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Abstract—This paper shows a complete seismic-event classifi-
cation and monitoring system that has been developed based on
the seismicity observed during three summer Antarctic surveys
at the Deception Island Volcano, Antarctica. The system is based
on the state of the art in hidden Markov modeling (HMM)
techniques successfully applied to other scenarios. A database
that contains a representative set of different seismic events in-
cluding volcano-tectonic earthquakes, long period (LP) events,
volcanic tremor, and hybrid events that were recorded during
the 1994–1995 and 1995–1996 seismic surveys was collected for
training and testing. Simple left-to-right HMMs and multivariate
Gaussian probability density functions with a diagonal covariance
matrix were used. The feature vector consists of the log-energies
of a filter bank that consists of 16 triangular weighting functions
that were uniformly spaced between 0 and 20 Hz and the first-
and second-order derivatives. The system is suitable to operate
in real time, and its accuracy for this task is about 90%. On the
other hand, when the system was tested with a different data set
including mainly LP events that were registered during several
seismic swarms during the 2001–2002 field survey, more than 95%
of the recognized events were marked by the recognition system.

Index Terms—Deception Island, hidden Markov modeling
(HMM), seismic-event classification, volcano monitoring.

I. INTRODUCTION

S EISMIC SIGNALS generated in volcanic areas display a
broad range of characteristics and have been classified in

different groups [e.g., volcano-tectonic (VT) earthquakes, long
period (LP) events, volcanic tremor, or hybrid events]. These
types of signals are related to different source processes, from
the brittle response of a rock under stress as VT to the resonance
of a conduit or crack due to the presence of fluids in movement
as LP or tremor. The state of a volcano and the vicinity of a
possible eruption can be controlled by analysis of these seismic
signals [1], [2].

Monitoring of precursory seismicity in restless volcanoes
is the most reliable and widely used technique in volcano
monitoring [1]. The rate of occurrence of seismicity in an active
volcano is high, with the presence of hundreds of events per
hour in days or weeks. Each seismic event is related to different
source processes. In order to understand the current state of the
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volcano, we should identify these processes. For this reason, the
conclusive identification of the signal is a primary and critical
point in volcano monitoring. In a crisis situation, there is a need
to make fast decisions, which can affect public safety. Based
on the number and type of seismic events, analysts working
in volcanic observatories have to decide the protocol to follow
near real time. In many situations, a visual classification on
the sole basis of the seismogram appearance may be the only
way to discriminate between internal volcanic earthquakes and
external or nonnatural signals. A more detailed analysis, includ-
ing, e.g., spectral characteristics, would be too time consuming
to be carried out in real time. The development of a robust
automatic discrimination algorithm helps the analysis, enabling
technicians to focus their efforts on the interpretation of the
situation or to analyze only a reduced number of signals.

Recently, Del Pezzo et al. [3] and Scarpetta et al. [4] have
presented the application of neuronal networks for discrimina-
tion and classification of volcanic and artificial signals at the
Vesuvius Volcano and Phlegraean Fields, Italy. These methods
have been successfully applied to discriminate signals for local
and volcanic seismicity. A serious limitation of these systems
is that they require previous inspection of the data in order
to extract a collection of events of the same duration from
the continuous recorded signal. In this paper, we advance in
the field and develop a continuous seismic-event recognition
and monitoring system that is based on the state of the art
of hidden Markov model (HMM)-based pattern recognition
techniques successfully applied to other disciplines such as
robust automatic speech recognition (ASR) systems. One of
the main advantages of our system over Del Pezzo’s method
[3] is that it is able to work in continuous mode over real-
time recordings and recognize volcanic events occasionally
found in LPs of just background seismic noise. On the other
hand, our system detects events on a noisy signal and discrim-
inates between four different types of seismic events, namely:
1) LP; 2) earthquake; 3) hybrid; and 4) volcanic tremor, while
Del Pezzo’s system considers only a two-class classification
problem for earthquakes and underwater explosions.

HMMs are a powerful tool in modeling any time-varying
series. Ornhberger [5] has studied discrete HMM tools for
continuous seismic-event classification. As in continuous
speech modeling, where the signals are modeled as a concate-
nation of different acoustic events (e.g., phone and words),
seismic records can be also modeled as a time sequence of
different seismic events. Furthermore, different realizations of
the same seismic event have similar spectral patterns. Fig. 1
shows two different hybrid events registered at Deception
Island, Antarctica. Note that the spectrograms have similar
spectral components and that both hybrid events exhibit the
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Fig. 1. Two different hybrid events recorded at Deception Island during
1994–1995.

same instantaneous behavior; thus, they are suitable to be
modeled by HMMs.

A. Deception Island

The data used in this paper were recorded from the Deception
Island Volcano, Antarctica, during three summer Antarctic
surveys during 1994–1995, 1995–1996, and 2001–2002. The
data set consists of thousands of seismic events that contains VT
earthquakes, LP events, hybrids, and tremor. Fig. 2 shows the
location of the island and the placement of the seismic arrays.
Deception Island is a volcanic island located at 62◦ 59′ S and
60◦ 41′ W in the South Shetland Islands region. This island
is a back-arc stratovolcano. The basal diameter of the island
is 30 km and rises 1400 m from the seafloor to a maximum
height of 540 m above sea level. The 15-km-diameter island is
horseshoe-shaped and displays a flooded caldera (Port Foster)
with dimensions of 6 × 10 km and a maximum depth of
190 m. The caldera wall is breached by a 500-m-wide passage
called Neptune’s Bellows. Glaciers cover almost half of the
island, mainly on Mount Pond and Mount Kirkwood in the east
and south, respectively.

It is the main active volcano of the Bransfield Strait, a north-
east (NE)-trending series of basins located between the South
Shetland Islands arc and the northwestern tip of the Antarctic
Peninsula [6], [7]. This region represents one of the major
known sites of seismic and volcanic activity in Antarctica.
Deception Island is the most active of all the volcanoes in the
South Shetland Islands, having erupted at least six times since it
was first visited 160 years ago [8], [9]. All historical eruptions
were relatively small in volume and occurred at locations near
the coast of the inner bay. Three eruptions between 1967 and
1970 were observed directly and are well documented [10],
[11]. In December 1967, two eruptions developed simultane-
ously from sites that are located 2 km apart. One of them was a
submarine eruption that gave rise to a new island in Telefon
Bay, while the other occurred inland, between Telefon Bay

Fig. 2. Map of Deception Island and the configuration of the instruments used
in the data analysis. In the upper figure, we show the geographical situation
of the Deception Island Volcano in the South Shetland Islands, Antarctica.
In the map, we marked the main volcanic features, including dates of recent
historical eruptions.

and Pendulum Cove. In both cases, the eruptive products were
similar (ash, steam, and some bombs), but the Telefon second
eruption occurred in February 1969, when fissures opened in
the ice on the west-facing slopes of Mount Pond, which are
accompanied by pyroclastic emissions. The last eruption was in
August 1970, when additional activity along the northern edge
of Telefon Bay formed a chain of new craters and modified
the coastline. Evidence of the present-day volcanic activity
at Deception Island includes fumarolic activity, hydrothermal
areas, resurgence of the floor of Port Foster, and seismicity
[12]–[15]. Fumaroles and hot springs with temperatures of
below 110 ◦C encircle Port Foster [16].

B. Data Acquisition

The data analyzed in this paper were recorded in the Decep-
tion Island Volcano by a dense short-period seismic antenna that
operated during the 1994–1995 and 1995–1996 summer field
surveys, and a three-component autonomous seismic station
during the 2001–2002 survey. These surveys spanned from
December to February. The seismic antenna was located be-
tween the Argentinean and Spanish Stations (Fig. 2) and was
composed of 3 three-component and 15 vertical seismometers.
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Fig. 3. Spectral characteristics of seismic events recorded at Deception Island.

The vertical seismometers were Mark L25, with a natural fre-
quency of 4.5 Hz. Their response was electronically extended
to 1 Hz. The 3-D seismometers were Mark L-4C with a natural
frequency of 1 Hz. The preamplifier’s output is balanced so
that the signal is sent undisturbed via twisted-pair cables to
the data-acquisition system. The array structure is based on
eight-channel modules. Three of such modules composed the
whole seismic antenna. Each data-acquisition module has the
following components: an eight-channel antialias Butterworth
multipole filter at 48 Hz, a multiplexer that samples each of
the eight channels every 5 ms, and a 16-bit analog-to-digital
(A/D) converter. The internal clock is synchronized by GPS
time every second, and the sampling rate used is 200 sample/s.
The control of each module and the storage of the data are done
by a portable personal computer. The triggering algorithm is
based on the short-term average/long-term average (STA/LTA)
ratio. The three-component station was located near the Spanish
Station. The sensors used were Mark L-4C and were connected
to a data-acquisition system with a resolution of 24 bits and
a sampling rate of 50 sample/s. While the array recorded data
by triggering, this autonomous station was set in a continuous
recording mode.

C. Data Characteristics

The seismicity recorded at Deception Island is grouped in
the following categories: local VT earthquakes, LP events,
hybrid events, and volcanic tremor. The characteristics of this
seismicity have been widely studied using different techniques,
as reported in [13] and [25]. Fig. 3 shows the spectral character-
istics of the different kinds of events, which are characterized
as follows.

1) LP events recorded at Deception Island are signals with
a fuse-shaped envelope with a duration of less than 60 s
and almost pure monochromatic spectral content at fre-
quencies of below 4 Hz. In some cases, a high-frequency
phase precedes some of these events. They are related
to resonances of fluid-filled conduits and cracks that are
driven by volcanic processes.

2) Local VT events are earthquakes with S-P waveform time
shorter than 4 s. This time limit ensures that the VT events
are located inside the island structure. They are usually
characterized by impulsive direct P and S wave arrivals.
The spectral content of this signal is very broad, reaching
up to 30 Hz. The source of these local VT earthquakes
can be interpreted as the brittle response of the volcanic
environment under local and regional stresses. The origin
of these stresses is related to volcanic processes within
the island and varies from the interaction of water with
hot materials to the effects of shallow magma injections.

3) Hybrid events are signals that contain both double-couple
and volumetric components. They are characterized by
an initial high-frequency phase, which corresponds to
a VT earthquake in which P and S waves might be
distinguished, followed by a monochromatic signal that
is similar to those shown by the LP events. In some cases,
LP events with an energetic initial high-frequency signal
can be interpreted as hybrids.

4) Volcanic tremor is a monochromatic signal with a du-
ration that is longer than that observed for LP events.
Episodes of tremor that vary from minutes to several
hours and days have been observed. Tremor and LP
events are different manifestations of the same process.
An LP event is the response to a sudden pressure transient
within a fluid-filled crack, while a tremor is the response
to continuous fluctuation of pressure.

II. HMM-BASED SEISMIC-EVENT MODELING

The basic theory of HMMs was published in [17] and [18]
in the late 1960s. The first application in speech recognition
was developed in the early 1970s by Baker [19] at Carnegie
Mellon University (CMU), and Jelinek [20] and Jelinek and
Bahl [21] at IBM. HMMs [22] can be used to model any
time series. There are two major processing stages involved in
an HMM-based pattern recognition system. First, the training
algorithms are used to set the parameters of the HMMs by
means of a database that contains seismic recordings and their
associated transcriptions. Second, unknown seismic records are
transcribed using the decoding algorithms [23], [24]. This sec-
tion shows the general principles of HMMs and the theoretical
background for seismic-event recognition.

A. Definition

An HMM-based seismic-event recognition system must as-
sume that the signal is a realization of a sequence of one or
more symbols. In order to perform the recognition process,
the recognizer decomposes the incoming signal as a sequence
of feature vectors. This sequence is assumed to be a precise
representation of the seismic signal, while the length of the
analysis window is such that the seismic waveform can be
considered as stationary.

The goal of the recognition system is to perform a mapping
between a sequence of feature vectors and the corresponding
sequence of seismic events. The main obstacles associated
with this task that strongly affect the system performance are
the variability of the seismic events, the propagation between
the source and the seismic registration stations, and the noise
sources that are present in the environment. Another drawback
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Fig. 4. Five-state left-to-right HMM with nonemitting entry and exit states.

is that the boundaries between symbols cannot be identified
explicitly. This problem can be avoided by restricting the task
to isolated event recognition. The simplified problem serves as
a good basis for introducing the basic ideas of HMM-based
pattern recognition, while the main objective of this paper is the
development of a continuous seismic-event classification and
monitoring system.

B. Seismic-Event Recognition

Let a sequence of seismic events w = w1, w2, . . . , wl be
represented as a sequence of feature vectors ot or observations
O, which is defined as

O = o1,o2, . . . ,ot (1)

where ot is the signal vector observed at time t. The solution
to the problem of continuous event recognition is selection
of the sequence of events w with the maximum probability
P (w|O), i.e.,

arg max
w

P (w|O). (2)

Using Bayes’ rule, we have

P (w|O) = P (O|w)P (w)/P (O). (3)

In almost any given application scenario, the dimensionality
of the feature vectors does not make the estimation of the
joint conditional probability P (o1,o2, . . . ,ot) from examples
practicable. If a parametric model for seismic-event production
such as a Markov model is assumed, the problem is reduced to
estimating the Markov-model parameters. The objective then is
to analyze the incoming signal consisting of a large sequence of
nondelimited seismic events and recognize the corresponding
sequence of events. The next section addresses the development
of a continuous recognition system for seismic events of vol-
canic origin.

C. HMMs

HMM-based pattern recognition systems normally assume
that the sequence of observed feature vectors corresponding to
each event is generated by a Markov model. A Markov model
is essentially a finite-state machine with several states. Fig. 4
shows a five-state left-to-right HMM with nonemitting entry
and exit states. A change of state takes place every time unit,
and a feature vector ot is generated from a probability density
bj(ot) that is determined during the training process. Moreover,

Fig. 5. Architecture of an HMM-based seismic monitoring system.

the transition from state i to state j is governed by the transition
probabilities aij , which are used to model the delay in each of
the states and the transitions through the entire model. Thus,
the joint probability that observation O generated by using
models Mi is calculated, summing all possible state sequences
X = x(1), x(2), . . . , x(T ), i.e.,

P (O|Mi) =
∑

X

ax(0)x(1)

T∏

t=1

bx(t)(ot)ax(t)x(t+1). (4)

The underlying method for statistical pattern recognition
assumes that the parameters of models Mi is known. These
parameters are obtained given a number of training exam-
ples and their associated transcriptions by means of efficient
reestimation procedures. In order to recognize some unknown
event, the likelihood of each model generating that event is
calculated, and the most likely model identifies the event. On
the other hand, the specification of output probabilities bj(ot) is
normally based on a parametric model. For instance, in speech
recognition applications, a widely used representation is by
means of Gaussian mixture densities.

D. HMM-Based Seismic-Event Recognition System

Fig. 5 shows the architecture of a general-purpose HMM-
based pattern recognition system. The training database and
transcriptions are used to build the models. Once the models
are initiated, the recognition system performs feature extraction
and decoding based on the Viterbi algorithm. The output is
the sequence of recognized events, confidence measures, and
global accuracy scores.

III. PRELIMINARY DATA PREPARATION

A. Seismic-Data Preprocessing

In the actual implementation of the recognition system, it is
not possible to accept the seismic signal in the format that was
created for the array and based on multiplexed signals. The in-
put signal for both training and recognition is a stream of 16-bit
binary data without a heading. Fig. 6 shows a hybrid event that
was registered at Deception Island during the 1995–1996 field
survey. It is shown that the energy of the signal is concentrated
at frequencies of below 20 Hz. As the seismic-event recognition
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Fig. 6. Labels assigned to the seismic data for training.

system is based on the spectral properties of the signals, record-
ings that were initially sampled at 200 Hz were decimated to a
50-Hz sample rate using a 101-tap linear-phase finite-impulse
response (FIR) filter. Two advantages are then obtained. First,
redundant information, which does not contribute to a clear
identification of the different events, is removed. Second, the
computational cost of the recognition system is reduced.

B. Collecting the Training Database

As observed from Fig. 2, the seismic array is composed by
24 different channels. In order to perform the data analysis,
we have selected channel number 5C, as shown in Fig. 2. We
assume that the distance among the different stations is too
small to produce differences between seismic stations. How-
ever, the local geology below each seismometer affects slightly
the signal shape. Based on previous seismological works [13],
[25], we have determined that this channel presented the signal
with the highest signal-to-noise ratio (SNR).

The training process of the signal was performed in the
three steps.

Step 1) Visual recognition. The signal was analyzed on the
screen of the computer, and its shape was compared
with the description of the signals performed by
Ibáñez et al. [13].

Step 2) Spectral shape. Those signals that could be mixed
in different sets were analyzed, observing their
spectrogram.

Step 3) Based on both criteria, each signal was labeled as
“LP,” “EQ,” “HYB,” “TREMOR,” or “NOISE” to
denote LP, earthquake, hybrid, or tremor events,
or just seismic noise. The duration of the signal
was established in the time domain inspecting the
seismic waveform.

IV. SEISMIC-EVENT RECOGNITION SYSTEM

A. Feature Extraction

The first step of the recognition process is signal processing
feature extraction, which converts the volcano seismic wave-
form to a parametric representation with less redundant infor-

Fig. 7. Feature extraction.

mation for further analysis and processing. As the short-time
spectral envelop representation of the signal has been widely
used, with good results, in speech recognition systems [26],
a similar representation for our volcano seismic recognition
system is used in this paper.

Fig. 7 shows a block diagram of the feature extraction
process, which is based on a filter-bank spectrum-analysis
model. The signal is arranged into 4-s overlapping frames with
a 0.5-s frame shift using a Hamming window. A 512-point
fast Fourier transform (FFT) is used to compute the magnitude
spectrum, which serves as the input of an emulated filter bank
that consists of 16 triangular weighting functions that were
uniformly spaced between 0 and 20 Hz. The overlap between
adjacent filters is 50%. The purpose of the filter-bank analyzer
is to give a measurement of the energy of the signal in a given
frequency band. Then, the natural logarithm of the output filter-
bank energies is calculated, resulting in a 16-parameter feature
vector. Since the log filter bank energies are highly correlated
and the recognition system uses continuous observation HMMs
with diagonal covariance matrices, it is necessary to apply a
decorrelation transformation. Thus, the discrete cosine trans-
form (DCT) is used to decorrelate the features and reduce
the number of components of the feature vector from 16 to
13 coefficients. Finally, the feature vector is augmented with
linear regressions of the features (derivatives and accelerations),
obtaining a total of 39 parameters.

B. Recognition System

The recognition system presented in this paper is based on
continuous HMMs (CHMMs). CHMMs are trained for each
event (earthquake, LP, hybrid, and tremor events), and a noise
model is used to represent sequences with no events. Both
training and recognition processes are performed using the
HMM Tool Kit (HTK) software [27].

In a CHMM, the emission probabilities previously defined
in Section II bx(t)(ot) for a feature vector ot in state x(t) are
given by

bx(t)(ot) =
S∏

s=1

K∑

k=1

cskN(µk, σk,ot) (5)

where S is the number of parameters in the feature vector and
K is the number of probability density functions (pdfs) consid-
ered. It is worthwhile clarifying that multivariate Gaussian pdfs
with diagonal covariance matrices are used in this paper.

The training algorithm for the HMM consists of finding the
parameters of the model (i.e., the weights for each state of the
HMM csk and the transition probabilities between states aij of
the model) from a previously labeled training database. Usually,
the maximum-likelihood criterion is chosen as the estimation
function to adjust the model parameters, i.e., the maximization
of P (O|M) over M , where M defines an HMM. However,
there is no known way to obtain a solution in a closed form.
The Baum–Welch algorithm [28], [29] is an iterative procedure
that provides a locally optimum solution to solve this problem.
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Fig. 8. Allowed sequence of recognized seismic events.

In the training process, it is necessary to fix the following:

1) topology of the models (in this case, classical left-to-right
HMMs, as shown in Fig. 4, were used);

2) number of states for the models;
3) number of multivariate Gaussian pdfs;
4) number of iterations of the Baum–Welch algorithm.

The operation of the recognition system is described in
(3), which allows to express P (w|O) in terms of computable
magnitudes. Note that P (O|w) is the conditional probability
of vector sequence O, given the sequence of events w, which
can be computed by the HMMs, while P (w) is the probability
of the sequence of events w.

As there is no statistical knowledge of possible event se-
quences, we assume that after a particular event, any other event
or noise could appear with the same probability. Fig. 8 shows
the transition rules between events that were considered in this
paper.

The recognition process combines the probabilities generated
by the models and the probabilities obtained by the allowed
transition for the seismic events. Equation (2) indicates that it
is necessary to generate all the possible sequences of events
and to evaluate all of them using (3), thus selecting the one
with the maximum probability. There are several algorithms
to expand and search the most probable sequence of events,
given a sequence of observations. The most popular algorithms
used for speech recognition are stack decoding [28] and Viterbi
search [30]. Among them, Viterbi decoding [26], [27], [31] is
adopted in this paper. Additional details of the implementation
of the training and decoding processes are provided.

1) Initial flat models are generated as HMM prototypes
using the training database.

2) The Baum–Welch reestimation algorithm is performed
using the training database, which includes the la-
beled seismic records. The number of iterations of the
Baum–Welch algorithm is fixed to 6.

3) Initial HMMs are obtained with one multivariate
Gaussian pdf.

4) The number of multivariate Gaussian pdfs is increased
from 1 to 24. The reestimation algorithm is performed in

TABLE I
RECOGNITION ACCURACY FOR DIFFERENT NUMBERS OF

STATES NE AND NUMBERS OF GAUSSIANS NG

each iteration, as in step 2), and recognition results using
the Viterbi algorithm are obtained in each step.

V. EXPERIMENTAL RESULTS

The training database consists of 512 manually labeled,
150-s-long records that contain four classes of events, as dis-
cussed in Section I. It includes: 1) 75 local VT earthquake
events (EQ); 2) 765 LP events (LP); 3) 54 hybrid events (HYB);
and 4) 77 volcanic tremor events (TREMOR).

The experimental results are shown in Table I. These results
are obtained for the whole training database. The performance
of the system is given in terms of the recognition accuracy that
is defined as

Acc(%) =
C − I

N
× 100% (6)

where C is the number of correctly recognized events, I is
the number of insertion errors, and N is the total number of
events present in the test. Table I shows the accuracy values
for a variable number of Gaussians (4–24) when the number
of states of the models varies from 9 to 17. It can be observed
that the performance of the system increases with the number
of Gaussians used to model each state of the HMMs; the upper
bound depends on the size of the training database. The best
results are obtained when the events are modeled with 11 states,
yielding accuracy values of up to 90%. Note that the number
of states of the models imposes a minimum duration for the
events. In this paper, 4-s analysis frames with a 0.5-s frame
shift were used. Thus, for the topology of the HMMs adopted
in this paper, the minimum duration that the system assigns to
an event is obtained by multiplying the number of states by the
frame shift (0.5 s). Fig. 9 shows the histogram of the length
of events that appear in the training database; only 8.5% of the
events (LP events) present a length that is less than 5.5 s; for this
reason, the best tradeoff obtained for this particular database is
11 states.

It is worthwhile clarifying several issues regarding this pre-
liminary set of experiments. Our data set consists of recordings
for four types of seismic events: VT earthquakes, LP, hybrid,
and volcanic tremor events; each class is defined by means of
a trained HMM that models its time-varying power spectral
pattern. In order to train each model accurately, a large number
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Fig. 9. Histogram of the length of the events present in the training database.

of occurrences belonging to the same class in the training
data set is needed. In case of a limited data set, it is not
effective to split the data set into two different disjoint data
sets for training and testing since the HMMs for events with
a reduced number of occurrences in the training data set will
not be accurately estimated. Only for LP events, the number
of realizations is large enough to proceed with this strategy. In
order to solve this drawback, we have adopted a technique that
is frequently used in HMM-based pattern recognition systems
when only a limited database is available for training and
testing. The strategy known as “leave one out” [32] consists of
conducting multiple training and testing experiments with dif-
ferent partitions of the database for training and testing and of
averaging the results of these tests. With this method, we have
validated the results shown in Table I with a low degradation
of the system performance from that obtained for the previous
experiment.

The confusion matrices are useful to better describe the
three kinds of mistakes that appear in the automatic recognition
system: substitution errors, insertion errors, and deletion errors.
Table II shows four confusion matrices for different experi-
ments with 16 Gaussians and 9, 11, 13, and 15 states. In all the
cases, the confusion matrix is almost diagonal. Reading across
the rows of the confusion matrix, each column represents the
number of times that the event was automatically labeled by
the system as such event. For example, Table II(a) shows that
707 times were the LP events recognized as LP, 3 times as
EQs, and 7 times as TREMOR; the recognition system was not
able to identify the event 48 times. The “Ins” row indicates the
number of times that each one of the events was incorrectly
detected when just noise is present in the signal. Note that the
number of LP events in the database is considerably greater
than the rest of the events. The selection of the number of states
affects especially this type of event, which is better recognized
with NE = 11 states. According to the histograms shown in
Fig. 9, for an increasing number of states, the number of LP
deletion errors increases with the corresponding reduction of
the number of insertion errors.

A. Additional Tests of the Recognition System

In order to control the accuracy of the recognition method
with other signals that were not used in the training process,
we selected the data recorded in the 2001–2002 field survey
by the autonomous seismic station. In this period, several
seismic swarms were recorded, with durations ranging from
hours to days. During the routine study performed in the field,
a selection of the whole data set, which contains thousands
of events, mainly LP events, was done. Unfortunately, the
moderate volcanic activity in the island during the field survey
showed that no other types of seismic event different from
LP events were observed. This new data set has been used to
control the recognition method. The result of the application of
the recognition process to this data set reveals a great success,
as summarized in the following list.

1) No other type of signal was recognized, and only LP
events were marked.

2) The seismic noise was recognized as noise, although the
nature and amplitude of the noise were different between
the training database and the testing one.

3) More than the 95% of the recognized LP events were
marked by the recognition process.

4) The recognition process marked other signals as LP
events, which initially did not appear to be classified as
that in the database. After a spectral analysis, we observed
that they also should be classified as LP, but they were not
labeled as events due to their low amplitude.

Finally, preliminary results of a direct comparison between
the proposed HMM-based system and Del Pezzo’s method [3]
are given. Having clarified in Section I that both systems are
different and perform different tasks on the seismic signal, we
have obtained preliminary results for the comparison of both
methods. Thus, direct evaluation of the system presented in
this paper with the data set used to evaluate the system by
Del Pezzo et al. [3] shows that the system proposed by
Del Pezzo [3], which is based on neuronal networks, yielded a
90% classification accuracy for a task consisting of classifying
earthquakes and underwater explosions at Phlegraean Fields,
while our HMM-based recognition system reported a 97%
recognition accuracy for the same task.

VI. CONCLUSION

Monitoring of precursory seismicity in restless volcanoes is
the most reliable and widely used technique in volcano moni-
toring. This paper showed a complete seismic-event recognition
and monitoring system that is based on the state of the art
in HMM successfully applied to other disciplines including
ASR systems. A database that contains a representative set of
different seismic events including VT earthquakes, LP events,
volcanic tremor, or hybrid events was collected from Deception
Island for training and testing. Simple left-to-right HMMs
and multivariate Gaussian densities with a diagonal covariance
matrix were used. The feature vector includes the log-energies
of a filter bank that consists of 16 triangular weighting functions
that were uniformly spaced between 0 and 20 Hz and the first-
and second-order derivatives. The system is suitable to operate
in real time and capable of discriminating between different
types of seismic events with an accuracy of about 90%. On the
other hand, when the system was tested with a different data
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TABLE II
CONFUSION MATRICES. (a) NE = 9 STATES. (b) NE = 11 STATES. (c) NE = 15 STATES. (d) NE = 17 STATES

set that is composed mainly of LP events, more than 95% of
the recognized events were marked correctly by the recognition
system. Thus, the system enables monitoring the state of a
volcano and the vicinity of a possible eruption by analyzing
these seismic signals. As a conclusion, the system developed in
this paper is very useful in discriminating among different types
of volcanic signals after a careful training process. With this
valuable tool, analysts working on many volcanic observatories
can decide in near real time the protocol to follow based on the
number and type of seismic events.
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