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Abstract
This paper shows an effective speech/non-speech discrimination
method for improving the performance of speech processing sys-
tems working in noisy environment. The proposed method uses
a trained support vector machine (SVM) that defines an optimized
non-linear decision rule over different sets of speech features. Two
alternative feature extraction processes based on: i) subband SNR
estimation after denoising, and ii) long-term SNR estimation were
compared. Both methods show the ability of the SVM-based clas-
sifier to learn how the signal is masked by the acoustic noise and to
define an effective non-linear decision rule. However, it is shown
that a feature vector incorporating contextual information yielded
better speech/non-speech discrimination even when no denoising
is applied. The experimental analysis carried out on the Span-
ish SpeechDat-Car database shows clear improvements over stan-
dard VADs including ITU G.729, ETSI AMR and ETSI AFE for
distributed speech recognition (DSR), and other recently reported
VADs.
Index Terms: voice activity detection, support vector machine
learning, speech enhancement.

1. Introduction
With the advent and development of wireless communications, the
emerging applications in the field of speech communication are
demanding increased levels of performance in many areas. An
important obstacle affecting most of these applications is the envi-
ronmental noise and its harmful effect on the system performance.
Most of the noise reduction algorithms often require to estimate
the noise statistics by means of a precise voice activity detector
(VAD). The detection task is not as trivial as it appears since the
increasing level of background noise degrades the classifier effec-
tiveness. During the last decade numerous researchers have stud-
ied different strategies for detecting speech in noise and the influ-
ence of the VAD decision on speech processing systems. Most
of them have focussed on the development of robust algorithms,
with special attention on the study and derivation of noise robust
features and decision rules [1, 2, 3, 4].

Since their introduction in the late seventies [5], Support Vec-
tor Machines (SVMs) marked the beginning of a new era in the
learning from examples paradigm. SVMs have attracted recent at-
tention from the pattern recognition community due to a number
of theoretical and computational merits derived from the Statistical
Learning Theory [5] developed by Vladimir Vapnik at AT&T. As
an example, SVMs have been used for isolated handwritten digit
recognition, object recognition, speaker identification or text cate-
gorization. Enqing [6] applied SVMs to VAD showing promising
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lts when the standardized ITU-T G.729 VAD [7] speech fea-
s were used as the inputs to the classification module. Later,
VAD was incorporated to a variable low bit-rate speech codec
using the local cosine transform. Recently, Qi et al. [9] has
nded these ideas to the problem of classifying speech into
ed, unvoiced and silence frames. This paper shows an im-
ed SVM-based VAD for robust speech recognition. The pro-
d method combines noise robust feature extraction processes
ther with a trained SVM model for classification. The results

improvements in speech/pause discrimination when com-
d to standardized VADs [7, 10, 11] and other recently pub-
d methods [1, 2, 3, 4].

2. Support vector machines
cting the presence of speech in a noisy signal is a two-class

sification problem requiring a rule, which, based on external
rvations, assigns an object to one of the classes. A possible
alization of this task is by means of SVMs that enable build-

a function f : RN −→ {±1} using training data that is, N-
ensional patterns xi and class labels yi:

(x1, y1), (x2, y2), ..., (x�, y�) ∈ RN × {±1} (1)

at f will correctly classify non observed test data (x, y).
Hyperplane classifiers are based on the class of decision func-
s:

f(x) = sign{(w · x) + b} (2)

the maximal margin of separation between the two classes.
solution w of a constrained quadratic optimization process can
xpanded in terms of a subset of training patterns called support
ors that lie on the margin:

w =

�∑
i=1

νixi (3)

s, the decision rule depends only on dot products between pat-
s:

f(x) = sign{
�∑

i=1

νi(xi · x) + b} (4)

In addition, by means of kernels, SVM enables to redefine
lassification problem into some other potentially much higher

ensional feature space F via a nonlinear transformation Φ :
−→ F and perform the above algorithm in F. The kernel is
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Figure 1: Block diagram of the proposed SVM-based VAD

related to the Φ function by k(x, y) = (Φ(x) ·Φ(y)) and the deci-
sion function becomes nonlinear in the input space:

f(x) = sign{
�∑

i=1

νik(xi, x) + b} (5)

Finally, the weights νi are determined as the solution of a quadratic
programming optimization problem by means of the well known
Sequential Minimal Optimization (SMO) algorithm [12].

3. Voice activity detection
A block diagram of the proposed VAD is shown in Fig. 1. The fist
step is the training process on the training data set and its associ-
ated class labels. The signal is preprocessed and a feature vector is
extracted for training. Once the SVM model has been trained, the
proposed SVM-based algorithm consists of the following stages:
i) feature extraction, and ii) SVM-based classification using the
decision function f defined in equation 5.

3.1. Feature extraction

The input signal x(n) sampled at 8 kHz is decomposed into 25-
ms overlapped frames with a 10-ms window shift. The current
frame consisting of 200 samples is zero padded to 256 samples
and the power spectral magnitude Xl(ω) of the l-th frame is com-
puted through the discrete Fourier transform (DFT). Two different
feature extraction schemes are compared in this paper:

3.1.1. Subband SNR extraction through denoising

A noise reduction process similar to the used in [13] is applied and
the power spectrum of the filtered signal Xf

l (ω) and the residual
noise Nr

l (ω) is obtained. Once the input signal has been denoised,
a filterbank reduces the dimensionality of the feature vector to a
representation including broadband spectral information suitable
for detection. Thus, the signal and the residual noise is passed
through a K-band filterbank which is defined by

EB
l (k) =

ωk+1∑
ω=ωk

Xf
l (ω); NB

l (k) =
ωk+1∑
ω=ωk

Nr
l (ω)

ωk = π
K

k k = 0, 1, ..., K − 1

(6)

and the subband SNRs are computed as

SNRl(k) = 20 log10

(
EB

l (k)

NB
l (k)

)
k = 0, 1, ..., K − 1 (7)

3.1.2
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. Contextual subband feature extraction

rnatively, a contextual feature extraction process was evalu-
and compared to the procedure described above. It consists of
asure of the contextual deviation of the power spectrum from
ackground noise and is defined in terms of the long-term spec-

envelope [14]:

X̂l(ω) = max{Xk(ω)} k ∈ {l − L, ..., l, ..., l + L} (8)

then transformed to a wide K-band spectral representation:

EB
l (k) = 10 log10

⎛
⎝ 2K

N

ωj+1−1∑
ω=ωj

X̂l(ω)

⎞
⎠ (9)

re ωj = 2πj/NFFT , j = �NFFTk/(2K)� and k= 0, 1,
K−1. Finally, the feature vector x for classification consists
e K subband SNRs defined to be:

SNRl(k) = EB
l (k) − NB

l (k) (10)

re the spectral representation of the noise, NB
l (k), is estimated

ng a short initialization period at the beginning of the process
constantly updated during non-speech periods.

Training

SVM model is trained using LIBSVM software tool [15].
AURORA-3 Spanish SpeechDat-Car database was used. This
base contains 4914 recordings using close-talking and distant
ophones from more than 160 speakers. The files are catego-
into three noisy conditions: quiet, low noisy and highly noisy

itions, which represent different driving conditions with aver-
SNR values between 25dB, and 5dB. The training set consists
2 utterances recorded at variable SNR conditions.
The SVM formulation is based on C-Support Vector Classi-
ion [5] and the decision rule is defined by equation 5. The
and SNRs given by equations 7 or 10 are used as discrimi-
e speech features while an RBF kernel is used in the training
ess that consists of finding the solution of a primal problem

inα
1
2
αT Qα − eT α ; 0 ≤ αi ≤ C, i = 1, 2, ..., �

subject to yα = 0
(11)

sing LIBSVM [15], where e= [1 1 ... 1], C > 0 is the upper
d and Qij = yiyjk(xi, xj). After this process, the support

ors xi and coefficients αi required to evaluate the decision rule
elected where νi = yiαi. Note that, b can be used as a deci-
threshold for the VAD in the sense that the working point of

VAD can be shifted in order to meet the application require-
ts. This is crucial for the application being considered since a
of speech frames strongly affects to the performance of most

ch processing systems. Next section illustrates the behavior of
VM-based decision rule as the threshold is modified from the
ed value.

4. Experimental analysis
section analyzes the proposed VAD and compares its per-
ance to other algorithms used as a reference. The analysis

ased on the ROC curves, a frequently used methodology to
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Figure 2: Selection of the number of subbands (High: high speed,
good road, 5 dB average SNR).

describe the VAD error rate. The AURORA subset of the orig-
inal Spanish SDC database [16] was used again in this analysis.
The non-speech hit rate (HR0) and the false alarm rate (FAR0=
100-HR1) were determined for each noisy condition being the ac-
tual speech frames and actual speech pauses determined by hand-
labelling the database on the close-talking microphone.

4.1. Selection of the optimum number of subbands

Before showing comparative results, the selection of the optimal
number of subbands for the first feature extraction process is ad-
dressed. Fig. 2 shows the influence of the noise reduction block
and the number of subbands on the ROC curves in high noisy con-
ditions. First, noise reduction is not applied to better show the
influence of the number of subbands. In this way. increasing the
number of subbands improves the performance of the proposed
VAD by shifting the ROC curves in the ROC space. For more than
four subbands, the VAD reports no additional improvements. This
value yields the best trade-off between computational cost and per-
formance. On the other hand, the noise reduction block reports an
additional shift of the ROC curve as shown in Fig. 2.

4.2. Comparative results

Fig. 3 compares the two feature extraction processes for SVM-
based VAD and other frequently referred algorithms [1, 4, 2, 3] for
recordings from the distant microphone in high noisy conditions.
The working points of the ITU-T G.729, ETSI AMR and AFE
VADs are also included. It was found that increasing L from 1 to 8
frames also leads to a shift-up and to the left of the ROC curve. The
optimal parameters for the proposed VAD are then K= 4 subbands
and L= 8 frames. These improvements are mainly achieved by: i)
including contextual information in the feature vector defined by
equation 10, and ii) defining a SVM-based classifier that is able
to learn how the speech signal is masked by the acoustic noise
present in the environment. The results also show improvements
in detection accuracy over standardized VADs and over other re-
cently published VADs [1, 4, 2, 3]. Among all the VAD exam-
ined, our VAD yields the lowest false alarm rate for a fixed non-
speech hit rate and also, the highest non-speech hit rate for a given
false alarm rate. The benefits are especially important over ITU-T
G.729, which is used along with a speech codec for discontinu-
ous transmission, and over the Li’s algorithm, that is based on an
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Figure 3: Comparative results to other VAD methods

mum linear filter for edge detection. The proposed VAD also
roves Marzinzik’s VAD [2] that tracks the power spectral en-
pes, and the Sohn’s VAD [3], that formulates the decision rule
eans of a model-based statistical likelihood ratio test.

5. Analysis and improvements
section analyzes the decision rule in the input space and sug-

s a fast algorithm for SVM classification. Fig. 4.a shows the
ing data set in the 3-band input space. It is shown that the
classes can not be separated without error in the input space.
4.b shows a slice plot of the SVM decision rule that is ob-
d after the training process. Note that, i) the non-speech and
ch classes are clearly distinguished in the 3-D space, and ii)
VM model learns how the signal is masked by the noise and

matically defines the decision rule in the input space.
Fig. 4.b also suggests a fast algorithm for performing the de-
n rule defined by equation 5 that becomes computationally
nsive when the number of support vectors and/or the dimen-
of the feature vector are high. Note that all the information
ed for deciding the class a given feature vector x belongs re-

s in figure 4.b. Thus, the input space can be discretized over
ifferent components of the feature vector x as

(1) mx(1), mx(1) + Δx(1), ..., Mx(1)

(2) mx(2), mx(2) + Δx(2), ..., Mx(2)

...
(N) mx(N), mx(N) + Δx(N), ..., Mx(N)

(12)

the decision rule f (x(1), x(2), . . . , x(N)) can be precom-
d for the previously defined data grid and stored in an N -
ensional look-up table. Given a feature vector x= [x(1), x(2),
x(N)], the first step is to find the nearest point in the grid de-

previously and then perform a table look-up to assign a class
ech or non-speech) to the feature vector x.

6. Conclusions
paper showed an effective voice activity detector combining

e robust feature extraction processes and support vector ma-
e learning tools. The use of kernels enables defining a non-
r decision rule in the input space which is defined in terms of
ntaneous or contextual subbands SNRs. Increasing the num-

of subbands up to four improved the performance of the pro-
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Figure 4: Classification rule in the input space after training a 3-
band SVM model. a) Training data set, b) SVM classification rule.

posed VAD by shifting the ROC curve in the ROC space. More-
over, an advanced feature extraction process including contextual
information also reported significant improvements in speech/non-
speech discrimination yielding the best tradeoff between computa-
tional cost and performance. With these and other innovations the
proposed methods have shown to be more effective than VADs that
define the decision rule in terms of an average SNR values. The
proposed algorithms also outperformed ITU G.729, ETSI AMR1
and AMR2 and ETSI AFE standards and recently reported VAD
methods in speech/non-speech detection performance.
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