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Abstract—This paper shows an improved statistical test for voice
activity detection in noise adverse environments. The method is
based on a revised contextual likelihood ratio test (LRT) defined
over a multiple observation window. The motivations for revising
the original multiple observation LRT (MO-LRT) are found in its
artificially added hangover mechanism that exhibits an incorrect
behavior under different signal-to-noise ratio (SNR) conditions.
The new approach defines a maximum a posteriori (MAP) sta-
tistical test in which all the global hypotheses on the multiple
observation window containing up to one speech-to-nonspeech or
nonspeech-to-speech transitions are considered. Thus, the implicit
hangover mechanism artificially added by the original method
was not found in the revised method so its design can be further
improved. With these and other innovations, the proposed method
showed a higher speech/nonspeech discrimination accuracy over
a wide range of SNR conditions when compared to the original
MO-LRT voice activity detector (VAD). Experiments conducted
on the AURORA databases and tasks showed that the revised
method yields significant improvements in speech recognition
performance over standardized VADs such as ITU T G.729 and
ETSI AMR for discontinuous voice transmission and the ETSI
AFE for distributed speech recognition (DSR), as well as over
recently reported methods.

Index Terms—Multiple hypothesis testing, robust speech recog-
nition, voice activity detection (VAD).

I. INTRODUCTION

EMERGING applications in the field of speech processing
are demanding increasing levels of performance in noise

adverse environments. Examples of such systems are the new
voice services including discontinuous speech transmission [1],
[2] or distributed speech recognition (DSR) over wireless and
IP networks [3]. These systems often require a noise reduc-
tion scheme working in combination with a precise voice ac-
tivity detector (VAD) in order to compensate for the harmful
effect of the noise on the speech signal. During the last decade,
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numerous researchers have studied different strategies for de-
tecting speech in noise and the influence of the VAD on the
performance of speech processing systems. Sohn et al.. [4] pro-
posed a robust VAD algorithm based on a statistical likelihood
ratio test (LRT) involving a single observation vector. Later, Cho
et al. [5] suggested an improvement based on a smoothed LRT.
Most VADs in use today normally consider hangover algorithms
based on empirical models to smooth the VAD decision. It has
been shown recently that incorporating contextual information
in a multiple observation LRT (MO-LRT) [6] reports benefits for
speech/pause discrimination in high noise environments. This
paper analyzes this method and shows a revised MO-LRT VAD
that extends the number of hypotheses on the individual mul-
tiple observation window that are tested.

The rest of the manuscript is organized as follows. Section II
shows a general description of a contextual multiple hypoth-
esis testing method for voice activity detection in noisy envi-
ronments. Topics such as the speech signal analysis, the defini-
tion of partial and global hypotheses that are considered in the
test, and a revised maximum a posteriori (MAP) statistical test
are presented and discussed. It is also shown that the statistical
LRT proposed by Sohn et al. and the MO-LRT [6] are partic-
ular cases that can be derived from this more general method
under several assumptions imposed on the a priori probability
of the hypotheses. Section III analyzes the hangover mecha-
nism artificially introduced by the MO-LRT VAD and the mo-
tivations for a revised and improved statistical test. Section IV
shows the revised MO-LRT VAD in an elegant matrix form and
provides examples under different SNR conditions showing the
improved accuracy of the proposed method. Section V is de-
voted to the experimental framework including the discrimi-
nation analysis and the speech recognition performance eval-
uation. Finally, Section VI summarizes the conclusions of this
paper.

II. CONTEXTUAL MULTIPLE HYPOTHESIS TESTING

FOR VOICE ACTIVITY DETECTION

It has been shown recently [6], [7] that incorporating contex-
tual information to the decision rule yields significant improve-
ments in speech/nonspeech discrimination in severe noise con-
ditions. A general statistical framework is presented in this sec-
tion which enables including such information in an optimum
MAP test. This approach will be unveiled as a generalization of
the statistical hypothesis testing method proposed by Sohn et al.
[4] and the MO-LRT [6] previously presented.

1558-7916/$25.00 © 2007 IEEE
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A. Speech Signal Analysis

Let be a speech signal observed in uncorrelated additive
noise. The signal is decomposed into overlapped frames each
of size with a -sample window shift and a -point win-
dowed DFT spectral representation is obtained on a frame by
frame basis

(1)
where denotes the frame index, represents the window (typi-
cally, a Hamming window), and is its norm. Thus,
is an consistent estimation of the power spectral density (PSD)
of the signal.

The algorithm considers several observations in the decision
rule and requires the feature vectors obtained through the
analysis of each frame

(2)

to be stored in a reindexed -observation buffer:

(3)
The content of the buffer is shifted to the left in each step
of the algorithm, and the new feature vector obtained after
the analysis of the current analysis window is inserted in the

th position. The method now can formulate a binary
decision about the presence or absence of speech in the frame
stored in the central position (frame ) using the
preceding observations and the succeeding
observations . Note that the algorithm
exhibits an -frame computational delay so that the decision
over the th frame of the signal is only available after
the th frame has been analyzed.

B. Partial and Global Hypotheses

Our method evaluates the probability of the different indi-
vidual hypotheses that can be formulated on each of the obser-
vations of the analysis buffer. The global hypothesis is defined
as

(4)

where each value represents a partial binary hypothesis on
the presence or absence of speech in the frame stored in the th
position of the buffer

speech absence in the th position

speech presence in th position

where and denote the PSDs of the speech and noise pro-
cesses, respectively.

Each possible combination of individual hypotheses defines
a global hypothesis on the content of each of the frames in the

buffer. Since there are partial binary hypotheses, the
number of possible global hypotheses is . In order to sim-
plify the representation, each global hypothesis is denoted by a

-bit binary number so that the set of all the global hy-
potheses is defined as

(5)

Finally, a partition of the set of all the possible global hy-
potheses is defined

(6)

(7)

depending on the hypothesis formulated on the central frame of
the buffer. As an example, for , the sets , , and
are given by

(8)

(9)

or, equivalently, in binary representation as

(10)

(11)

(12)

C. Multiple Observation MAP Voice Activity Detection

Once all the possible hypotheses about the content of the
buffer were defined, the VAD decision about presence or ab-
sence of speech can be formulated in terms of a binary hypoth-
esis testing

speech absence in the central frame;
speech presence in the central frame;

that, based on the MAP optimum criterion, is expressed as

(13)

Taking into account the definition of the sets and , the
joint probabilities and can be obtained by

(14)

(15)

where is the a priori probability of the global hypothesis .
If the observations are assumed to be statistically independent,
the conditional probability of each of the global hypothesis
can be calculated by

(16)
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As a conclusion, the optimum decision criterion is defined as

(17)

Finally, a model is needed to compute the probabilities of each
of the observations in the buffer given the associated hypothesis
in order to complete the statistical test. Assuming the discrete
Fourier transform (DFT) coefficients to be asymptotically inde-
pendent Gaussian variables [8], the probabilities can be obtained
as

(18)

where denotes the th bin of the DFT for the th frame in
the buffer , and and are the PSDs of the speech
and noise processes, respectively.

D. A Priori Probabilities and Contextual Information

The only way to incorporate contextual information to the
decision rule—given the statical independence assumption for
the observations in the buffer—is through an adequate selection
of the a priori probabilities of the global hypothesis. In
this section, two particular cases are shown which directly lead
to the statistical hypothesis testing method proposed by Sohn et
al. [4] and the MO-LRT [6] previously presented.

1) Single Observation LRT-Based VAD: Assuming that no a
priori information about the process is known except the prob-
abilities of occurrence of speech frames and silence frames

, the reasonable values of the a priori probabilities of the
hypotheses are

(19)

Thus, taking into account the symmetry of the sets and ,
the decision rule is reduced to

(20)

(21)

or, equivalently

(22)

(23)

This test is only based on the central observation in the buffer
and discards any contextual information. By substituting (18) in
the previous equation finally leads to

(24)

(25)

where is the a priori signal-to-noise ratio (SNR) in the th
bin, and is the a posteriori SNR of the central frame
in the buffer. In practice, an average criterion with a range inde-
pendent of the number of bins is defined as

(26)

Note that this test is essentially the statistical LRT proposed by
Sohn et al. [4].

2) Multiple Observation LRT-Based VAD: Another option
for the selection of the a priori probability of the hypotheses
is related to the fact that speech and nonspeech frames do not
appear in an isolated way but on consecutive speech segments.
Thus, the set of probabilities can be defined

otherwise
(27)

where is the probability of occurrence of speech frames. This
assumption is correct if the the analysis window is shorter than
the minimum length of speech and nonspeech periods except for
the transitions. With this model, the statistical test is reduced to

(28)

or, equivalently

(29)

(30)

By substituting (18) in the previous equation, the decision rule
is finally defined as

(31)

(32)

where is the a priori SNR for the th band, and denotes
the a posteriori SNR for the th band at the th frame of the
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Fig. 1. Detection of a step change in the variance of the signal using a multiple
observation window.

buffer. As in the previous example, a scaled decision rule inde-
pendent of and

(33)
is preferred. This statistical test is essentially the MO-LRT pro-
posed in [6] and can be understood as an average of the decision
criterion over the frames present in the buffer.

III. HANGOVER ANALYSIS OF THE MO-LRT METHOD

The MO-LRT yields significant improvements in speech de-
tection accuracy as well as speech recognition performance in
severe noise conditions [6] when compared to the noncontex-
tual LRT proposed by Sohn et al. [4]. However, a degradation
of the ability of the method to detect nonspeech frames is shown
under high SNR conditions due to the implicit hangover present
in the MO-LRT VAD. Although a hangover scheme is adequate
for improving voice activity detection performance and recov-
ering low energy beginnings and endings of speech segments,
the desired behavior is to increase the hangover length under
low SNRs while reducing it for high SNRs. This section ana-
lyzes the hangover of the MO-LRT VAD and shows an opposite
behavior to the desired one which results prejudicial under high
SNR conditions.

For the analysis of the hangover duration, the speech-to-non-
speech transition in Fig. 1 is studied. This corresponds to a sit-
uation where the first observations in the buffer
are nonspeech frames while the remaining observations are
speech frames. In such a situation, the expected value of the
MO-LRT decision rule can be calculated as follows

(34)

where the expected value of the a posteriori SNR of each frame
depends on the presence or absence of speech

(35)

By substituting the expected value of the SNR in (34), the ex-
pected value of the decision rule is reduced to

(36)

Then, by solving , the number of observa-
tions that originates a VAD transition is given by

(37)

As a conclusion, this equation shows the expected value of
for which exceeds the decision threshold . Thus,
the hangover length can be calculated as .
An analysis of (37) shows that decreases with the increasing

, so that the hangover increases with the a priori SNR.
This behavior reduces the utility of MO-LRT under a wide range
of SNR conditions and constitutes the motivation for a revised
method.

In order to illustrate the dependence of with the SNR, we
assume that both the signal and the noise are white Gaussian
processes. Thus, the a priori SNR is constant for all the fre-
quency bands ( for ), and (37) is reduced
to

(38)

Fig. 2 shows the increasing hangover length with the a
priori SNR. This undesired effect is what prejudices the accu-
racy of the MO-LRT VAD under high SNR conditions. This
effect can be also shown in Fig. 3, where the evolution of the
decision rules and is compared for a white signal
observed in noncorrelated additive white noise. Note that
exhibits a smoother behavior since it is essentially an averaged
version of over consecutive frames. On the other
hand, an advanced detection of the word beginnings and a de-
layed detection of the word endings is observed. The hangover
is symmetric and its length is consistent with the expected value
of six frames shown in Fig. 2.

IV. REVISED MO-LRT

The undesired behavior of the hangover is mainly due to not
considering more than just the two global hypotheses consisting
of all the frames belonging to the same class. Note that, the most
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Fig. 2. Hangover length as a function of the a priori SNR (�) for N = 8 and
� = 0.

Fig. 3. Evolution of � and � for a white signal in additive uncorrelated
white noise with � = 10 dB and N = 8.

probable hypotheses may differ from these two global hypoth-
esis especially when detecting a speech-to-nonspeech transition
or a nonspeech-to-speech transition. For such a situation, the
most probable hypothesis will typically contain both speech and
nonspeech partial hypotheses over the individual observations in
the buffer. This section shows a revised version of the MO-LRT
VAD that extends the number of global hypotheses that are eval-
uated in order to improve its performance on the transitions.

For the selection of the a priori probabilities of the global
hypotheses, we assume that the length of the buffer is reduced
enough not to occur more than just one speech-to-nonspeech or
nonspeech-to-speech transition within the buffer. Thus, it can be
shown that the number of hypotheses to be considered is reduced
to instead of . As an example, for , the
hypotheses considered are

(39)

More generally, the subset of containing no null proba-
bility hypotheses can be described in matrix form so that each
row identifies a global hypothesis. These hypotheses can be ex-
pressed in matrix form resulting the Hankel matrix

...
...

...
...

...
...

...

...
...

...
...

...
...

...

(40)

In the same way, the hypotheses with no null probability in the
subsets and can be represented by matrices and ,
that are built by selecting the rows of whose central element
is 0 or 1, respectively. As an example, for , , , and

are

(41)

The subsets containing hypotheses with nonzero a priori
probability will be denoted as , , and in the rest of
the paper. These sets consists of the hypotheses with up to one
speech-to-nonspeech or nonspeech-to-speech transition and are
defined by matrices , and , respectively.

A. A Priori Probabilities

The a priori probabilities of the hypotheses can be calculated
by taking into account that there exist hypotheses that cor-
respond to nonspeech-to-speech and speech-to-nonspeech tran-
sitions in the set . Among them, assume a 0 hypoth-
esis for the central frame while the remaining assume a
1 hypothesis. For the computation of the a priori probabili-
ties of the hypotheses , a -frame signal containing speech
frames grouped in speech segments (speech blocks
larger than the length of the analysis window) is considered.
For large , the probability of the hypotheses with a single
speech-to-nonspeech transition or nonspeech-to-speech transi-
tion is easily obtained as the number of speech segments
in the data sample divided by the total number of frames ,
that is, the probability of speech blocks. For the
hypothesis , the number of cases is equal to
the number of frames minus the number of all the situa-
tions corresponding to transitional hypotheses assuming a 1 hy-
pothesis for the central frame in the analysis window, that is,

, where denotes the a
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TABLE I
PROBABILITY OF SPEECH FRAMES � AND SPEECH SEGMENTS �

FOR THE AURORA3 SPANISH DATABASE (“B”: SEQUENCE OF 10
ISOLATED DIGITS, “C”: SEQUENCE OF FOUR OR MORE CONNECTED

DIGITS, “I”: ONE DIGIT PER UTTERANCE)

priori probability of speech frames. In a similar way, for ,
. As a conclusion

(42)
Table I shows the probabilities and calculated for the

AURORA3 Spanish SpeechDat-Car database for the different
kinds of recordings.

B. Revised Statistical Test: RMO-LRT

Once the values of the a priori probabilities of the hypotheses
have been obtained, a revised statistical test can be defined. As
a starting point, the general statistical test defined in (17) but
particularized for the no null probability hypothesis in and

is considered

(43)

Although (16) and (18) can be used to evaluate the statistical
test defined by (43), this test requires to evaluate the
probabilities of the different global hypotheses (i.e. of
the set and of ). If (43) is approximated by taking
the maximum value of the hypotheses, a revised statistical test
can be defined as

(44)

and taking logarithms leads to

(45)

The properties of the algorithm are easier to analyze if the de-
cision criterion is defined in this way while this approximation
yields similar speech/nonspeech classification performance.

This test can be expressed in matrix form as follows. First,
we define the vectors consisting of the probabilities of the ob-
servations under the “0” and “1” hypothesis

(46)

(47)

and the column vectors and consisting of the logarithmic
a priori probabilities of the hypotheses in and , respec-
tively, are calculated using (42). Then, the column vectors
and defined by

(48)

(49)

are computed and the test is reduced to

(50)

As an example, for , the different matrices and vectors
are

(51)

(52)

(53)

(54)

(55)

(56)

(57)

The bias terms that appear in (50) due to and have
a small influence on the decision rule and can be omitted. The
maximum difference between the components of is between
the first and second row being its value . This
difference is 3.5 for typical values , , and

. On the other hand, for a white signal, the minimum
expected value of the difference between the corresponding el-
ements of and is with absolute
values of 49.4, 18.47, and 5.92 for dB, 3 and 6 dB, re-
spectively. Therefore, in most practical situations, the selection
of the maximum value of is fully conditioned by the
values of . The same situation occurs for the selection of the
maximum of . As a conclusion, these bias terms do
not have influence in the selection of the maximum in the sta-
tistical test for SNRs above 6 dB so that a simplified decision
rule can be defined

(58)
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Fig. 4. Evolution of the expected values of � and � as a function
of the number M of voice frames in the buffer. For values of N = 8 and
� = 10 dB.

Fig. 5. Evolution of � and � for a white signal in additive uncorre-
lated white noise with � = 10 dB and N = 8.

The selection of the scale factor makes the rule to have
a range comparable to the statistical tests and . The
decision threshold is used to tune the operating point of the
VAD. In order to enable the VAD to work in optimum conditions
for a wide range of SNRs, the threshold is made adaptive and
linear-dependent on the measured noise energy as in previous
works [6], [7].

C. Hangover Analysis of the Revised RMO-LRT

This section analyzes the decision rule defined above and
shows that the inconvenient hangover behavior of the MO-LRT
does not appear in the revised method. As a starting point, the
expected value of the decision function defined in (58) is de-
rived as a function of the number of speech frames present in
the buffer. If a similar situation to that shown in Fig. 1 is as-
sumed, the expected value of the decision rule, for a white signal
in white noise with SNR , is given by (see the Appendix)

(59)

Fig. 6. Comparison between the original MO-LRT and the revised MO-LRT
for VAD in clean conditions.

Fig. 7. Comparison between the original MO-LRT and the revised MO-LRT
for VAD in high-noise car environment.

Fig. 4 shows the expected value of the decision functions
and as a function of the number of speech observa-
tions in the buffer for a nonspeech-to-speech transition. Note
that, and
for , and that the threshold is achieved when

independently of the value of . As a conclu-
sion, the revised statistical test does not have an implicit hang-
over. This fact can be also corroborated in Fig. 5 where both

and decision rules are shown for the same con-
ditions in Fig. 3. The hangover is eliminated since now the
more probable hypothesis in the sets and are evaluated
leading to an adaptive averaging during nonspeech-to-speech
and speech-to-nonspeech transitions.

D. Examples

Fig. 6 shows the operation of the original MO-LRT VAD and
the revised one over an utterance of the Spanish SpeechDat-Car
database [9] in clean conditions (25-dB SNR). Note that the
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Fig. 8. Speech/nonspeech discrimination analysis as a function of the SNR. Results are averaged for all the noises considered in the AURORA 2 database.
(a) Speech hit-rate. (b) Nonspeech hit-rate.

new algorithm removes the saving period at the word beginnings
and endings being more accurate in such a low noise condition.
It is interesting to point out that the hangover of the original
MO-LRT was a result of extending the decision over a neigh-
borhood of the current frame. However, the new statistical test
exhibits the same smoothing process and reduced variance of the
decision variable with the benefit of being suitable for a more
effective hangover mechanism development. Under the noisiest
conditions (5-dB SNR), the new algorithm has a similar be-
havior to the previous VAD as shown in Fig. 7.

V. EXPERIMENTAL RESULTS

First, the proposed VAD was evaluated in terms of the ability
to discriminate between speech and nonspeech periods at
different noise scenarios and SNR levels. All the methods in-
cluding SO, MO, as well as the proposed RMO were evaluated
under the same conditions, that is, the same noise reduction
method based on the Ephraim and Malah estimator [8] was
used for estimating the a priori SNR and an adaptive threshold
update similar to that previously used in [6] and [7] enables
the effective tuning of the operating point for the wide range of
SNR conditions.

A. Speech/Nonspeech Discrimination in Noise

The first experiments focus on the comparison of the revised
method to the original MO-LRT VAD proposed in [6]. The AU-
RORA-2 database [10] was considered in the analysis where the
clean TIdigits database, consisting of sequences of up to seven
connected digits spoken by American English talkers, is used
as source speech, and a selection of eight different real-world
noises are artificially added at SNRs from 20 dB to 5 dB.
These noisy signals represent the most probable application sce-
narios for telecommunication terminals (suburban train, babble,
car, exhibition hall, restaurant, street, airport, and train station).
The clean TIdigits database was manually labeled for reference
and detection performance was assessed as a function of the
SNR in terms of the nonspeech hit-rate (HR0) and the speech
hit-rate (HR1) which are defined as the fraction of all actual

TABLE II
AVERAGE SPEECH/NONSPEECH HIT RATES FOR SNRs FROM CLEAN

CONDITIONS TO �5 dB. COMPARISON OF THE PROPOSED VAD TO

(a) STANDARDIZED AND (b) RECENTLY REPORTED VADs

nonspeech or speech frames that are correctly detected as non-
speech or speech frames, respectively. Fig. 8 compares the per-
formance of the revised VAD to MO-LRT [6], G.729, ETSI
AMR and Advanced Front-End (AFE) standardized VADs for
clean conditions and SNR levels ranging from 20 to 5 dB.
These results are averaged hit-rates for the entire set of noises.
Note that, results for the two VADs defined in the AFE standard
for DSR [3] for noise spectrum estimation in Wiener filtering
(WF) and nonspeech frame-dropping (FD) are also provided. It
is clearly shown that, while the revised method yields similar
speech detection accuracy when compared to MO-LRT [6], it
exhibits an improved accuracy in detecting nonspeech periods.
The improvements are especially important for SNRs ranging
from clean conditions to about 5 dB due to the implicit hang-
over removal. Finally, Table II summarizes the average hit-rates
for all the noises and SNR conditions of the previously analyzed
methods, and other VADs recently reported. It is shown that the
revised MO-LRT method yields a significant improvement in
HR0, and simular results in HR1 when compared to the original
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Fig. 9. ROC curves in quiet noise conditions (stopped car and engine running)
and close-talking microphone.

Fig. 10. ROC curves in high-noise conditions (high speed over a good road)
and distant-talking microphone.

MO-LRT VAD. Moreover, the proposed VAD scheme achieves
the best compromise among the different VADs tested. It yields
good results in detecting nonspeech periods and exhibits a very
slow performance degradation at unfavorable noise conditions
in speech detection.

B. Receiver Operating Characteristics Curves

The receiving operating characteristic (ROC) curves have
shown to be very effective for the evaluation of voice activity
detectors [7], [11]. These plots, which show the tradeoff be-
tween the error probabilities of speech and nonspeech detection
as the threshold varies, completely describe the VAD error
rate. In this analysis, the Spanish SpeechDat-Car (SDC)[9]
database was used. This database consists of recordings from
distant and close-talking microphones in car environments at
different driving conditions. For the computation of the speech
and nonspeech hit-rates, a semiautomatic “speech/nonspeech”
labeling process was previously conducted on the close-talking
microphone. Figs. 9 and 10 show the nonspeech hit rate (HR0)
versus the false alarm rate [11] (FAR0 1 HR1, where
HR1 denotes the speech hit rate) for recordings from the
distant microphone and under quiet and high noise conditions,

respectively. The revised method yields better results than the
previous method. These improvements are obtained by the
robustness of the decision rule and by removing the implicit
hangover found in the previous method and developing a more
suitable design. The proposed algorithm also outperforms a
number of standardized VAD methods including the ITU-T
G.729 [1], ETSI AMR (opts. 1 and 2) [2] and the ETSI AFE
[3] for DSR, as well as other recently published VAD methods
[4], [11]–[13]. The best results are obtained for while
increasing the number of observations over this value reports
no additional improvements. In particular, the proposed VAD
outperforms Sohn’s VAD [4], that assumes a single observation
in the decision rule and a HMM-based hangover.

It is worthwhile mentioning that the experiments described
above yield a first measure of the performance of the VAD.
Other measures of VAD performance that have been reported
are the clipping errors. These measures provide valuable in-
formation about the performance of the VAD and can be used
for optimizing its operation. Our analysis does not distinguish
between the frames that are being classified and assesses the
hit-rates and false alarm rates for a first performance evaluation
of the proposed VAD. On the other hand, the speech recognition
experiments conducted later on the AURORA databases will be
a direct measure of the quality of the VAD and the application
it was designed for. Clipping errors are evaluated indirectly by
the speech recognition system since there is a high probability
of a deletion error to occur when part of the word is lost after
frame-dropping.

C. Assessment of the VAD on an Automatic Speech Recognition
(ASR) System

Although the ROC analysis presented in the preceding sec-
tion is effective for the evaluation of a given speech/nonspeech
discrimination algorithm, the influence of the VAD in a speech
recognition system was also studied. Many authors claim that
VADs are well compared by evaluating speech recognition per-
formance [12] since nonefficient speech/nonspeech discrimina-
tion is an important performance degradation source for speech
recognition systems working in noisy environments [14]. There
are two clear motivations for that: 1) noise parameters such as
its spectrum are updated during nonspeech periods being the
speech enhancement system strongly influenced by the quality
of the noise estimation, and 2) nonspeech frame-dropping, a
frequently used technique in speech recognition to reduce the
number of insertion errors caused by the acoustic noise, is based
on the VAD decision and speech misclassification errors lead to
loss of speech and cause unrecoverable deletion errors.

1) Recognition System Setup: The reference framework
(Base) used in the experiments is the DSR front-end [15]
proposed by the ETSI STQ working group for the evaluation
of noise robust DSR feature extraction algorithms. The recog-
nition system is based on the Hidden Markov Model Toolkit
(HTK) software package [16]. The task consists on recognizing
connected digits which are modeled as whole word hidden
Markov models (HMMs) with the following parameters: 16
states per word, simple left-to-right models, mixture of three
Gaussians per state and diagonal covariance matrix, while
speech pause models consist of three states with a mixture
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Fig. 11. Speech recognition experiments. Front-end feature extraction.

of six Gaussians per state. The 39-parameter feature vector
consists of 12 cepstral coefficients (without the zero-order
cepstral coefficient), the logarithmic frame energy plus the
corresponding and coefficients.

Two training modes are defined for the experiments con-
ducted on the AURORA-2 database: 2) training on clean data
only (clean training), and 2) training on clean and noisy data
(multi-condition training). For the AURORA-3 SpeechDat-Car
databases, the so called well-matched (WM), medium-mis-
match (MM), and high-mismatch (HM) conditions are used.
These databases consist of recordings from the close-talking and
distant microphones. In the WM condition, both close-talking
and hands-free microphones are used for training and testing.
In the MM condition, both training and testing are performed
using the hands-free microphone recordings. In the HM
condition, training is done using close-talking microphone
material from all driving conditions, while testing is done
using hands-free microphone material taken for low-noise and
high-noise driving conditions. Finally, recognition performance
is assessed in terms of the word accuracy (WAcc) which takes
into account the number of substitution errors , deletion
errors , and insertion errors :

WAcc (60)

where is the total number of words in the testing database.
2) Comparative Results: The influence of the VAD deci-

sion on the performance of different feature extraction schemes
was studied. The first approach (shown in Fig. 11) incorporates
Wiener filtering to the Base system [15] as the noise suppression
method. The second feature extraction algorithm that was eval-
uated uses Wiener filtering and nonspeech frame dropping. The
noise reduction algorithm was implemented as described at the
first stage of the Wiener filtering noise reduction system found
in the advanced front-end AFE DSR standard [3]. The same fea-
ture extraction scheme was used for training and testing and no
other mismatch reduction techniques already present in the AFE
standard (waveform processing or blind equalization) were con-
sidered since they are not affected by the VAD decision and can
mask the impact of the VAD on the overall system performance.

Table III shows the AURORA-2 recognition results as a func-
tion of the SNR for speech recognition experiments based on
the G.729, AMR, AFE, MO-LRT, and the proposed VAD for
clean and multicondition train/test modes. The working points
of the VADs for the AURORA 2 database are shown in Fig. 8.
The results shown in the table are averaged WAcc values over
the three test sets of the AURORA-2 recognition experiments.
Notice that, particularly, for the recognition experiments based
on the AFE VADs, we have used the same configuration of the
standard [3] with different VADs for WF and FD. Only exact
speech periods are kept in the FD stage and, consequently, all
the frames classified by the VAD as nonspeech are discarded.
The revised VAD outperforms the original MO-LRT method in
both clean and multicondition training. The results show that
the proposed VAD also outperforms the standard G.729, AMR1,
AMR2, and AFE VADs when used for WF and also when the
VAD is used for removing nonspeech frames. Note that the VAD
decision is used in the WF stage for estimating the noise spec-
trum during nonspeech periods, and a good estimation of the
SNR is critical for an efficient application of the noise reduction
algorithm. In this way, the energy-based WF AFE VAD suffers
fast performance degradation in speech detection as shown in
Fig. 8, thus leading to numerous recognition errors and the cor-
responding increase of the word error rate. On the other hand,
FD is strongly influenced by the performance of the VAD, and
an efficient VAD for robust speech recognition needs a compro-
mise between speech and nonspeech detection accuracy. When
the VAD suffers a rapid performance degradation under severe
noise conditions, it loses too many speech frames and leads to
numerous deletion errors; if the VAD does not correctly identify
nonspeech periods, it causes numerous insertion errors and the
corresponding FD performance degradation. The best recogni-
tion performance is obtained when the revised MO-LRT VAD
is used for WF and FD. Note that FD yields better results for
the speech recognition system trained on clean speech. This is
motivated by the fact that models trained using clean speech
do not adequately model noise processes and normally cause
insertion errors during nonspeech periods. Thus, efficiently re-
moving speech pauses will lead to a significant reduction of this
error source. On the other hand, noise is well modeled when
models are trained using noisy speech, and the speech recogni-
tion system tends itself to reduce the number of insertion errors
in multicondition training.

Table IV compares the word accuracies averaged for clean
and multicondition training modes to the upper bound that could
be achieved when the recognition system benefits from using the
hand-labeled database for noise estimation and frame-dropping.
The comparison is extended to other recently published VAD
methods [4], [11]–[13]. These results show that the performance
of the proposed algorithm is above the original MO-LRT VAD
being the one that is closer to the ideal results obtained with the
reference database.

Table V shows the recognition performance for the Spanish
and Finnish SpeechDat-Car database when WF and FD are per-
formed on the base system [15]. Again, the VAD outperforms
the original MO-LRT and all the algorithms used for reference
yielding relevant improvements in speech recognition. Note that
these particular databases used in the AURORA 3 experiments



RAMÍREZ et al.: IMPROVED VAD USING CONTEXTUAL MULTIPLE HYPOTHESIS TESTING 2187

TABLE III
AVERAGE WORD ACCURACY FOR THE AURORA-2 DATABASE. (a) CLEAN TRAINING. (b) MULTICONDITION TRAINING

TABLE IV
AVERAGE WORD ACCURACY FOR CLEAN AND MULTICONDITION AURORA-2
TRAINING/TESTING EXPERIMENTS. COMPARISON TO: (a) STANDARD VADS.

(b) RECENTLY PUBLISHED VAD METHODS

have longer nonspeech periods than the AURORA 2 database,
and then the effectiveness of the VAD results are more impor-
tant for the speech recognition system.

When comparing the revised MO-LRT to the original
method, the improvements shown in Tables III–V are mainly

due to: 1) a reduction of the number of substitution errors when
the VAD is only used for WF-based speech enhancement and
2) a significant reduction of the number of insertion errors
(especially when the HMM models are trained using clean
speech) when the VAD is additionally used for nonspeech
frame-dropping. This reduction is just slightly prejudiced by a
corresponding increase in the number of deletions so that the
overall ASR performance is significantly improved.

VI. CONCLUSION

This paper revises a multiple observation likelihood ratio
test for voice activity detection in noisy environments. The
new approach not only evaluates the two hypotheses consisting
of all the observations to be speech or nonspeech but all the
possible hypotheses defined over the individual observations.
The method exhibits the same smoothing process and reduced
variance of the MO-LRT decision rule with the benefit of being
suitable for a more effective hangover mechanism development.
The experimental results showed a high speech/nonspeech dis-
crimination accuracy over a wide range of SNR conditions
and significant improvements over standardized VADs such as
ITU-T G.729, ETSI AMR, and ETSI AFE, as well as other
publicly available approaches.
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TABLE V
AVERAGE WORD ACCURACY (%) FOR THE AURORA-3 SPEECH DAT-CAR DATABASES: (a) SPANISH. (b) FINNISH

Fig. 12. Hypotheses considered for the derivation of the expected value of the
decision criterion. (a)M � N . (b)M > N .

APPENDIX

DERIVATION OF

This appendix shows the derivation of the expected value of
the decision criterion shown in (58). The expected value is de-
pendent on the a priori SNR and the position of the analysis
window. Thus, assuming the same scenario shown in Fig. 1,
where a nonspeech-to-speech transition is shown, the expected
value can be derived by evaluating the probability of the most
probable hypotheses in and for the detection problem
in Fig. 1. Fig. 12 shows the most probable hypotheses for the
two cases: (a) and (b) . According to (58),
The computation of the decision criterion is then reduced to
the evaluation of the likelihood ratio for the frame locations
with different partial hypothesis assumptions within the anal-
ysis window.

a) When , the two most probable hypotheses in
and shown in Fig. 12 differ in frame
locations so that the expected value can be expressed as:

(61)

By using (18)

(62)
and assuming white signal an noise models leads to

(63)

Note that, in this case, since corresponds
to nonspeech observations. Finally, substituting (63) in
(65)

(64)

b) When , in a similar way, the expected value of the
decision criterion is given by

(65)

that, under the same assumptions above, can be expressed
as

(66)
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Note that, now since corresponds to
speech observations.
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