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Abstract

Noise compensation methods for speech recognition provide
a cleaned version of the speech representation. Usually this
cleaned version is the expected value of the speech parameters
given the observed noisy speech and the noise statistic. A more
realistic representation should include the probability distribu-
tion of the cleaned speech instead of its expected value in or-
der to represent the uncertainty associated to the compensation
process due to the variability of the noise process. Recently,
the inclusion of the uncertainty in the recognition process has
been studied. Some approaches represent the uncertainty in the
HMM parameters values. Other approaches represent it in the
feature space. This second approach offers a much simpler sys-
tem implementation and lower computational cost.

In this paper we have developed a noise compensation tech-
nique that incorporates the variance of the cleaned speech into
the speech representation. The variance is estimated using a
Wiener filter during the speech feature enhancement process.
This way of including the uncertainty implies the modification
of the decoding rule. Experimental results using AURORA 2
database demonstrate a sustained improvement of the perfor-
mance in the recognition system (about 21% word error rate
reduction) when uncertainty is considered in the decoding rule.

1. Introduction
Noise significantly degrades the quality of speech and modifies
the statistics of its feature vectors. For this reason automatic
speech recognizers suffer a loss of accuracy. The goal of robust
speech recognition methods is to reduce the effect of the noise.
Some methods work in the feature space with the aim of find-
ing feature vectors that are less sensitive to the noise. Others
attempt to find transformations which adapt the noisy feature
vectors to the reference models. A third type of methods try to
adapt the models to the noise conditions.

The effect of the noise over the log-energy representation
consists on a non-linear transformation. The noise causes a
distortion in the representation space (the low energy region is
compressed to the noise level while the high level energies are
not altered) and moves the optimal decision border for classifi-
cation [1, 2]. If the noise level is constant (with zero variance) it
can be shown that the error probability (the overlap between the
clean speech and the noise distributions) is not affected by the
noise [1, 2]. In this case the problem consists on the estimation
of the noise energy level, with the highest possible precision,
in order to obtain the best estimation of the clean speech from
the noisy signal. Moreover, the performance of the recognizer
would not be affected by the noise if the compensation of the
features was performed with the exact estimation of the noise
level but, of course, this is an ideal situation.
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Figure 1: Mapping of the clean speech signal and contami-
nated speech signal in the log energy domain. The speech has
been contaminated using additive noise with a Gaussian distri-
bution; µn = 20dB; σn = 0.25, 0.50, 1.0 and 2 dB.

A more realistic situation is to consider that the variance of
the noise is not zero. In this case, a probability distribution (in
the log-filter-bank-energy domain) pn(nb) describes the noise
energy at the band b, and the probability distribution of the con-
taminated signal yb is a function of the clean speech energy xb,
and the noise distribution:

py(yb|xb) = pn(nb(yb))
∂nb

∂yb
(1)

where
nb(yb) = yb + log(1 − exp(xb − yb)) (2)

and
∂nb

∂yb
=

1

1 − exp(xb − yb)
(3)

Figure 1 shows a plot of the clean and contaminated signals
in the log energy domain. The contaminated one has been ob-
tained by adding Gaussian noise with mean µn = 20dB and
standard deviations 0.25, 0.50, 1.0 and 2.0dB, respectively.
Note that: (i) each value of the clean signal is transformed into
a probability distribution; (ii) when the energy of the clean sig-
nal is higher than the mean noise level, the noisy signal shows
a narrow distribution; as the clean signal energy approximates
the mean noise level, the noisy signal distribution gets broader
and, (iii) a loss of information is caused by the random nature
of the noise; this loss of information depends on the standard
deviation of the noise and the energy of the clean signal.
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Figure 2: Block Diagram of the feature extraction algorithm

The inclusion of the uncertainty has been recently studied
by different researchers [3, 4, 5, 6]. Some approaches represent
the uncertainty in the HMM parameters, and use the Bayesian
Predictive Classification (BPC) rule for decoding [3, 4]. Other
approaches represent the uncertainty in the feature space [5, 6].
The main advantage of working in the feature space is the sim-
plicity and its low computational cost. In both cases, results
have shown the utility of their inclusion in the recognition pro-
cess.

Following the second approach, there are two questions re-
lated with the idea of exploiting the uncertainty in the feature
space; the first one is how to estimate it, and the second one is
how to incorporate it into the recognizer. In this work we carry
out a preliminary study of the inclusion of the uncertainty in
the decoding process. We present a procedure to estimate the
mean and the variance of the cleaned signal using Wiener fil-
tering. With this approximation we have obtained an important
improvement of the performance in the recognition system.

2. Feature extraction algorithm
Classical feature enhancement algorithms as spectral subtrac-
tion, Wiener filtering or VTS (Vectorial Taylor Series) [8, 9,
10, 11] discard the uncertainty information. In this section we
propose a new technique, based on Wiener filtering, to update
mean and variance of the clean speech estimations. The goal is
to obtain a probability density function (which we assume to be
Gaussian) to describe the statistics of the enhanced speech and
use both, its mean value and variance, in the decoding process.

Figure 2 presents a block diagram of the feature extraction
algorithm. After the Wiener filter we obtain an estimation of the
mean value of the Gaussian and an estimation of the local SNR
which will be used to estimate the variance of the Gaussian.

2.1. Computing the expected values for the clean speech

Assuming that the speech and noise are uncorrelated signals,
the relation in the log-Filter-bank-energy domain between clean
speech, noisy speech and noise for each filter is:

yb = log(exp(xb) + exp(nb)) (4)

Wiener filtering [9, 10] provides an estimation of the clean
speech given the noisy speech and the average SNR:

x̂b = yb − log(1 + exp(nb − xb)) (5)

We have estimated the expected value, µx̂, as the average of the
clean speech estimations over three consecutive frames.

2.2. Computing variance of the enhanced speech

In our previous work [12], we developed an expression for
the expected value and variance of the estimator of the clean
speech using VTS noise compensation algorithm. As it was also

0 50 100 150 200
0

20

40

60
(a)

0 50 100 150 200
−4

−2

0

2
(b)

0 50 100 150 200
0

0.05

0.1

0.15

0.2

(c)

Figure 3: (a) logarithmic energies for a clean signal (dashed)
and a contaminated signal (5dB) (solid). (b) logarithmic ener-
gies of the signals after the Wiener filtering and the MVN (same
color code).(c) estimation of the variances of both signal.

pointed out in the paper, the expression of the estimator is simi-
lar to the one of the Wiener filter. From these results we assume
that the influence of the noise in the variance of the estimator is:

σx̂
2 =

(
1

1 + exp(SNR)

)2

σn
2 (6)

This equation depends on the variance of the noise (σn
2)

and the local signal to noise ratio (SNR). This expression is also
consistent with the noise effects discussed in Figure 1. That is,
for high SNR values, the variance of the estimator goes to zero;
for SNR= 0 , σx̂

2 = σn
2/4 and finally, when the SNR goes to

−∞, σx̂
2 = σn

2.

2.3. Cepstral mean and variance normalization of the ex-
pected features

After the computation of the expected values and variances of
the log energies at the output of a 23 channel Mel scaled filter
bank, a DCT transformation is applied to both, means and vari-
ances, so the number of parameters is reduced to 26 (13 means
and 13 variances); derivatives and accelerations are also cal-
culated. The cepstral coefficients are then normalized to have
zero mean and unity variance using cepstral Mean and Variance
Normalization algorithm (CMVN) as in [13]. Figure 3 shows
a graphic example for two signals; a clean speech signal (se-
lected from the clean training set of AURORA 2 database) and
the same speech signal contaminated with a noise at 5dB. In Fig
3 (a) logarithmic energies of clean and noisy sentences are rep-
resented. In Fig 3 (b) both signals have been enhanced with the
Wiener filtering and then normalized with the CMVN criterion.
In Fig 3 (c), we plot the estimated variances for the log ener-
gies. We can observe that for the clean signal case, the variance
is very low. These results are consistent because the signal has
not been contaminated and so there is no uncertainty. For the
contaminated signal, the variance changes with time: the non
speech regions correspond to higher variance values, and the
variance of the speech region depends on the local SNR.



3. Including uncertainty in the decoding
process

In the previous sections we have studied the uncertainty in the
enhanced speech signal due to the noise, and the convenience to
represent the clean speech estimation by a probability density
function instead of just the mean value. In this paper, we assume
a Gaussian distribution to represent the clean signal given the
noisy signal, and we have described a method to estimate its
parameters (mean and variance). Now the problem is how to
incorporate it into the decoding algorithm of the recognizer.

In the classical noise reduction methods for robust speech
recognition, the input of the recognizer is just the output of the
noise reduction algorithm. The recognition process relies on the
evaluation of a set of Gaussian mixture components evaluated at
the cleaned observations. The probability density of the cleaned
observation x̂ given the Gaussian k is:

p(x̂|k) = N (µx̂; µk, σk
2) (7)

If a Gaussian p(x) = N (x; µx, σx
2) is used to represented

the probability of x, instead of the expected value, Eq. (7) can
be modified:

p(x|k) =

∫
N (x; µx, σx

2)N (x; µk, σk
2)dx =

= N (µx; µk, σk
2 + σx

2) (8)

and therefore, including uncertainty on the recognition process
implies that the variance of the Gaussian is modified according
to Eq. (8). Note that according to Eq. (6), σx

2 depends on the
local SNR and the variance of the noise. Therefore, Eq. (7) can
be considered a particular case of Eq. (8) valid for high values
of local SNR or when the variance of the noise is very low.

4. Speech recognition experiments on the
AURORA 2 taks

Recognition experiments were conducted on the AURORA2
database. The AURORA task consists of connected digit
strings, artificially contaminated with various noise types at
multiple SNR values. In this database two training sets (clean
training and multi condition training) and three test sets (A, B
and C) are available. Noises used in test set A are the same that
are used in multi condition training. Noises used in B do not ap-
pear in the multi condition training set, and test set C includes
channel effects. In both types of recognition experiments (clean
and multi condition) the models are trained without including
uncertainty.

The baseline recognition system is based on HTK. The sys-
tem uses continuous density HMM models with 6 Gaussians
per state. There are 11 digits models with 16 states, one si-
lence model with 3 states and one inter-digit pause model with
one state. In order to enhance the noisy signal, a Wiener fil-
ter is used. The 12 basic MFCC parameters plus the log-energy
are computed by means of a standard feature extraction scheme.
This basic set of 13 parameters is increased with its correspond-
ing deltas and accelerations coefficients; finally, the whole set is
normalized using the mean and variance normalization criterion
(CMVN).

We have used Eq. 6 to estimate the variance of the enhanced
speech. In order to evaluate the SNR, the mean of the noise is
calculated from the first 10 frames of each sentence (100ms)
which are assumed to be silence. In this equation, σn is as-
sumed to be a constant value for all the recognition experiments

Table 1: Recognition results for AURORA 2 task, clean condi-
tion training, using the baseline (Wiener filtering, not including
uncertainty).

Baseline
setA setB setC Average

Clean 98.96 98.96 98.95 98.95
20dB 97.84 98.17 97.59 97.92
15dB 96.10 96.59 96.04 96.28
10dB 91.90 92.32 90.20 91.73
5dB 80.18 80.18 77.42 79.63
0dB 55.22 53.38 50.68 53.57

Average 84.25 84.13 82.38 83.83

Table 2: Recognition results for AURORA 2 task, clean condi-
tion training, including Wiener filtering and uncertainty.

With variances
setA setB setC Average

Clean 98.94 98.94 98.94 98.94
20dB 97.25 97.84 97.58 95.55
15dB 96.49 96.47 96.25 96.43
10dB 93.28 93.27 91.69 92.96
5dB 85.93 85.25 83.67 84.80
0dB 66.38 63.68 64.43 64.91

Average 87.87 87.10 86.72 87.33

and it was obtained from all the set of noises of the AURORA
2 multi condition training set.

We have fully characterized the statistical distribution of the
enhanced speech features (means and variances) and this distri-
bution could be used to perform speech recognition. For every
frame t, Eq. 8 is implemented in the conventional HMM de-
coder. The estimated variance σx̂

2 is added to all the Gaussian
of the pool, and the expected value µx̂ is used as the observation
vector. Some routines of the HTK software were adequately
modified to calculate Eq 8.

Table 1 shows recognition results for clean training experi-
ments using AURORA II with the previously described baseline
(i.e. including Wiener filtering but not the uncertainty of the
observations). The average word accuracy over all SNR from
0 to 20dB obtained is 83.83%. Table 2 presents recognition
results when uncertainty is included in the decoding process.
In this case the average word accuracy is 87.33%. The overall
improvement in the recognition rate corresponds to a reduction
of 21.64% in the word error rate (WER). Note that the effect
of including uncertainty is similar for the three test sets, A, B
and C, being the average WER reduced in all the cases. For
clean speech experiments the variance estimation is very low
and consistently, results are the same in both, when the uncer-
tainty is included and when it is not. For SNR of 20dB and
15dB recognition results are also very similar in both cases;
however when the SNR decreases the inclusion of the variance
estimations is more important. Word error rate reductions for
10dB, 5dB and 0dB are 14.87%, 25.38% and 24.42% respec-
tively.

In Table 3 the results with clean training condition and multi
condition training are compared. We observed that, in the first
case, the word of accuracy is increased when uncertainty is in-
cluded and in the second case it is almost the same for both
types of experiments. Obviously, in the multi condition case



Table 3: Average recognition results for clean condition train-
ing and multi condition training .

Clean Condition training
setA setB setC Average

Wiener filt. 84.25 84.13 82.38 83.83
Wiener filt. + uncert. 87.87 87.10 86.72 87.33

Multi Condition training
Wiener filt. 91.09 89.56 89.05 90.07

Wiener filt. + uncert. 91.13 89.66 89.31 90.18

Table 4: Recognition results for AURORA2 SDC Spanish.

WM MM HM
Wiener filt. 95.59 92.47 87.28

Wiener filt. + uncertainty 95.46 92.27 89.92

some information about the noise is included during training
and, for this reason, the inclusion of the uncertainty is less im-
portant.

Additionally, recognition experiments have been performed
using Spanish SDC-Aurora Database [15] which is a subset of
SpeechDat car database and contains only digit utterances. This
database was recorded in car environments under several driv-
ing condition using two microphones (close talking and hands
free). The experiments are defined with increasing level of mis-
match between train and test condition: well matched (WM),
medium mismatch (MM) and high mismatch (HM). Table 4
presents recognition results using this database. We observe
that recognition results are almost the same for WM and MM
experiments, but for HM experiments, the inclusion of the un-
certainty yields a reduction of the word error rate.

5. Summary and conclusions

In this work we have carried out a study of the inclusion of
the uncertainty in the decoding process for robust speech recog-
nition. If the variance of the noise is not zero the enhanced
speech is better described by a probability density function. As-
suming a Gaussian distribution, we have developed a statistical
feature extraction algorithm to estimate mean and variance of
this Gaussian. The algorithm is based on the Wiener filtering.
To calculate the expected value we have considered the average
of the clean speech estimations over three consecutive frames,
while to estimate the variance we have used the results obtained
in [11]. The recognition decision rule has been modified to in-
clude the statistical characterization of the cleaned speech.

The experimental evaluation using the AURORA 2
database demonstrates a 21.64% average word error rate reduc-
tion for all the noises and SNR conditions, when clean train
condition is performed. We have also reported results for multi
condition training, being the inclusion of the uncertainty less
important in this case.
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