, 2004

In this paper we make a survey of various preprocessing techniques including the statistical method for
volatile time series forecasting using Regularization Networks (RNs). These methods improve the per-
formance of Regularization Networks i.e. using Independent Component Analysis (ICA) algorithms and
filtering as preprocessing tools. The preprocessed data is introduced into a Regularized Artificial Neural
Network (ANN) based on radial basis functions (RBFs) and the prediction results are compared with the
ones we get without these preprocessing tools, with the high computational effort method based on multi-
dimensional regularization networks (MRN) and with the Principal Component Analysis (PCA) technique.

Povzetek:

1 Introduction
In the history of research of the forecasting problem one
can extract various relevant periods such as the following
mentioned: a possible solution to this problem was de-
scribed by Box and Jenkins [1], who developed a time-
series forecasting analysis technique based on linear sys-
tems. Basically the procedure consisted of suppressing the
non-seasonality of the series, performing parameter analy-
sis, which measures time-series correlation, and selecting
the model that best fits the data set (a specific order ARIMA
model). But in real systems, non-linear and stochastic phe-
nomena crop up, and then time series dynamics cannot be
described exactly using classical models. ANNs have im-
proved results in forecasting by detecting the non-linear na-
ture of the data. ANNs based on RBFs allow a better fore-
casting adjustment; they implement local approximations
to non-linear functions, minimizing the mean square error
to achieve the adjustment of neural parameters. For ex-
ample, Platt’s algorithm [2], Resource Allocating Network
(RAN), consisted of neural network size control, reducing
the computational time cost associated with computing the
optimum weights in perceptron networks.

Matrix decomposition techniques have been used as an
improvement on Platt’s model [3]. For example, Singular
Value Decomposition (SVD) with pivoting QR decomposi-
tion selects the most relevant data in the input space avoid-
ing non-relevant information processing (NAPA-PRED
"Neural model with Automatic Parameter Adjustment for
PREDiction"). NAPA-PRED also includes neural pruning
[4]. An improved version of this algorithm can be found in
[5] based on Support Vector Machine philosophy.

The next step was to include exogenous information in
these models. There are some choices in order to do that;
we can use the forecasting model used in [6] which gives
good results but with computational time and complex-
ity cost; Principal Component Analysis (PCA) is a well-
established tool in Finance. It was already proved [3] that
prediction results can be improved using the PCA tech-
nique. This method linear transform the observed sig-
nal into principal components which are uncorrelated (fea-
tures), giving projections of the data in the direction of
the maximum variance [7]. PCA algorithms use only sec-
ond order statistical information; Finally, in [8] we can
discover interesting structure in finance using the new
signal-processing tool Independent Component Analysis
(ICA). ICA finds statistically independent components us-
ing higher order statistical information for blind source sep-
aration ([9], [10]). This new technique may use Entropy
(Bell and Sejnowski 1995, [11]), Contrast functions based
on Information Theory (Comon 1994, [12]), Mutual Infor-
mation (Amari, Cichocki y Yang 1996, [13]) or geometric
considerations in data distribution spaces (Carlos G. Pun-
tonet 1994 [14], [15]), etc. Forecasting and analyzing fi-
nancial time series using ICA can contributes to a better
understanding and prediction of financial markets ([6],[8]).

There exist numerous forecasting applications in time
series forecasting, as analyzed in [16]: signal statisti-
cal preprocessing and communications, industrial control
processing, econometrics, meteorology, physics, biology,
medicine, oceanography, seismology, astronomy and psy-
chology. We organize the essay as follows. In section 2 we
describe the neural model used and the certain conditions

14 Informatica 29 (2005) 13–32 J.M. Górriz et al.

to achieve a good confidence interval in prediction. In sec-
tions 3,4 and 5 we describe in detail three methods for time
series preprocessing showing some results and finally in
section we describe a brand new experimental framework
comparing the previous discussed methods stating some
conclusions.

2 Regularization networks based on
RBFs

Because of their inherent non-linear processing and learn-
ing capabilities, ANNs (Artificial Neural Networks) have
been proposed to solve prediction problems. An excel-
lent survey of NN forecasting applications is to be found
in [17]. There it is claimed that neural nets often offer
better performance, especially for difficult time series than
are hard to deal with classical models such as ARIMA
models [1]. One of the simplest, but also most powerful,
ANN models is the Radial Basis Function (RBF) network
model. This consists of locally-receptive activation func-
tions (or neurons) implemented by means of gaussian func-
tions [18]. In mathematical terms, we have

o(x) =
N∑

i=1

oi(x) =
N∑

i=1

hi exp
{
−‖x− ci‖2

σ2
i

}
(1)

where N denotes the number of nodes (RBFs) used; oi(x)
gives the output computed by the i-th RBF for the input
vector x as an exponential transformation over the norm
that measures the distance between x and the RBF center
ci, whereas σi denotes the radius that controls the locality
degree of the corresponding i-th gaussian response. The
global output o(x) of the neural network is, as can be seen,
a linear aggregate or combination of the individual outputs,
weighted by the real coefficients hi.

In most RBF network applications, the coefficients hi

are determined after setting up the location and radius for
each of the N nodes. The locations can be set, as in [18], by
a clustering algorithm, such as the K-means algorithm [19],
and the radius is usually set after taking into account con-
siderations on RBFs close to the one being configured. The
adjustment of the linear expansion coefficients can be done
using recursive methods for linear least squares problems
[20, 21] or the new method based on Regularization-VC
Theory presented in [5] characterized by a suitable regu-
larization term which enforces flatness in the input space,
so that the actual risk functional over a training data set is
minimized, and determined by the previously set parame-
ter values [22]. Recursive specification allows for real-time
implementations, but the questions arises of whether or not
we are using a simplified-enough neural network, and this
is a question we will try to address using matrix techniques
over the data processed by the neural net.

In the particular context of the RBF networks, the map-
ping of a time series prediction problem to the network is
performed setting up the input as past values (consecutive

ones, in a first approximation) of the time series. The out-
put is viewed as a prediction for the future value that we
want to estimate, and the computed error between the de-
sired and network- estimated value is used to adjust para-
meters in the network.

2.1 Regularization Theory (RT)
RT appeared in the methods for solving ill posed problems
[23]. In RT we minimize a expression similar to the one
in Support Vector Machines scenario (SVM). However, the
search criterium is enforcing smoothness (instead of flat-
ness) for the function in input space (instead of feature
space). Thus we get:

Rreg[f] = Remp[f] +
λ

2
||P̂ f ||2. (2)

where P̂ denotes a regularization operator in the sense of
[23], mapping from the Hilbert Space H of functions to
a dot product Space D such as 〈f, g〉 ∀f, g ∈ H is well
defined. Applying Fréchett’s differential1 to equation 2 and
the concept of Greent’s function of P̂ ∗P̂ :

P̂ ∗P̂ ·G(xi, xj) = δ(xi − xj). (3)

(here δ denotes the Diract’s δ, that is 〈f, δ(xi)〉 = f(xi)),
we get [22]:

f(x) = λ
∑̀

i=1

[yi − f(xi)]ε ·G(x, xi). (4)

The correspondence between SVM and RN is proved if and
only if the Greent’s function G is an “admissible” kernel in
the terms of Mercert’s theorem [24],i.e. we can write G as:

G(xi, xj) = 〈Φ(xi),Φ(xj)〉 (5)

with Φ : xi → (P̂G)(xi, .). (6)

Prove: Minimizing ||Pf ||2 can be expressed as:

||Pf ||2 =
∫

dx(Pf)2 =
∫

dxf(x)P∗Pf(x) (7)

we can expand f in terms of green’s function associated to
P, thus we get:

||Pf ||2 =
∑N

i,j hihj

∫
dxG(x, xi)P∗PG(x, xj)

=
∑N

i,j hihj

∫
dxG(x, xi)δ(x− xj)

=
∑N

i,j hihjG(xj , xi)
(8)

then only if G is a Mercer Kernel it correspond to a dot
product in some feature space. Then minimizing 2 is equiv-
alent to SVM minimization†.

A similar prove of this connection can be found in [25].
Hence given a regularization operator, we can find an ad-
missible kernel such that SV machine using it will en-
force flatness in feature space and minimize the equation
2. Moreover, given a SV kernel we can find a regulariza-
tion operator such that the SVM can be seen as a RN.

1Generalized differentiation of a function: dR[f] =
h

d
dρ

R[f + ρh]
i

,
where h ∈ H .

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 15

2.2 On-line Endogenous Learning Machine
Using Regularization Operators

In this section we show on-line RN based on “Resource
Allocating Network” algorithms (RAN) 2 [2] which consist
of a network using RBFs, a strategy for allocating new units
(RBFs), using two part novelty condition [2]; input space
selection and neural pruning using matrix decompositions
such as SVD and QR with pivoting [4]; and a learning rule
based on SRM as discussed in the previous sections. The
pseudo-code of the new on-line algorithm is presented in
[26]. Our network has 1 layer as is stated in equation 1. In
terms of RBFs the latter equation can be expressed as:

f(x) =
N(t)∑

i=1

hi · exp
(
−||x(t)− xi(t)||2

2σ2
i (t)

)
+ b. (9)

where N(t) is the number of neurons, xi(t) is the center of
neurons and σi(t) the radius of neurons, at time “t”.

In order to minimize equation 2 we propose a regular-
ization operator based on SVM philosophy. We enforce
flatness in feature space, as described in [26], using the reg-
ularization operator ||P̂ f ||2 ≡ ||ω||2, thus we get:

Rreg[f] = Remp[f] +
λ

2

N(t)∑

i,j=1

hihjk(xi, xj). (10)

We assume that Remp = (y − f(x))2 we minimize equa-
tion 10 adjusting the centers and radius (gradient descend
method ∆χ = −η ∂R[f]

∂χ , with simulated annealing [27]):

∆xi = −2 η
σi

(x− xi)hi(f(x)− y)k(x, xi)
+α

∑N(t)
i,j=1 hihjk(xi, xj)(xi − xj).

(11)

and

∆hi = α̃(t)f(xi)− η(f(x)− y)k(x, xi). (12)

where α(t), α̃(t) are scalar-valued “adaptation gain”, re-
lated to a similar gain used in the stochastic approxima-
tion processes, as in these methods, it should decrease in
time. The second summand in equation 11 can be evalu-
ated in several regions inspired by the so called “divide-
and-conquer” principle and used in unsupervised learning,
i.e. competitive learning in self organizing maps [28] or in
SVMs experts [29]. This is necessary because of volatile
nature of time series, i.e. stock returns, switch their dy-
namics among different regions, leading to gradual changes
in the dependency between the input and output variables
[26]. Thus the super-index in the latter equation is rede-
fined as:

Nc(t) = {si(t) : ||x(t)− xi(t)|| ≤ ρ}. (13)

that is the set of neurons close to the current input.

2The principal feature of these algorithms is sequential adaptation of
neural resources.

3 RNs and PCA

3.1 Introduction
PCA is probably the oldest and most popular technique in
multivariate data analysis. It transforms the data space into
a feature space, in such a way, that the new data space is
represented by a reduced number of "effective" features.
Its main advantages lie in the low computational effort and
the algebraic procedure.

Given a n × N data set x,where N is the sample size,
PCA tries to find a linear transformation x̃ = WT x into a
new orthogonal basis W = {w1, . . . ,wm} m ≤ n such
that:

Cov(x̃) = E{x̃x̃T } = WT Cov(x)W = Λ (14)

where Λ = diag(λ1, . . . , λn) is a diagonal matrix. Hence
PCA, decorrelates the vector x as all off-diagonal elements
in the covariance matrix of the transformed vector vanish.
In addition to the transformation presented in equation 14
(Karhunen-Loeve transformation when m = n) the vari-
ances of the transformed vectors x̃ can be normalized to
one using:

x̃ = WT
z x (15)

with the sphering matrix Wz =
[

w1√
λ1

, . . . , wm√
λm

]
It has

been shown that prediction results can be improved using
this technique in [4].

In this Section we give an overview of the basic ideas
underlying Principal Component Analysis (PCA) and its
application to improve forecasting results using the algo-
rithm presented in Section 2. The improvement consist on
including exogenous information as is shown [3] and ex-
tracting results from this technique to complete the differ-
ent methods of inclusion extra information.

The purpose of this Section is twofold. It should serve as
a self-contained introduction to PCA and its relation with
ANNs (Section 3.2). On the other hand, in Section 3.3, we
discuss the use of this tool with the algorithm presented in
Section 2 to get better results in prediction. To this end we
follow the method proposed in [3] and see the disadvan-
tages of using it.

3.2 Basis PCA and Applications
There are numerous forecasting applications in which in-
teresting relations between variables are studied. The na-
ture of this dependence among observations of a time series
is of considerable practical interest and researchers have
to analyze this dependence to find out which variables are
most relevant in practical problems. Thus, our objective is
to obtain a forecast function of a time series from current
and past values of relevant exogenous variables.

Some tools have been developed in physics and engi-
neering areas which allow this kind of analysis. For exam-
ple, Factor Analysis (FA) [30] is useful to extract relevant
combinations (i.e factors) from the set of original variables.

16 Informatica 29 (2005) 13–32 J.M. Górriz et al.

The extracted factors, obtained from an input linear model,
are rotated to find out interesting structures in data. The
procedure is based on correlation matrix between variables
3.

FA has strong restrictions on the nature of data (linear
models), thus PCA is more useful to our application due to
the low computational effort and the algebraic procedure
as it is shown in the next Section. Reducing input space di-
mension (feature space) using PCA is of vital importance
when working with large data set or with “on line” appli-
cations (i.e time series forecasting). The key idea in PCA,
as we say latter, is transforming the set of correlated input
space variables into a lower dimension set of new uncor-
related features. This is an advantage in physics and en-
gineering fields where theret’s a high computational speed
demand in on-line systems (such as sequential time series
forecasting).

In addition to these traditional applications in physics
and engineering, this technique has been applied to econ-
omy, psychology, and social sciences in general. However,
owing to different reasons [31], PCA has not been estab-
lished in these fields as good as the others. In some fields
PCA became popular , i.e. statistics or data mining us-
ing intelligent computational techniques [32]. Obviously,
the new research in neural networks and statistical learning
theory will bring applications in which PCA will be applied
to reduce dimensionality or real-time series analysis.

3.2.1 PCA Operation

Let x ∈ Rn representing a stochastic process. The target
in PCA [33] is to find a unitary vector basis (norm equal to
1)

{uj : j = 1, 2, . . . , r} , (16)

where r < n, and with projections of this kind:

uT
j · x (17)

have maximum expected variance, w.r.t all possible config-
urations (16). In other words, the first vector belonging to
this basis, u1, must have the following property: u1 · x,
considered as a random variable (since x is a random vari-
able), has maximum variance between all possible linear
combinations of the components of x. At the same time,
u2 is such that u2 · x has maximum variance between all
possible orthogonal directions to u1, and so on. The next
unitary vectors are selected from the set of vector {w} sat-
isfying:

3Factor analysis is a statistical approach that can be used to analyze
interrelationships among a large number of variables and to explain these
variables in terms of their common underlying dimensions (“factors”).
The statistical approach involving finding a way of condensing the infor-
mation contained in a number of original variables into a smaller set of
dimensions (factors) with a minimum loss of information. It has been
used in disciplines as diverse as chemistry, sociology, economics or psy-
chology.

wT · uk = 0, k = 1, . . . , j − 1 and wT ·w = 1 , (18)

and then from this set {w}, we choose them using

uj = arg max
w

E
(
V ar[wT · x]

)
, (19)

where w verifies (18).
Let a vector x ∈ Rn, the set of orthogonal projections

with maximum variances uT
j · x are given by:

max
uj

E
(
V ar[uT

j · x]
)

= λj , (20)

where λj is the j-th eigenvalue of the covariance matrix

R ≡ E
[
(x− µx) · (x− µx)T

]
, (21)

that is a n× n square matrix. In the equation (21), µx rep-
resents the stationary stochastic process mean which can
be calculated using the set of samples x. the eigenvalues
λj can be calculated according the EIGD of matrix (21),
which definition and properties are shown in [34].

Furthermore, it can be proved that the “principal com-
ponents” from which we can get the maximum variances,
are the eigenvectors of the covariance matrix R. Note that
R is semi-definite positive matrix thus all eigenvalues are
positive real numbers including 0 [0,+∞) and their eigen-
vectors uj satisfying:

R · uj = λj · uj , (22)

where λj denotes the associated eigenvalue, can be merged
to compose an orthogonal matrix.

Hence we can estimate the covariance matrix R as:

R̂ ≡ 1/(N − 1) ·X ·XT , (23)

where
X = [x1 − x̄,x2 − x̄, . . . ,xN − x̄] (24)

is a n × N matrix including the set of N samples (or n-
dimensional vectors) xi, with mean equal to x̄. Once the
estimation of R̂ has been got, we can use EIGD, to obtain
the following matrix:

U = [u1u2 . . .un] (25)

including all eigenvectors in the columns, and the diagonal
matrix Λ with the corresponding eigenvalues in the main
diagonal.

Obviously if we choose the set of orthogonal and unitary
vectors given by the equation (25), then theret’s an unique
correspondence between the input space matrix X in equa-
tion (24) and the n×N matrix X′ = UT ·X. This transfor-
mation is invertible since U−1 = U, i.e U is orthogonal.
All the process is based on a simple linear transformation
into a new orthogonal basis such that the covariance matrix
in the new system is diagonal.

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 17

3.3 Time Series prediction with PCA
In this Section we show how Principal Component Analy-
sis (PCA) technique can be hybridized with the algorithm
presented in section 2 to improve prediction results, includ-
ing exogenous information.

3.3.1 Data compression and reducing dimensionality

As we mentioned latter, PCA is a useful tool in the pre-
processing step in data analysis, i.e. those techniques based
on artificial neural networks considered in this work. In this
way, there can be a PCA layer that compresses raw data
from the sample set.

The basic idea is consider a large set of input variables
and transforms it to a new set of variables containing with-
out loss of much information [7]. This is possible due to
that very often, multivariate data contains redundant infor-
mation of 2nd order.

On the other hand, the more dimension reduction we
want to achieve the more fraction of original loss variance,
in other words, we can lose much relevant information.
Thus, under this conditions, the inclusion of exogenous
information would contaminate prediction capacity of any
system (neural or not). Hence, if PCA extract only the first
r factors (in terms of variance) such that:

r = min{k :
k∑

i=1

λi ≥ ρ · tr(R̂)} , (26)

only a fraction of ρ of the exogenous data overall variance
will be kept. In the equation (26), tr(R̂) denotes trace of
the estimated covariance matrix R̂ for the set of data (that
is, adding its diagonal elements or individual variance com-
ponents). Given that

∑n
i=1 λi is the overall variance and

PCA projection variances are given by the eigenvalues λi,
if we consider the complete set of eigenvalues we would
have the complete variance, so this way, if we select a sub-
set of eigenvalues r < n, we would hold a fraction ρ (at
least) of the overall variance of the exogenous data.

In this method of data compression using the maximum
variance principle, PCA is basically regarded as a standard
statistical technique. In neural networks research areas, the
term unsupervised Hebbian learning [35, 36, 37] is usually
used to refer this powerful tool in data analysis, such as
discriminant analysis is used as a theoretical foundation to
justify neural architectures (i.e. multilayer perceptrons or
linear architectures) for classification [38].

The previous discussion explains the concept of dimen-
sion reduction, projecting onto r more relevant unitary vec-
tors (that is, those ones that hold the bigger fraction of vari-
ance of data) is the way of develop this reduction since mul-
tiplying by U gives a r×N matrix. In addition, the column
vectors in U can be seen as feature vectors, containing the
principal characteristics of the data set; the projection onto
uj must be understood, in that case, such as a measure of
certain characteristic in data samples. The transformation
onto this new feature space is suitable way to analyse raw

data, thus, in this Section, we will use this technique in the
preprocessing step, before neural stages.

3.3.2 Improving neural input space

Moreover, PCA can be used to include exogenous infor-
mation [3], in other words, we can increase input space di-
mension using variables related to the original series. The
principal advantage of using PCA over straightforward in-
clusion is that PCA can reduce input space dimensionality
without loss of much information (in terms of variance) in-
cluded is such variables.

As we said latter, to reduce input space dimensionality
using PCA, a fraction of information, i.e variance, must be
rejected. In some cases, it can be a decision with unfore-
seeable consequences, thus, a conservative policy should
be followed, i.e. using PCA variables such as “extra” vari-
ables to improve the prediction results. This is the key idea
in this Section.

This rule based on “catalytic variables” is appropriate in
a practical point of view. In fact in [7], hybridized with
filtering techniques, is a success. In the following exam-
ple, we show how this technique is applied to stock series
obtaining noticeable improvements.

3.4 Results

In the following Section we show an example in which we
applied hybrid models based on PCA and ANN originally
discussed in [3]. We intend to forecast (with horizon equal
to 1) stock series (indexes) of different Spanish banks and
other companies during the same period.

3.4.1 Description and data set

We have specifically focussed on the IBEX35 index of
Spanish stock, which we consider the most representa-
tive sample of Spanish stock movements. We have chosen
seven relevant indexes such as Banesto, Bankinter, BBVA,
Pastor, Popular, SCH y Zaragozano, and we build a matrix
including 1672 consecutive observations (closing prices).
A representation of theses indexes can be found in the fig-
ure 1.

Itt’s clear, from the latter figure, that there is a wide range
of indexes closing prices. Thus, it means the need for a log-
arithmic transformation (to make variance steady) and later
suitable differentiation of the data (to remove the residual
non-stationary behavior). Once the proper transformations
are achieved we obtain the results shown in figure 2.

After these basic transformations, the new set of series
can be processed using the algorithm introduced in Sec-
tion 2. The object of the method is to train our neural net-
work based on RBFs with the set of transformed series, to
predict (with horizon equal to 1) the first of the selected
stocks (strictly speaking, we predict the transformed value
that must be inverted in the final step) using its own en-
dogenous information (the number of lags were fixed to 2)

18 Informatica 29 (2005) 13–32 J.M. Górriz et al.

Figure 1: Closing prices evolution for selected indexes.

Figure 2: Closing prices evolution for selected indexes, af-
ter logarithmic transformation (on the left) and differentia-
tion (on the right).

Table 1: Eigenvalues λi and variance percentages of PCs.

Index Eigenvalue Pct. variance Pct. overall
1 0.9302 33.03 33.03
2 0.6670 23.69 56.72
3 0.3303 11.73 68.45
4 0.2694 9.57 78.02
5 0.2198 7.80 85.82
6 0.2134 7.58 93.40
7 0.1858 6.60 100.00

Figure 3: 3D schematic representation of the three first
principal components.

and the more relevant principal components (thus we don’t
use the other series directly).

Using a training set consisting of 1000 samples, we com-
puted the first 3 principal components. The matrix used
consist of the complete set of series (every stock). As we
mentioned in Section 3.3.2, we determinate the number of
inputs to improve the prediction result of interest using the
principal components as additional data input. We remark
that the 3 components represents about 70% of the overall
variance (table 1). In a three dimensional space we can plot
the components as is shown in figure 3.

Finally, the last 10 samples of the complete set (1000)
were used to compare prediction results with and without
exogenous inputs. In addition, in this example we included
the well-known sphering or y-score transformation [33](as
the variance along all principal components equals one):

wi =
√

λi

−1 · ui , (27)

instead of using the original eigenvector ui. This trans-
formation is very common in the field of artificial neural
networks and in many ICA-algorithms (whitening) in a pre-
processing step as it completely removes all correlations up
to the 2nd order.

The reason for using just the last 10 sample points lies in
the fact that economic series extremely volatile and PCA
can only extract up to second order relations (in Section
4 we use a better tool to develop it). So the extra infor-

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 19

Figure 4: Prediction results with and without exogenous
information using NAPA-PRED. The solid line is the real
time series, asterisks (*) are results using NAPA-PRED,
and crosses (+) are results using NAPA-PRED+PCA

Table 2: NRMSE for last 10 points (normalized round
mean square error).

Mode NRMSE Error
With PCA 0.7192

Without PCA 0.5189

mation extracted using this technique forces redefining the
preprocessing step in a few iterations. This is related to
the fact that we choose the principal components instead
of the original series (5 variables); this choice would in-
crease even more the input space dimension reducing the
efficiency of the model.

3.4.2 Prediction Results

We compare prediction results obtained using the algorithm
in section 2, rejecting the regularization term with and
without the method proposed in this Section as is shown
in figure 4. Prediction results improve and it is due to frac-
tion of exogenous information included. In table 2 we show
that (after transformations are inverted) the results for these
10 point are improved in a percentage around 7%.

3.5 Conclusions

From the results in the previous Section, itt’s clear that the
originally proposed method in [3], improves algorithms ef-
ficiency. This increase is based on selecting a suitable input
space using a statistic method (PCA) and to date, it’s the
only way to develop it.

However the reader can notice the problems of this
method. These problems are mentioned in the introduction
of the chapter and are about the order of statistics used. In
addition the increasing dimensionality (“curse of dimen-
sionality”) can cause serious problems (we were using a 5

dimensional input space) damaging the quality of the re-
sult. Neural networks are very sensitive to this problem be-
cause of the number of neurons to ensure universal approx-
imation conditions [39] grows exponentially with the input
space dimension unlike multilayer perceptrons, i.e. they
are global approximations of nonlinear transformations, so
they have a natural capacity of generalization [22, Sec. 7.9]
with limited data set.

4 RNs and ICA
In this Section we describe a method for volatile time series
forecasting using Independent Component Analysis (ICA)
algorithms (see [40]) and Savitzky-Golay filtering as pre-
processing tools. The preprocessed data will be introduce
in a based radial basis functions (RBF) Artificial Neural
Network (ANN) and the prediction result will be compared
with the one we get without these preprocessing tools. This
method is a generalization of the classical Principal Com-
ponent Analysis (PCA) method for exogenous information
inclusion (see Section 3)

4.1 Basic ICA
ICA has been used as a solution of the blind source sepa-
ration problem [10] denoting the process of taking a set of
measured signal in a vector, x, and extracting from them a
new set of statistically independent components (ICs) in a
vector y. In the basic ICA each component of the vector x
is a linear instantaneous mixture of independent source sig-
nals in a vector s with some unknown deterministic mixing
coefficients:

xi =
N∑

i=1

aijsj (28)

Due to the nature of the mixing model we are able to es-
timate the original sources s̃i and the unmixing weights bij

applying i.e. ICA algorithms based on higher order statis-
tics such as cumulants.

s̃i =
N∑

i=1

bijxj (29)

Using vector-matrix notation and defining a time series
vector x = (x1, . . . , xn)T , s, s̃ and the matrix A = {aij}
and B = {bij} we can write the overall process as:

s̃ = Bx = BAs = Gs (30)

where we define G as the overall transfer matrix. The es-
timated original sources will be, under some conditions in-
cluded in Darmois-Skitovich theorem (chapter 1 in [41]), a
permuted and scaled version of the original ones. Thus, in
general, it is only possible to find G such that G = PD
where P is a permutation matrix and D is a diagonal scal-
ing matrix.

20 Informatica 29 (2005) 13–32 J.M. Górriz et al.

This model (equation (28)) can be applied to the stock
series where there are some underlying factors like sea-
sonal variations or economic events that affect the stock
time series simultaneously and can be assumed to be quite
independent [42].

4.2 Preprocessing Time Series with
ICA+Filtering

The main goal, in the preprocessing step, is to find non-
volatile time series including exogenous information i.e. fi-
nancial time series, easier to predict using ANNs based on
RBFs. This is due to smoothed nature of the kernel func-
tions used in regression over multidimensional domains
[43]. We propose the following Preprocessing Steps

– After whitening the set of time series
{xi}n

i=1(subtracting the mean of each time se-
ries and removing the second order statistic effect
or covariance matrix diagonalization process—see
Section 3 for further details)

– We apply an ICA algorithm to estimate the original
sources si and the mixing matrix A in equation (28).
Each IC has information of the stock set weighted by
the components of the mixing matrix. In particular,
we use an equivariant robust ICA algorithm based in
cumulants (see [41] and [6]) however another choices
can be taken instead, i.e. in [40]. The unmixing matrix
is calculated according the following iteration:

B(n+1) = B(n) + µ(n)(C1,β
s,s Sβ

s − I)B(n) (31)

where I is the identity matrix, C1,β
s,s is the β + 1 order

cumulant of the sources (we chose β = 3 in simula-
tions) , Sβ

s = diag(sign(diag(C1,β
s,s))) and µ(n) is the

step size.

Once convergence, which is related to cross-
cumulants 4 absolute value, is reached, we estimate
the mixing matrix inverting B.

Generally, the ICs obtained from the stock returns re-
veal the following aspects [8]:

1. Only a few ICs contribute to most of the move-
ments in the stock return.

2. Large amplitude transients in th dominant ICs
contribute to the major level changes. The non-
dominant components do not contribute signifi-
cantly to level changes.

3. Small amplitude ICs contribute to the change in
levels over short time scales, but over the whole
period, there is little change in levels.

4Fourth order cumulant between each pair of sources must equals zero.
This is the essential condition of statistical independence as is shown in
chapter 3 in [6].

– Filtering.

1. We neglect non-relevant components in the mix-
ing matrix A according to their absolute value.
We consider the rows Ai in matrix A as vec-
tors and calculate the mean Frobenius norm 5

of each one. Only the components bigger than
mean Frobenius norm will be considered. This is
the principal preprocessing step using PCA tool
but in this case this is not enough.

Ã = Z ·A (32)

where {Z}ij = [{A}ij > ||Ai||F r

n]

2. We apply a low band pass filter to the ICs.
We choose the well-adapted for data smooth-
ing Savitsky-Golay smoothing filter [44] for two
reasons: a)ours is a real-time application for
which we must process a continuous data stream
and wish to output filtered values at the same
rate we receive raw data and b) the quantity of
data to be processed is so large that we just can
afford only a very small number of floating op-
erations on each data point thus computational
cost in frequency domain for high dimensional
data is avoided even the modest-sized FFT (see
in [40]). This filter is also called Least-Squares
[45] or DISPO [46]. These filters derive from
a particular formulation of the data smoothing
problem in the time domain and their goal is to
find filter coefficients cn in the expression:

s̄i =
nR∑

n=−nL

cnsi+n (33)

where {si+n} represent the values for the ICs in
a window of length nL + nR + 1 centered on
i and s̃i is the filter output (the smoothed ICs),
preserving higher moments [47].
For each point si we least-squares fit a m order
polynomial for all nL+nR+1 points in the mov-
ing window and then set s̃i to the value of that
polynomial at position i. As shown in [47] there
are a set of coefficients for which equation (33)
accomplishes the process of polynomial least-
squares fitting inside a moving window:

cn = {(MT ·M)−1(MT · en)}0 =
=

∑m
j=0{(MT ·M)−1}0j · nj

where {M}ij = ij , i = −nL, . . . , nR, j =
0, . . . , m, and en is the unit vector with −nL <
n < nR. Note that equation (34) implies that we
need only one row of the inverse matrix (numer-
ically we can get this by LU decomposition [47],
with only a single backsubstitution).

5Given x ∈ Rn, its Frobenius norm is ||x||Fr ≡
qPn

i=1 x2
i

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 21

Figure 5: Schematic representation of prediction and filter-
ing process.

– Reconstructing the original series using the smoothed
ICs and filtered Ã matrix we obtain a less high fre-
quency variance version of the series including exoge-
nous influence of the exogenous ones. We can write
using equations 42 and 41.

x = Ã · s̄ (34)

4.3 Time Series Forecasting Model

We use an ANN based on RBFs to forecast a series xi from
the Stock Exchange building a forecasting function P with
the help of the algorithm presented in Section 2, for one of
the set of signals {x1, . . . , xn}. As shown in Section 2 the
individual forecasting function can be expressed in terms
of RBFs as [48]:

f(x) =
N∑

i=1

fi(x) =
N∑

i=1

hi exp{ ||x− ci||2
r2

i

} (35)

where x is a p-dimensional vector input at time t, N is the
number of neurons (RBFs) , fi is the output for each neu-
ron i-th , ci is the centers of i-th neuron which controls the
situation of local space of this cell and ri is the radius of
the i-th neuron. The overall output is a linear combination
of the individual output for each neuron with the weight
of hi. Thus we are using a method for moving beyond
the linearity where the core idea is to augment/replace the
vector input x with additional variables, which are trans-
formations of x, and then use linear models in this new
space of derived input features. RBFs are one of the most
popular kernel methods for regression over the domain Rn

and consist on fitting a different but simple model at each
query point ci using those observations close to this target
point in order to get a smoothed function. This localization
is achieved via a weighting function or kernel fi.

The preprocessing step suggested in Section 4.2 is nec-
essary due to the dynamics of the series (the algorithm pre-
sented Section 2 is sensitive to this preprocessed series) and
it will be shown that results improve noticeably [40]. Thus
we use as input series the smoothed ones obtained from
equation (45).

Figure 6: Set of stock series.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Figure 7: Set of ICs of the stock series.

0 20 40 60 80 100 120 140 160
35

40

45

50

55

60

65

70

Figure 8: Real Series(line),predicted Series with
ICA+SG(dash-dotted),predicted Series without pre-
processing (dotted). The stock selected was Bakinter from
IBEX35

22 Informatica 29 (2005) 13–32 J.M. Górriz et al.

0 10 20 30 40 50 60 70 80

44

46

48

50

52

54

56

58

60

Figure 9: Zoom on figure 8.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

Figure 10: NRMSE evolution for ANN method and
ANN+ICA method for Bankinter Series; theret’s a notice-
able improvement even under volatile conditions.

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

20

25

Figure 11: Real series from ICA reconstruction (scaled
old version)(line) and preprocessed real series (dotted line).
Selected Stock: Bankinter

140 160 180 200 220 240
−15

−10

−5

0

5

Figure 12: Zoom on figure 11.

4.4 Simulations

In the current simulation we have worked with an index of
a Spanish bank (Bankinter) and other companies (such as
exogenous variables) during the same period to investigate
the effectiveness of ICA techniques for financial time series
(figure 6). We have specifically focussed on the dowjones
from american stock, which we consider the most repre-
sentative sample of the american stock movements, using
closing prices series.

We considered the closing prices of Bankinter for pre-
diction and 10 indexes of intenational companies (IBM, JP
Morgan, Matsushita, Oracle, Phillips, Sony, Microsoft, Vo-
daphone, Citigroup and Warner). Each time series includes
2000 points corresponding to selling days (quoting days).

We performed ICA on the Stock returns using the ICA
algorithm presented in Section 4.2 assuming that the num-
ber of stocks equals the number of sources supplied to the
mixing model. This algorithm whiten the raw data as the
first step. The ICs are shown in the figure 7. These ICs rep-
resents independent and different underlying factors like
seasonal variations or economic events that affect the stock
time series simultaneously. Via the rows of A we can re-
construct the original signals with the help of these ICs i.e.
Bankinter stock after we preprocess the raw data:

– Frobenius Filtering: the original mixing matrix6:

A =

. . .
...

...
...

...
. . . 0.33 −0.23 0.17 0.04
. . . −0.28 1.95 −0.33 4.70
. . . 0.33 −0.19 0.05 −0.23

. . .
...

...
...

...

(36)

6We show and select the relevant part of the row corresponding to the
Bankinter Stock.

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 23

Figure 13: Delay problem in ANNs

is transformed to:

Ã =

. . .
...

...
...

...
. . . 0.33 −0.23 0.17 0.04
. . . 0 1.95 0 4.70
. . . 0.33 −0.19 0.05 −0.23

. . .
...

...
...

...

(37)

thus we neglect the influence of two ICs on the origi-
nal 5th stock. Thus only a few ICs contribute to most
of the movements in the stock returns and each IC
contributes to a level change depending its amplitude
transient [8].

– We compute a polynomial fit in the ICs using the li-
brary supported by MatLab and the reconstruction of
the selected stock (see figure 11) to supply the ANN.

In figures 8 and 9 we show the results (prediction for
150 samples) we obtained using our ANN with the latter
ICA method. We can say that prediction is better with the
preprocessing step avoiding the disturbing peaks or conver-
gence problems in prediction. As is shown in figure 10, the
NRMSE is always lower using the techniques we discussed
in Section 4.3.
Finally, with these models we avoid the “curse of dimen-
sionality” or difficulties associated with the feasibility of
density estimation in many dimensions presented in AR or
ANNs models (i.e RAN networks without input space con-
trol, see Section 2) with high number of inputs as shown in
figure 14 and the delay problem presented in non relevant
time periods of prediction (bad capacity of generalization
in figure 13). In addition, we improve the model presented
in Section 3 in two ways:

Figure 14: curse of dimensionality

– This method includes more relevant information
(higher order statistics) in which PCA is the first step
in the process.

– The way of including extra information avoids “curse
of dimensionality” in any case.

4.5 Conclusions
In this Section we showed that prediction results can be im-
proved with the help of techniques like ICA. ICA decom-
pose a set of 11 returns from the stock into independent
components which fall in two categories[40]:

1. Large components responsible of the major changes
in level prices and

2. Small fluctuations responsible of undesirable fluctua-
tions in time.

Smoothing this components and neglecting the non-
relevant ones we can reconstruct a new version of the Stock
easier to predict. Moreover we describe a new filtering
method to volatile time series that are supplied to ANNs
in real-time applications.

5 Multidimensional Regularization
Networks

In this Section we propose the simplest way of including
extra information(MRNs). We assume a linear model in
some feature space on which the set of transformed input
series will be fitted minimizing the empirical risk (“Fea-
ture Space Learning”). Various techniques can be applied
to minimize this functional, i.e. we propose a genetic al-
gorithm (GA) based on neighbor philosophy to speed up
the convergence. This model, using the capacity of gener-
alization of INAPA-PRED algorithm, is suitable for small
sample size improving forecasting results under this condi-
tion.

24 Informatica 29 (2005) 13–32 J.M. Górriz et al.

Figure 15: Schematic representation of MRN with adaptive
radius, centers and input space ANNs (CPM CrossOver
Prediction Model). [5]

5.1 Forecasting Model
The new prediction model is shown in figure 15. We con-
sider a data set consisting of some correlated signals from
the Stock Exchange and seek to build a forecasting function
P, for one of the sets of signals {series1, . . . , seriesS},
which allows exogenous data from the other series to be
included. If we consider just one series (see Section 2) the
individual forecasting function can be expressed in terms
of RBFs as in [48]:

F(x) =
N∑

i=1

fi(x) =
N∑

i=1

hi · exp
{ ||x− ci||2

r2
i

}
(38)

where x is a p-dimensional vector input at time t, N is the
number of neurons (RBFs) , fi is the output for each i− th
neuron, ci is the centers of the i−th neuron which controls
the situation of local space of this cell and ri is the radius
of the i-th neuron. The overall output is a linear combina-
tion of the individual outputs for each neuron with a weight
of hi. Thus we are using a method for moving beyond lin-
earity in which the key idea is to augment/replace the vec-
tor input x with additional variables, which are transfor-
mations of x, and then use linear models in this new space
of derived input features. RBFs are one of the most popu-
lar kernel methods for regression over the domain Rn and
consist of fitting a different but simple model at each query
point ci using the observations close to this target point in
order to get a smoothed function (see previous Sections).
This localization is achieved via a weighting function or
kernel fi.

We apply/extend this regularization concept (see Section
2, to extra series, see figure15, including a row of neurons
(equation (38)) for each series, and weight these values by
a factor bij . Finally, the overall smoothed function for the
stock j is defined as:

Pj(x) =
S∑

i=1

bijFi(xi, j) (39)

where Fi is the smoothed function of each series, S is the
number of input series and bij are the weights for j-stock
forecasting. Obviously one of these weight factors must be
relevant in this linear fit (bjj ∼ 1 , or auto weight factor).

Matrix notation can be used to include the set of fore-
casts in an S-dimensional vector P (B in figure15):

P(x) = diag(B · F(x)) (40)

where F = (F1, . . . ,FS) is an S×S matrix with Fi ∈ RS

and B is an S × S weight matrix. The operator diag ex-
tracts the main diagonal. Because the number of neurons
and the input space dimension increases in prediction func-
tion (equation (40)), we must control them (parsimony) to
reduce curse of dimensionality effect and overfitting.

To check this model, we choose a set of values for the
weight factors as functions of correlation factors between
the series, and thus equation (39) can be expressed (replac-
ing Pj with P) as:

P(x) = (1−
S∑

i 6=j

ρi)Fj +
S∑

i 6=j

ρiFi (41)

where P is the forecasting function for the desired stock j
and ρi is the correlation factor with the exogenous series i.

We can include equation (41) in the Generalized Addi-
tive models for regression proposed in supervised learning
[43]:

E{Y |X1, . . . ,Xn} = α + f1(X1) + . . . + fn(Xn) (42)

where Xis usually represent predictors and Y represents
the system output; fjs are unspecific smooth ("nonpara-
metric") functions. Thus we can fit this model by mini-
mizing the mean square error function or by other methods
presented in [43] (in the next Section we use a GA, a well
known optimization tool, to minimize the mean square er-
ror).

5.2 Forecasting Model and Genetic
Algorithms

MRN uses a GA for bi parameter fitting. A GA can be
modelled by means of a time inhomogeneous Markov chain
[49] obtaining interesting properties related to weak and
strong ergodicity, convergence and the distribution prob-
ability of the process (see [50]). In the latter reference,
a canonical GA is constituted by operations of parameter
encoding, population initialization, crossover , mutation,
mate selection, population replacement, fitness scaling, etc.
proving that with these simple operators a GA does not
converge to a population containing only optimal members.
However, there are GAs that converge to the optimum, The
Elitist GA [51] and those which introduce Reduction Oper-
ators [52].

We have borrowed the notation mainly from [53] where
the model for GAs is a inhomogeneous Markov chain

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 25

Table 3: Pseudo-code of GA.

Initialize Population
i=0
while not stop do

do N/2 times
Select two mates from pi

Generate two offspring using
crossover operator

Mutate the two children
Include children in new generation

pnew

end do
Build population p̂i = pi ∪ pnew

Apply Reduction Operators
(Elitist Strategies) to get pi+1

i=i+1
end

model on probability distributions (S) over the set of all
possible populations of a fixed finite size. Let C the set of
all possible creatures in a given world (vectors of dimen-
sion equal to the number of extra series) and a function
f : C → R+. The task of GAs is to find an element
c ∈ C for which f(c) is maximal. We encode creatures
into genes and chromosomes or individuals as strings of
length ` of binary digits (size of Alphabet A is a = 2) using
one-complement representation; other encoding methods,
also possible i.e [54], [55],[56] or [57], where the value of
each parameter is a gene and an individual is encoded by a
string of real numbers instead of binary ones.

In the Initial Population Generation step (choosing ran-
domly p ∈ ℘N , where ℘N is the set of populations, i.e the
set of N-tuples of creatures containing aL≡N ·` elements)
we assume that creatures lie in a bounded region [0, 1] (at
the edge of this region we can reconstruct the model with-
out exogenous data). After the initial population p has been
generated, the fitness of each chromosome ci is determined
via the function:

f(ci) =
1

e(ci)
(43)

where e is an error function (i.e square error sum in a set of
neural outputs, adjusting the convergence problem in the
optimal solution by adding a positive constant to the de-
nominator)

The next step in canonical GA is to define the Selection
Operator. New generations for mating are selected depend-
ing on their fitness function values using roulette wheel se-
lection. Let p = (c1, . . . , cN) ∈ ℘N , n ∈ N and f the
fitness function acting in each component of p. Scaled fit-
ness selection of p is a lottery for every position 1 ≤ i ≤ N
in population p such that creature cj is selected with prob-
ability:

fn(p, j)∑N
i=1 fn(p, i)

(44)

thus proportional fitness selection can be described by
column stochastic matrices Fn, n ∈ N , with components:

〈q,Fnp〉 =
N∏

i=1

n(qi)fn(p, qi)∑N
j=1 fn(p, j)

(45)

where p, q ∈ ℘N so pi, qi ∈ C, 〈. . .〉 denotes the stan-
dard inner product, and n(di) the number of occurrences of
qi in p.

Once the two individuals have been selected, an elemen-
tary crossover operator C(K, Pc) is applied (setting the
crossover rate at a value, i.e. Pc → 0, which implies chil-
dren similar to parent individuals) that is given (assuming
N even) by:

C(K,Pc) =
N/2∏

i=1

((1− Pc)I + PcC(2i− 1, 2i, ki)) (46)

where C(2i − 1, 2i, ki) denotes elementary crossover op-
eration of ci, cj creatures at position 1 ≤ k ≤ ` and I
the identity matrix, to generate two offspring (see [50] for
details of the crossover operator).

The Mutation Operator MPm is applied (with probabil-
ity Pm) independently at each bit in a population p ∈ ℘N ,
to avoid premature convergence (see [54] for further dis-
cussion). The multi-bit mutation operator with change
probability following a simulated annealing law with re-
spect to the position 1 ≤ i ≤ L in p ∈ ℘N :

Pm(i) = µ · exp

(
−mod{ i−1

N }
∅

)
(47)

where ∅ is a normalization constant and µ the change prob-
ability at the beginning of each creature pi in population p;
can be described as a positive stochastic matrix in the form:

〈q,MPmp〉 = µ∆(p,q) exp
(
−∑∆(p,q)

dif(i)

mod{ i−1
N }

∅
)

·∏L−∆(p,q)
equ(i)

[
1− µ · exp

(−mod{ i−1
N }

∅
)]

(48)
where ∆(p, q) is the Hamming distance between p and

q∈ ℘N , dif(i) resp. equ(i) is the set of indexes where p
and q are different resp. equal. Following from equation
(48) and checking how the matrices act on populations we
can write:

MPm =
N∏

λ=1

(
[1− Pm(λ)]1 + Pm(λ)m̂1(λ)

)
(49)

where m̂1(λ) = 1 ⊗ 1 . . . ⊗
λ︷︸︸︷

m̂1 ⊗ . . . ⊗ 1 is a linear
operator on V℘, the free vector space over AL and m̂1 is the

26 Informatica 29 (2005) 13–32 J.M. Górriz et al.

linear 1-bit mutation operator on V1, the free vector space
over A. The latter operator is defined acting on Alphabet
as:

〈â(τ ′), m̂1â(τ)〉 = (a−1)−1, 0 ≤ τ ′ 6= τ ≤ a−1 (50)

i.e. probability of change a letter in the Alphabet once mu-
tation occurs with probability equal to Lµ.

The spectrum of MPm can be evaluated according to the
following expression:

sp(MPm) =

{(
1− µ(λ)

a− 1

)λ

; λ ∈ [0, L]

}
(51)

where µ(λ) = exp
(−mod{λ−1

N }
∅

)
.

The operator presented in equation (49) has similar prop-
erties to the Constant Multiple-bit mutation operator Mµ.
Mµ is a contracting map in the sense presented in [53]. It
is easy to prove that MPm is a another contracting map,
using the Corollary B.1 in [6] and the eigenvalues of this
operator(equation (51)).

We can also compare the coefficients of ergodicity:

τr(MPm) < τr(Mµ) (52)

where τr(X) = max{‖Xv‖r : v ∈
Rn, v⊥e and ‖v‖r = 1}.

Mutation is more likely at the beginning of the string of
binary digits ("small neighborhood philosophy"). In order
to improve the speed convergence of the algorithm we have
included mechanisms such as elitist strategy (reduction op-
erator [58]) in which the best individual in the current gen-
eration always survives into the next (a further discussion
about reduction operator, PR, can be found in [59]).

Finally the GA is modelled, at each step, as the stochas-
tic matrix product acting on probability distributions over
populations:

SPn
m,Pn

c
= Pn

R · Fn ·Ck
Pn

c
·MPn

m
(53)

The GA used in forecasting function (equation (39)) has
absolute error value start criterion (i.e error > uga =
1.5). Once it starts, it uses the values (or individual)
found to be optimal (elite) the last time, and applies lo-
cal search (using the selected mutation and crossover op-
erators) around this elite individual. Thus we perform an
efficient search around an individual (set of bis) in which
one parameter is more relevant than the others.

The computational time depends on the encoding length,
number of individuals and genes. Because of the prob-
abilistic nature of the GA- based method, the proposed
method almost converges to a global optimal solution on
average. In our simulation nonconvergent case was found.
Table 3 shows the GA-pseudocode and in [5] the iterative
procedure implemented for the overall prediction system
including GA is shown.

Figure 16: Set of data series. Top: Real Series
ACS;Bottom: Real Series BBVA.

Figure 17: Real Series and Predicted ACS Series with
MRN.

Figure 18: Absolute Error Value with MRN.

Figure 19: Real Series and Predicted ACS Series with
MRN+GA.

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 27

Figure 20: Absolute Error Value with MRN + GA.

Figure 21: Real Series and Predicted ACS Series without
exogenous data.

5.3 Simulations and Conclusions.
With the aim of assessing the performance of the MRN we
have worked with indexes of different Spanish banks and
other companies during the same period. We have specif-
ically focussed on the IBEX35 index of Spanish stock,
which we consider the most representative sample of Span-
ish stock movements. We used MatLab to implement MRN
on a Pentium III at 850MHz.

We started by considering the most simplest case, which
consists of two time series corresponding to the compa-
nies ACS (series1) and BBVA (series2). The first one
is the target of the forecasting process; the second one is
introduced as external information. The period under study
covers the year 2000. Each time series includes 200 points
corresponding to selling days (quoting days).

We highlight two parameters in the simulation process.
The horizon of the forecasting process (hor) was set at 1;
the weight function of the forecasting function was a corre-
lation function between the two time series for the series2

(in particular we chose its square) and the difference to one
for the series 1. We took a forecasting window (W) of 10
lags, and the maximum lag number was set at double the
value of W, and thus we built a 10 × 20 Toeplitz matrix.
We started at time point to = 50. Figures 17,18 19 and 20
show the forecasting results from lag 50 to lag 200 corre-
sponding to series1.

Note the instability of the system in the very first itera-

Figure 22: NRMSE evolution for MRN(dot) MRN +
GA(line).

Figure 23: Set of series for complete simulation.

Figure 24: NRMSE evolution for selected stock indexes.

28 Informatica 29 (2005) 13–32 J.M. Górriz et al.

Figure 25: NRMSE evolution using ICA method and
MRN.

Table 4: Correlation coefficients between real signal and
the predicted signal for different lags.

delay ρ delay ρ
0 0.89 0 0.89
+1 0.79 -1 0.88
+2 0.73 -2 0.88
+3 0.68 -3 0.82
+4 0.63 -4 0.76
+5 0.59 -5 0.71
+6 0.55 -6 0.66
+7 0.49 -7 0.63
+8 0.45 -8 0.61
+9 0.45 -9 0.58
+10 0.44 -10 0.51

Table 5: Dynamics and values of the weights for the GA.

bseries T1 T2 T3 T4

b1 0.8924 0.8846 0.8723 0.8760
b2 0.2770 0.2359 0.2860 0.2634

tions until it reaches an acceptable convergence. The most
interesting feature of the result is shown in table 4; from
this table it is easy to deduce that if we move one of the
two series horizontally the correlation between them dra-
matically decreases. This proves that we avoid the delay
problem (trivial prediction) shown by certain networks (see
figure 21), in periods where the information introduced to
the system is non-relevant. This is due to the increase of in-
formation (series2) associated with an increase in neuron
resources. At the end of the process we used 20 neurons
for net 1 and 21 for net 2. Although forecasting function
is acceptable we would expect a better performance with
bigger data set.

The next step consists of using the complete algorithm
including the GA. A population of 40 individuals (Nind)
was used, with a 2× 1 dimension; we used this small num-
ber because we had a bounded searching space and we were
using a single PC. The genetic algorithm was run four times
before reaching the convergence (when the error increase
by 1.5 points, see error plot in figure 20 to see the effect
of GA) ; the individuals were codified with 34 bits (17 bits
for each parameter). In this case convergence is defined in
terms of the adjustment function; other authors use other
parameters of the GA, like the absence of change in the
individuals after a certain number of generations, etc. We
observed a considerable improvement in the forecasting re-
sults and noted disappearance of the delay problem, as is
shown in table 4. This table represents the correlation be-
tween the real function and the neural function for different
lags. The correlation function presents a maximum at lag
0.

The number of neurons at the end of the process is the
same as in the latter case, because we have only modified
the weight of each series during the forecasting process.
The dynamics and values of the weights are shown in table
5.

Error behaviour is shown in figures. Note:

– We can bound the error by means of a suitable selec-
tion of the parameters bi, when the dynamics of the
series is coherent (avoiding large fluctuations in the
stock).

– The algorithm converges faster, as is shown at the very
beginning of the graph.

– The forecasting results are better using GA, as is
shown in figure 20, where the evolution of the nor-
malized round mean square error is plotted.

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 29

Finally we carried out a simulation with 9 indexes and
computed the prediction function for 5 series, obtaining
similar results, as presented in figure 24. In the complete
model we limited the input space dimension to 3 for extra
series and 5 for target series (figure 22). NRMSE depends
on each series (data set) and target series (evolution). In
figure 25 we also compare the ICA method versus MRN
for limited data set (70 iterations). NRMSE of indexes
increases at the beginning of the process using the ICA
method and converges to CPM NRMSE values when the
data set increases (estimators approach higher order statis-
tics). This effect is also observed when the dynamics of the
series change suddenly due to a new independent event.

Due to the symmetric character of our forecasting model,
it is sufficient to implement it in parallel programming soft-
ware (such as PVM —Parallel Virtual Machine—) or MPI
— Message-Passing Interface— [60]) to build a more gen-
eral forecasting model for the complete set of series. We
would spawn the same number for offspring processes and
banks; these process would run forecasting vectors, which
would be weighted by a square matrix with dimension
equal to the number of series B. The “master” process
would have the results of the forecasting process for the
calculus of the error vector, in order to update the neuron
resources. Thus we would take advantage of the computa-
tional cost of a forecasting function to calculate the rest of
the series (see [60]).

5.3.1 Conclusions

This new forecasting model for time-series is characterized
by:

– The enclosing of external information. We avoid pre-
processing and data contamination applying by ICA
and PCA for limited data sets or sudden new shocks.
These techniques can be included in MRN under bet-
ter conditions. Series are introduced into the net di-
rectly.

– The forecasting results are improved using hybrid
techniques like GA.

– The possibility of implementing in parallel program-
ming languages (i.e. PVM — see [60]); and the
improved performance and lower computational time
achieved using a parallel neural network.

6 Comparison among methods
Consider the set of series in Figure 6, using 1000 point
as training samples. We apply the latter models to fore-
cast Sony index in 70 future points using the other indexes
as endogenous variables. Following the methodology de-
scribed in the previous sections we get:

– PCA operation: in this case results using PCA are not
so good as we expected. The volatile nature of the

Table 6: Eigenvalues λi and variance percentages of PCs.

Index Eigenvalue Pct. variance Pct. overall
1 0.0031 35.1642 35.1642
2 0.0016 17.9489 53.1131
3 0.0010 11.7188 64.8319
4 0.0006 6.9857 71.8176
5 0.0005 5.7787 77.5963
6 0.0004 4.8978 82.4941
7 0.0004 4.4184 86.9125
8 0.0004 4.2492 91.1617
9 0.0003 3.7238 94.8855
10 0.0003 3.2031 98.0886
11 0.0002 1.9113 100.00

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 26: Closing prices evolution for selected indexes
(Figure 6), after logarithmic transformation and differenti-
ation.

series and the lack of information from the 3 princi-
pal components used contributes to this failure. The 3
components only hold a fraction equal to 64% of vari-
ance as is shown in Table 6, however if we increase
the number of components used in prediction we get
worse results owing to “curse of dimensionality”.

– MRN operation: MRN get good prediction results
comparing with PCA method, however in the last
iterations PCA and MRN methods are of similar
NRMSE. The main disadvantages of MRN are com-
putational demand and the need for bounding input
space dimension.

– ICA operation: ICA is the best method using large
sample size as is shown in Figure 28. ICA reveals
some underlying structure in the data since we used
HOS to estimate ICs that usually fall into two cate-
gories as we mentioned in section 4(see Figure 27):
infrequent but large shocks (responsible for the major
changes in the stock prices) and frequent but rather
small fluctuations (contributing only little to the over-
all level of the stocks).

30 Informatica 29 (2005) 13–32 J.M. Górriz et al.

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30

Figure 27: ICA ICs for the set of indexes.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
NRMSE SONY

ANN+ICA
ANN+PCA
CPM

Figure 28: NRMSE evolution of SONY index for the 70
forecasted points using exogenous methods.

Acknowledgement
We want to thank SESIBON and HIWIRE grants from
Spanish Government for funding.

References
[1] G. Box, G. Jenkins, and G. Reinsel, Time Series

Analysis: Forecasting and Control, 3rd ed. Prentice-
Hall. Englewood Cliffs, New Jersey, U.S.A., 1994.

[2] J. Platt, “A resource-allocating network for function
interpolation,” Neural Computation, vol. 3, pp. 213–
225, 1991.

[3] M. Salmerón, J. Ortega, C. Puntonet, and F. Pelayo,
Time Series Prediction with Hybrid Neuronal, Statis-
tical and Matrix Methods (in Spanish). Department
of Computer Architecture and Computer Technology.
University of Granada, Spain, 2001.

[4] M. Salmerón, J. Ortega, C. G. Puntonet, and A. Pri-
eto, “Improved ran sequential prediction using or-
thogonal techniques,” Neurocomputing, vol. 41, pp.
153–172, 2001.

[5] J. M. Górriz, C. G. Puntonet, M. Salmerón, and
J. González, “New model for time-series forecasting
using rbfś and exogenous data,” Neural Computation
and Applications, Vol 13 Issue 2. Jun. 2004., 2003.

[6] J. M. Górriz, “Algoritmos híbridos para la mod-
elización de series temporales con técnicas ar-ica,”
Ph.D. dissertation, University of Cádiz , Departa-
mento de Ing. de Sistemas y Aut. Tec. Electrónica
y Electrónica. http://wwwlib.umi.com/cr/uca/main,
2003.

[7] T. Masters, Neural, Novel and Hybrid Algorithms for
Time Series Prediction. John Wiley & Sons. New
York, U.S.A., 1995.

[8] A. Back and A. Weigend, “Discovering structure in fi-
nance using independent component analysis,” Com-
putational Finance, 1997.

[9] A. Back and T. Trappenberg, “Selecting inputs for
modelling using normalized higher order statistics
and independent component analysis,” IEEE Trans-
actions on Neural Networks, vol. 12, 2001.

[10] A. Hyvarinen and E. Oja, “Independent component
analysis: Algorithms and applications,” Neural Net-
works, vol. 13, pp. 411–430, 2000.

[11] A. Bell and T. Sejnowski, “An information-
maximization approach to blind separation and blind
deconvolution,” Neural Computation, vol. 7, pp.
1129–1159, 1995.

A SURVEY OF FORECASTING PREPROCESSING TECHNIQUES. . . Informatica 29 (2005) 13–32 31

[12] P. Comon, “Independent component analysis, a new
concept?” Signal Processing, vol. 3, pp. 287–314,
1994.

[13] S. Amari, A. Cichocki, and H. Yang, “A new learning
algorithm for blind source separation,” Advances in
Neural Information Processing Systems. MIT Press,
vol. 8, pp. 757–763, 1996.

[14] C. G. Puntonet, Nuevos algoritmos de Separación de
fuentes en medios Lineales (in Spanish). Department
of Computer Architecture and Computer Technology.
University of Granada, Spain, 1994.

[15] A. Mansour, N. Ohnishi, and C. Puntonet, “Blind
multiuser separation of instantaneous mixture al-
gorithm based on geometrical concepts,” Signal
Processing, vol. 82, pp. 1155–1175, 2002.

[16] D. Pollock, A Handbook of Time Series Analysis, Sig-
nal Processing and Dynamics. Academic Press. New
York, U.S.A., 1999.

[17] G. Zhang, B. Patuwo, and M. Hu, “Forecasting with
artificial neural networks: the state of the art,” Inter-
national Journal of Forecasting, vol. 14, no. 1, pp.
35–62, 1998.

[18] J. Moody and C. J. Darken, “Fast learning in networks
of locally-tuned processing units,” Neural Computa-
tion, vol. 1, pp. 284–294, 1989.

[19] J. MacQueen, “Some methods for classification and
analysis of multivariate observations,” in Proceedings
of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, L. L. Cam and J. Neyman,
Eds., vol. 1. Berkeley, California, U.S.A.: University
of California Press, 1967, pp. 281–297.

[20] C. Lawson and R. Hanson, Solving Least Squares
Problems. SIAM Publications. Philadelphia, U.S.A.,
1995.

[21] G. Zelniker and F. Taylor, Advanced Digital Sig-
nal Processing: Theory and Applications. Marcel
Dekker. New York, U.S.A., 1994.

[22] S. Haykin, Neural Networks: A Comprehensive Foun-
dation. Macmillan College Publishing Company.
New York, U.S.A., 1994.

[23] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed
Problems. Winston. Washington D.C., U.S.A., 1977.

[24] J. Mercer, “Functions of positive and negative type
and their connection with the theory of integral equa-
tions,” Philos. Trans. Roy. Soc. London, vol. A, pp.
415–446, 1909.

[25] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The
connection between regularization operators and sup-
port vector kernels,” Neural Networks, vol. 11, pp.
637–649, 1998.

[26] J. M. Górriz, C. G., Puntonet, and M. Salmerón, “On
line algorithm for time series prediction based on sup-
port vector machine philosophy,” LNCS, vol. 3037,
pp. 50–57, 2004.

[27] N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller, “Equation of state calcula-
tions by fast computing machines,” J. Chem. Phys.,
vol. 21, pp. 1087–1092, 1953.

[28] T. Kohonen, “The self-organizing map,” Proceedings
of the IEEE, vol. 78, pp. 1464–1480, 1990.

[29] L. Cao, “Support vector machines experts for time
series forecasting,” Neurocomputing, pp. 321–339,
2003.

[30] A. Comrey, A First Course in Factor Analysis. Aca-
demic Press. New York, U.S.A., 1973.

[31] J. Ramsay and B. Silverman, Functional Data Analy-
sis. Springer-Verlag. New York, U.S.A., 1997.

[32] R. J. M. II, “Intelligence: Computational versus artifi-
cial,” IEEE Transactions on Neural Networks, vol. 4,
pp. 737–739, 1993.

[33] J. Jackson, A User’s Guide to Principal Components.
John Wiley & Sons. New York, U.S.A., 1991.

[34] G. Golub and C. V. Loan, Matrix Computations,
3rd ed. The Johns Hopkins University Press. Bal-
timore, Maryland, U.S.A., 1996.

[35] J. Hertz, A. Krogh, and R. Palmer, Introduction to the
Theory of Neural Computation. Addison-Wesley.
Redwood City, California, U.S.A., 1991.

[36] K. Diamantaras and S. Kung, Principal Component
Neural Networks: Theory and Applications. John
Wiley & Sons. New York, U.S.A., 1996.

[37] E. Oja, “Principal components, minor components,
and linear neural networks,” Neural Networks, vol. 5,
pp. 927–935, 1992.

[38] W. Sarle, “Neural networks and statistical models,” in
Proceedings of the 19th Anual SAS Users Group In-
ternational Conference, Cary, NC, U.S.A., 1994, pp.
1538–1550.

[39] J. Park and I. Sandberg, “Universal approximation us-
ing radial-basis-function networks,” Neural Compu-
tation, vol. 3, pp. 246–257, 1991.

[40] J. M. Górriz, C. G. Puntonet, M. Salmerón, and J. Or-
tega, “New method for filtered ica signals applied
to volatile time series,” 7th International Work Con-
ference on Artificial and Natural Neural Networks
IWANN 2003. Lecture Notes in Computer Science Vol
2687 / 2003, Springer 433-440, 2003.

32 Informatica 29 (2005) 13–32 J.M. Górriz et al.

[41] S. Cruces, An unified view of BSS algorithms(in Span-
ish). University of Vigo, Spain, 1999.

[42] K. Kiviluoto and E. Oja, “Independent component
analysis for parallel financial time series,” Proc. in
ICONIP98, vol. 1, pp. 895–898, 1998.

[43] T. Hastie, R. Tibshirani, and J. Friedman, The ele-
ments of Statistical Learning. Springer, 2000.

[44] A. Savitzky and M. Golay, Analytical Chemestry,
vol. 36, pp. 1627–1639, 1964.

[45] R. Hamming, Digital Filters, 2a ed. Prentice Hall,
1983.

[46] H. Ziegler, Applied Spectroscopy, vol. 35, pp. 88–92,
1981.

[47] W. Press, S. Teukolsky, W. Vertterling, and B. Flan-
nery, Numerical Recipes in C++, 2a ed. Cambridge
University Press, 2002.

[48] J. Moody and C. Darken, “Fast learning in networks
of locally-tuned processing units,” Neural Computa-
tion, vol. 1, pp. 281–294, 1989.

[49] O. Haggstrom, Finite Markov Chains and Algorith-
mic Applications. Cambridge University, 1998.

[50] L. Schmitt, C. Nehaniv, and R. Fujii, “Linear analy-
sis of genetic algorithms,” Theoretical Computer Sci-
ence, vol. 200, pp. 101–134, 1998.

[51] J. Suzuki, “A markov chain analysis on simple genetic
algorithms,” IEEE Transaction on Systems, Man, and
Cybernetics, vol. 25, pp. 655–659, 1995.

[52] A. Eiben, E. Aarts, and K. V. Hee, “Global conver-
gence of genetic algorithms: a markov chain analy-
sis,” Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, vol. 496, pp. 4–12, 1991.

[53] L. Schmitt, “Theory of genetic algorithms,” Theoreti-
cal Computer Science, vol. 259, pp. 1–61, 2001.

[54] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag, 1992.

[55] T. S. S. Matwin and K. Haigh, “Genetic algorithms
approach to a negotiation support system,” IEEE
Trans. Syst. , Man. Cybern, vol. 21, pp. 102–114,
1991.

[56] S. Chen and Y. Wu, “Genetic algorithm optimization
for blind channel identification with higher order cu-
mulant fitting,” IEEE Trans. Evol. Comput., vol. 1, pp.
259–264, 1997.

[57] L. Chao and W. Sethares, “Non linear parameter esti-
mation via the genetic algorithm,” IEEE Transactions
on Signal Processing, vol. 42, pp. 927–935, 1994.

[58] J. Lozano, P. Larranaga, M. Grana, and F. Albizuri,
“Genetic algorithms: Bridging the convergence gap,”
Theoretical Computer Science, vol. 229, pp. 11–22,
1999.

[59] G. Rudolph, “Convergence analysis of canonical ge-
netic algorithms,” IEEE Transactions on Neural Net-
works, vol. 5, pp. 96–101, 1994.

[60] J. M. Górriz, C. G. Puntonet, M. Salmerón, and
R. Martin-Clemente, “Parallelization of time series
forecasting model,” 12 th IEEE Conference on Par-
allel, Distributed and Network based Processing (Eu-
romicro) PDP 2004 pp 103-112. A Coruña, Spain.,
2004.

