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Abstract

A filter that introduces inter-frame information into the voice fea-
tures set is proposed in this paper. The filter adds the autocor-
relations of the cepstral coefficients to the set of characteristics
used for training and recognition. Those autocorrelations should
not depend on the environment conditions. Because they should
only depend on the information to recognize, a normalization of
that inter-frame information is convenient. The filter defined im-
plements this normalization by transforming the autocorrelations
into a normalized domain defined with clean adaptation data. This
temporal processing of the features is added to the Histogram
Equalization of the cepstral coefficients (HEQ) used to normal-
ize the MFCCs. An analysis is done about the most effective do-
main (original MFCCS or equalized MFCCs) on which the tem-
poral processing should be executed. Performance results for the
proposed algorithm are presented for AURORA2 and AURORA4
databases.
Index Terms: robust speech recognition, temporal filtering,
frames correlation

1. Introduction
The analysis of the inter-frame information contained in the speech
contributes valuably to the recognition process by adding univocal
characteristics to the data under process. Still only a limited num-
ber of algorithms for features extraction take into account this tem-
poral information. In the case of the MFCC parameters, the basic
temporal processing done is the use of the time derivative param-
eters delta and delta-delta cepstra. Other techniques to capture the
inter-frame information are the ones derived from the RASTA fil-
tering [1, 2, 3] implemented alone, or optimized using LDA or
PCA analysis [4].

Like the rest of characteristics that compose the voice fea-
tures, this inter-frame information is sensitive to environment mis-
matches such as background noise and channel distortion. These
mismatches degrade the recognition performance in adverse con-
ditions. For this reason it is desirable to also normalize the tem-
poral information like it is done for the rest of parameters. It also
should be invariant to environmental changes. Histogram Equal-
ization HEQ has proven to be an optimum normalization technique
[5, 6, 7] that outperforms the Cepstral Mean and Variance Nor-
malization by removing non-linear irrelevant information of the
cepstral coefficients. The application of HEQ also to the delta
and delta-delta cepstra has been proposed and studied in [8, 9].
The dependent or independent equalization of those coefficients
has been analyzed obtaining an optimal normalization technique:
a feedback calculation is performed using the dynamic cepstra to
equalize the static cepstra, and then recalculating again the dy-
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ic ones with the latest equalized static coefficients.
The motivation of our work is to propose a different technique
clude and normalize temporal information. We propose a tem-
l smoothing filter for the voice features added to the HEQ fea-
s normalization. This filter searches two objectives. The first
is to introduce inter-frame information into the features set by
g into account the inter-frame correlation of each cepstral co-
ient. The second objective is to normalize that inter-frame in-
ation by defining a linear transformation applied to the inter-
e information of the test and training data that are moved into
mmon domain defined with clean adaptation data. In order to
mplish this, the rest of the paper is organized as follows. In

ion 2 the temporal smoothing filter proposed is described. In
ion 3 the experiments and results are presented. Conclusions
future work are given in section 4.

2. Temporal smoothing filter
Filter definition

mple ARMA filter is proposed to restore the temporal auto-
elation structure of each cepstral coefficient. The filter can be
ined as the cascade of two filters. The first one is a whitening
r that removes the temporal correlation structure of the input
; while the second filter restores the desired temporal correla-
s.
Given a temporal sequence of observations of a particular cep-
coefficient x(n), a whitening filter is designed to transform it
uncorrelated sequence u(n). This can be done under a linear

iction approach. Let us denote A(z) the predictor,

U(z) = A(z)X(z) (1)

Once the whitened sequence u(n) is obtained, a second filter
ed to restore the desired autocorrelation structure. This second
r is also derived under a LPC approach.

Y (z) =
U(z)

B(z)
(2)

Finally, the filter is obtained as the cascade of the two previous
rs

Y (z) =
A(z)

B(z)
X(z) = H(z)X(z) (3)

h results in an ARMA filter.
The coefficients of the whitening filter (the first one) are de-
d from the autocorrelation coefficients of the actual utterance.
coefficients of the second filter are obtained from an estima-
of the autocorrelations of reference data (i.e. clean training or
tation data).
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Figure 1: Temporal smoothing done in the Gaussian domain

Figure 2: Temporal smoothing done in the equalized domain

2.2. Filter location

Using ys, the smoothed version of y, implies applying a linear
transformation to the features that consists of a set of scalings
which make the temporal autocorrelations maintain the same pro-
portions and ratios than in the reference domain defined with clean
adaptation data. The effect of this scaling will be the elimination
of inter-frame information distortions originated by a test envi-
ronment different from the training one. The domain in which
this temporal smoothing is done has an effect on the improvement
achieved. It is desirable to locate the filter in the domain where
the essential temporal information is more clearly separated from
the irrelevant one that should be removed. As we mentioned in the
introduction about normalization, applying HEQ to the front-end
features means transforming them non-linearly to suit a reference
Cumulative Distribution Function (CDF). With this operation, the
training and test MFCC parameters are moved to a domain which
is more robust against the environment peculiarities[5]. Two refer-
ence CDF used for the equalization have proved to work optimally:
the clean data CDF, and a Gaussian CDF. According to this, three
possible scenarios to implement the filter transformation have been
analyzed. They are depicted in figures 1, 2 and 3

In figure 1 the autocorrelations of the clean data Rxg and the
test sentence (Ryg) are calculated once the features have been
equalized to a reference Gaussian CDF. The filter is defined in a
Gaussian domain and after normalizing the inter-frame info via the
filter, the smoothed features are equalized using a clean reference
CDF. In figure 2, the features are equalized directly using a clean
reference CDF, and then the correlations for the clean and test data
are calculated (Rxeq and Ryeq). The smoothing filter is defined
and applied in the equalized domain. For the last scenario shown
in 3, the temporal filtering is done calculating the autocorrelations
(Rx) and (Ry) in the original domain. The smoothed parameters
are later equalized using a clean reference CDF.
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igure 3: Temporal smoothing done in the original domain

3. Experiments and results
Description of the test environment

recognition system used is based on continuous cross-word
one models with 3 tied states and a mixture of 6 Gaussians

state. Training and recognition are done using the HMM Tool
(HTK) software. The language model is the standard bigram
he WSJ0 and AURORA2 tasks. A feature vector of 13 cep-
coefficients is used as the basic parameterization, using Co
ad of the logarithmic energy and spectral mean substraction.
basic features vector is augmented with first and second order

essions yielding a final 39 components features vector.
The algorithm proposed in this paper has been tested for AU-
A4 and AURORA2 databases following the standard clean
ing tests. All the procedures for training and recognition are
tical to the reference experiments, with the exception of the
t-end that includes the histogram equalization and the tempo-
moothing under study. The parameters of the reference distri-
on used for the equalization have been obtained by averaging

the whole clean training set of utterances. Training and test
ances have been temporarily smoothed and normalized using

t of clean adaptation data to calculate the reference autocorre-
n of the smoothing filter. The whole process of non linear and
r transformations has been done before computing the regres-

s. This decision is supported by experimental tests that pointed
a 3.5 of increase in the WER if the regressions were computed
re the equalization and temporal smoothing.
For comparison purposes, three more experiments have been
ucted. First of all, a baseline reference system (BASE) with

ence-by-sentence substraction of the mean values the cepstral
ficients. Then a temporal smoothing filter has been applied to
order to see its separate effects (BASE+TES). For the third ex-
ment conducted, the cepstral coefficients have been equalized
g HEQ and a Cumulative Density Function calculated over the
age of the clean training data(ECDF). 31 quantiles were esti-
d per utterance to be confronted with the ones of the reference
, defining in such a way a piecewise linear transformation for
coefficient.The last experiment (AFE) uses the ETSI standard
nced front-end parameterization algorithm[10]

Comparison between the possible filter locations

s have been done to compare the 3 possible scenarios on which
pply TES. The best results are obtained when performing the
oral smoothing once the features have been equalized to a

n data CDF (figure 2). The second best procedure is to smooth
features in the Gaussian domain (figure 1) and then equalize

again to clean CDF. The worst performance is obtained if
smoothing is done before the non linear transformation is ap-
(figure 3). This result makes sense as the equalized domain



should ease the separation of the relevant and irrelevant informa-
tion contained in the features. Equalization using a clean CDF
prior to the filtering, produces better results than the equaliza-
tion using a Gaussian reference. Table 1 shows comparative av-
erage WER for the 14 tests of AURORA4 clean training experi-
ments (8KHz / 166 small tests) performed in the 3 possible scenar-
ios: results for the equalization to a clean reference plus filtering
(ECDF+TES), Gaussianization plus filtering plus equalization to
a clean reference CDF (GAUSS+TES+ECDF), and filtering plus
equalization to a clean reference (TES+ECDF) are exposed. As a
consequence of this first analysis, the experiments conducted have
used the processing flow ”HEQ plus TES” depicted in figure 2

Table 1: Word error rates for the 3 possible combinations of equal-
ization and temporal filtering.

ECDF+TES GAUS+TES+ECDF TES+ECDF

35,48 35,69 36,65

3.3. Filter sensitivity to noise

Figure 4 shows The impulse response of the temporal smoothing
filter for different noise levels of a same sentence of AURORA2
database. For higher SNR the impulse response is closer to a
delta-Dirac while when the SNR decreases the impulse response
shape becomes smoother. The efficiency of the algorithm has been
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Figure 4: Impulse Response for SNR= -5dB, 0dB, 10dB and 20dB

analyzed for different SNRs in order to see the benefits. In fig-
ure 5 we have plotted the relative WER reduction obtained from
applying the temporal smoothing filter to the baseline features of
AURORA2 at different SNRs. It can be seen that the optimal gain
is obtained for a SNR of 5-10 dB. For higher SNRs, benefit de-
crease but still there is an improvement of 4% for 20 dB. For bad
SNRs lower than 2,5 dB, the algorithm does not produce benefits.
It increases the WER for very low SNRs.

Figure 6 shows the effect on the energy of the temporal filter
applied to an AURORA4 sentence in a noisy environment (Test07
in the picture) . The energies are depicted with and without HEQ
processing. The clean sentence (Test01 in the picture) is also de-
picted for comparison purposes.

3.4. Numerical results

Table 2 shows the WER obtained for the 14 test sets of AU-
RORA4. A relative WER reduction of 4,6% is obtained when
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igure 5: Improvement gained with TES at different SNRs
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ng TES to the ECDF algorithm, making it closer to the AFE
r bound standard. If the TES normalization is applied di-
y over the baseline features, the improvement achieved is only
tly higher:4,9%.This similarity in the improvement points out
the temporal smoothing captures distortions that can not be
inated with the equalization. The benefits of both normaliza-
s can be added up in the case of AURORA4.
The results for the 3 test sets of AURORA2 can be seen in
e 3. In this case the relative WER decreases a 12% when ap-
ng the temporal smoothing algorithm to the features already
lized via ECDF. If TES is applied to the baseline features, the

rovement obtained is 6,5%. In this case, the benefits of both
lizations (TES and HEQ) are not orthogonal as it happened in
ORA4.

e 3: Word error rates for the 3 sets of test of AU-
A2 clean training experiment. Results for the baseline sys-
(BASE),histogram equalization to a clean reference CDF

CF), the proposed temporal smoothing filter added to ECDF
DF+TES) and the ETSI advanced front-end (AFE).

TEST A TEST B TEST C Avg

BASE 36 30,9 35,27 33,82

BASE+TES 34 28,82 35,27 31,62

ECDF 17,06 17,3 18,97 17,54

ECDF+TES 16,24 14,21 16,35 15,45

AFE 12,49 12,94 14,48 13,07
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4. Conclusions
This paper presents a new method to add and normalize temporal
information contained in the voice features used in robust recog-
nition. An study on the most convenient domain to perform this
normalization is done, concluding that the histogram equalization
transforms the MFCC features into a more operative domain where
the distinction between noise and information is easier also when
dealing with inter-frame correlations. The benefits obtained with
this method are comparable with those of the few methods of nor-
malization of the temporal information [8] found in the specific
literature. A deeper analysis taking into account the coefficients
temporal covariances instead of correlations, and different ways to
define the normalization filter depending on the frame energy are
undergoing for future works.
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