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Abstract
Currently, new trends in wireless communications are demanding
reliable human-machine interaction in real-life environments. How-
ever, there are obstacles inhibiting automatic speech recognition
systems (ASR) working in noisy environments. The main difficulty
is the degradation suffered by ASR systems due to a mismatch be-
tween training and test conditions. This paper shows an improved
voice activity detector (VAD) combining noise reduction and sub-
band divergence estimation for improving the reliability of speech
recognizers operating in noisy environments. The algorithm for-
mulates the decision rule by measuring the divergence between the
subband spectral magnitude of speech and noise using the Kullback-
Leibler (KL) distance on the denoised signal. Experiments demon-
strate a sustained advantage over different VAD methods including
standard VADs such as G.729 and AMR, which are used as a refer-
ence, recently reported algorithms, and the VADs of the advanced
frontend (AFE) for distributed speech recognition (DSR).

1. Introduction
With the advent of wireless communications and the development
of modern robust speech processing technology, new speech ser-
vices are becoming a reality. However, many speech processing
systems working in real-life scenarios encounter serious implemen-
tation barriers that affect its reliable operation. An important ob-
stacle affecting most of the environments and applications is the
environmental noise and its harmful effect on the system perfor-
mance. Most of the noise compensation algorithms often require
to estimate the noise statistics by means of a precise voice activity
detector (VAD).

Speech/non-speech detection is an unsolved problem affecting
numerous applications. The classification task is not as trivial as
it appears and most of the VAD algorithms often fail in noisy en-
vironments. During the last decade different VAD methods have
been proposed for several applications including mobile commu-
nication services [1], real-time speech transmission on the Internet
[2] and noise reduction for digital hearing aids [3]. The detection
principles are fundamentally based on the signal subband energy
[4], its spectrum [5], [6], zero crossing rates (ZCR) [7], cepstral
coefficients [8] and Fuzzy rules [9]. It has been shown recently
that VAD robustness can be improved by measuring the Kullback-
Leibler (KL) divergence between the distributions of speech and
noise [10]. This paper presents several improvements over the pre-
vious work that has been shown to be very effective for noise sup-
pression and speech recognition in noisy environments. The main
contribution of this paper is the increased speech detection accuracy
in high noise conditions by using a noise reduction stage previous
to measuring the KL divergence on subbands. An exhaustive analy-
sis using the popular AURORA TIdigits and SpeechDat-Car (SDC)

databases provides an extensive performance evaluation and com-
parison to standard VADs such as ITU G.729 [7], GSM AMR [11]
and the ETSI advanced front-end (AFE) [12] for distributed speech
recognition (DSR), and other recently reported VADs [4, 5, 13, 14].

2. Background
In probability theory, the Kullback-Leibler (KL) divergence [15, 16]
is a quantity which measures the difference between two probability
distributions. Let two distributions have probability functions p1(x)
and p2(x). Then the relative entropy of p1(x) with respect to p2(x),
also called the KL distance, is defined by:

H(p1||p2) =

∫
p1(x) log

(
p1(x)

p2(x)

)
dx (1)

The KL distance is not a true metric because neither the symmetry
constraint nor the triangle inequality is satisfied. To make it sym-
metric, we in practice use the divergence distance:

Hs(p1||p2) = H(p1||p2) + H(p2||p1) (2)

On the other hand, the computation of the KL distance is a difficult
task and analytical solutions are not available except under some
special circumstances. Only within certain parametric families, say
the widely used Gaussian density, we have analytic expressions for
the KL distance [16]. If p1(x) and p2(x) are Gaussian distributions
with means µ1 and µ2 and standard deviations σ1 and σ2 , respec-
tively, the KL divergence can be easily computed by:
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Voice activity detection usually requires evaluating measures
between probabilistic distributions, among which the KL diver-
gence distance is of great interest.

3. Improved voice activity detection algorithm
Several improvements were considered for the proposed VAD. First,
a noise reduction block enables reformulating the VAD decision on
a denoised signal. Second, the KL divergence is measured on the
optimal number of subbands and not 23 Mel-scaled subbands.

3.1. Noise reduction block

The noisy speech signal x(n) is decomposed into 25-ms frames
with a 10-ms window shift. Let X(m, l) be the spectrum magnitude
for the m-th band (m = 0, 1, ..., NFFT−1) at frame l. The design
of the noise reduction block is based on Wiener filter (WF) theory
being its attenuation dependent on the signal-to-noise ratio (SNR)
of the processed signal. The noise reduction block is shown in Fig.
1. The VAD decision is taken on the de-noised signal using the
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Figure 1: Previous denoising stage for voice activity detection.

KL divergence between speech and noise on the resulting subband
energies. Noise reduction consists of:

i) Spectrum smoothing. The power spectrum is averaged over
two consecutive frames and two adjacent spectral bands.

ii) Noise estimation. The noise spectrum Ne(m, l) is updated
during non-speech periods by means of a 1st order IIR filter
on the smoothed spectrum Xs(m, l), that is, Ne(m, l) =
λNe(m, l − 1) + (1 − λ)Xs(m, l) where λ = 0.99.

iii) WF design. First, the clean signal S(m) is estimated by
spectral subtraction:

S(m, l) = γS′(m, l)+(1−γ) max(Xs(m, l)−Ne(m, l), 0)
(4)

where γ= 0.98. Then, the WF is designed as:

H(m, l) = η(m,l)
1+η(m,l)

; η(m, l) = max
[

S(m,l)
Ne(m)

, ηmin

]
(5)

and ηmin is selected so that the filter H yield a 20 dB maxi-
mum attenuation. S′(m, l), that is assumed to be zero at the
beginning of the process, is defined to be:

S′(m, l) = H(m, l)X(m, l) (6)

The filter H(m, l) is smoothed in order to eliminate rapid
changes between neighbor frequencies that may often cause
musical noise. Thus, the variance of the residual noise is re-
duced and consequently, the robustness when detecting non-
speech is enhanced. The smoothing is performed by truncat-
ing the impulsive response of the corresponding causal FIR
filter to 17 taps using a Hanning window.

iv) Frequency domain filtering. The smoother filter Ĥ is ap-
plied in the frequency domain to obtain the de-noised signal
Y (m, l) = Ĥ(m, l)X(m, l).

3.2. Subband Kullback-Leibler divergence measure

Once the input speech has been de-noised, the subband energies,
E(k, l), in K subbands (k = 0, 1, ..., K − 1) are computed for
each frame l by means of:

E(k, l) = K
NFFT

mk+1−1∑
m=mk

|Y (m, l)|2 ; mk =
⌊

NFFT
2K

k
⌋

(7)

Note that the process requires the noise suppression block to per-
form noise reduction on the block {X(m, l−N), X(m, l−N +1),
..., X(m, l − 1), X(m, l), X(m, l + 1), ..., X(m, l + N)} before

Figure 2: KL distance as a function δµ of and δσ.

the subband energies E(k, l) can be computed. This is carried out
as follows. During the initialization process, the noise suppression
algorithm is applied to the first 2N +1 frames and, in each iteration,
the (l + N + 1)-th frame is de-noised, so that Y (m, l + N + 1)
become available for the next iteration.

In order to evaluate the divergence between speech and silence,
the VAD processes the subband energies separately by means of a
(2N+1)-frame sliding window centered at the l − th frame:

W (k) = {E(k, j)}l+N
j=l−N (8)

which is subdivided as the lower and upper windows:

W
(k)
1 = {E(k, j)}l−1

j=l−N W
(k)
2 = {E(k, j)}l+N

j=l+1 (9)

Then, the means of the windows W
(k)
1 and W

(k)
2 , µ1(k) and µ2(k),

and their standard deviations, σ1(k) and σ2(k), are computed and
on-line averaged by a 1st order IIR smoothing filter:

µ̂i(k) = αµ̂i(k) + (1 − α)µi(k)
σ̂i(k) = ασ̂i(k) + (1 − α)σi(k) i = 1, 2

(10)

where α= 0.55 is a good selection for enabling an accurate selection
of word beginnings and endings. Finally, the speech/non-speech
KL distance between the distributions of speech (p(k)

S (x)) and noise

(p(k)
N (x)) is measured in K subbands using Eq. 3:
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where the index k has been omitted for convenience. Thus, The
k-band signal mean and standard deviation required by Eq. (11)
are estimated using the energy window W

(k)
2 as µS(k) = µ̂2(k)

and σS(k) = σ̂2(k), while noise statistics µN (k) and σN (k) are
updated during non-speech periods to track non stationary noise en-
vironments by:

µN (k) = βµN (k) + (1 − β) min {µ̂1(k), µ̂2(k)}
σN (k) = βσN (k) + (1 − β) min {σ̂1(k), σ̂2(k)} (12)

where β= 0.7 is the optimal value for updating the noise parameters.
Fig. 2 shows the behavior of the KL distance as a function of the

deviation in the mean δµ and the standard deviation ratio σS/σN .
It can be argued that the KL distance defined by Eq. 11 enables dis-
criminating speech and noise taking into account both shifts in the
mean and standard deviation. Finally, once the subband probabil-
ity distributions for speech and noise has been modelled and their



means and spectral deviations computed, the KL “distance” is cal-
culated through Eq. 4 and the decision rule is then formulated in
terms of the mean subband KL distance:

ρ̂S,N =
1

K

K−1∑
k=0

ρS,N (k) (13)

which is compared to a threshold η. Thus, if the average KL dis-
tance is greater than the threshold η, the actual frame is classified
as speech, otherwise it is classified as non-speech. The threshold η
and the window size are made adaptive as in [17] to the noise energy
E in order to select the optimum working point for different SNR
conditions. On the other hand, K = 4 subbands was found to be
the best compromise between VAD performance and complexity.

4. Performance evaluation
Several experiments were conducted to evaluate the proposed VAD.
The analysis is focused on the assessment of misclassification errors
and the influence of them on a speech recognition system.

4.1. Receiver operating characteristics (ROC) curves

The ROC curves are frequently used to completely describe the
VAD error rate. The AURORA subset of the original Spanish
SpeechDat-Car (SDC) database [18] was used in this analysis. This
database contains 4914 recordings using close-talking and distant
microphones from more than 160 speakers which are categorized
into three noisy conditions: quiet, low and highly noisy conditions,
with SNR values between 25dB, and 5dB. The non-speech hit rate
(HR0) and the false alarm rate (FAR0= 100-HR1) were determined
in each noise condition being the “actual” speech frames and “ac-
tual” speech pauses determined by hand-labelling the database on
the close-talking microphone. Fig. 3 shows the ROC curves for
recordings from the distant microphone and different SNR condi-
tions. The enhanced VAD yields higher detection accuracy when
compared to our previous work (KL FBE) [10] and works with
lower false alarm rate and higher speech pause hit rate when com-
pared to standards G.729 [7], AMR [11] and AFE [12](including
the VADs used for noise estimation and frame-dropping) and the
Sohn’s [5], Woo’s [14], Li’s [13] and Marzinzik’s [4] algorithms.

4.2. Automatic Speech Recognition Experiments

Non-efficient speech detection is an important degradation source
in speech recognition systems. There are two clear motivations: i)
Most of the speech enhancement algorithms make use of a VAD
for estimating the noise statistics. Therefore, the effectiveness of
the noise compensation algorithms is strongly affected by the VAD
accuracy. ii) Frame-dropping (FD) is a frequently used technique to
reduce the number of insertion errors. Since it is based on the VAD,
speech frames incorrectly labelled as silence cause unrecoverable
deletion errors, and silence frames incorrectly labelled as speech
could increase the insertion errors.

The influence of the VAD decision on a speech recognition
system was assessed by incorporating Wiener filtering (WF) and
non-speech frame-dropping (FD) to the base system [19] and con-
sidering different VAD methods. Table 1 shows the average word
accuracy (WAcc) for the AURORA 2 database for clean and multi-
condition training/test modes. The proposed algorithm outperforms
the VADs used for reference being the improvements more impor-
tant when the VAD is also used for FD. It is also the closest one to
the “ideal” hand-labelled speech recognition performance. The im-
provements are more important over G.729 and AMR1 when WF
and FD are applied. Table 2 shows the recognition performance
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Figure 3: ROC curves for different noise conditions: (a) Stopped
car, engine running (12 dB). (b) High speed, good road (5 dB).

averaged for the SDC databases for the different training/test mis-
match conditions (HM, high mismatch, MM: medium mismatch
and WM: well matched). The proposed VAD outperforms all the
algorithms used for reference yielding relevant improvements in
speech recognition for both the AURORA 2 and SDC databases.
Note that the SDC databases have longer non-speech periods than
the AURORA 2 database and then, the effectiveness of the VAD is
more important for the speech recognition performance. This fact
can be clearly shown when comparing the proposed VAD to Marz-
inzik’s VAD. The word accuracy of both VADs is quite similar for
the AURORA 2 task. However, the proposed VAD yields a signif-
icant performance improvement for the SDC databases. Finally, in
order to compare our VAD to the best available results, the VADs
of the AFE standard (including both the WF and FD VADs) were
replaced by the proposed VAD and the AURORA recognition ex-
periments were conducted. The results are shown in Table 3 for the
recognition experiments conducted on the SDC databases. As a re-
sult, the average word error rate is reduced from 10.83% to 10.30%.

5. Conclusion

This paper has shown an improved VAD algorithm for increasing
speech detection robustness in noisy environments and the perfor-
mance of speech recognition systems. The VAD is based on the
estimation of the KL divergence between speech and noise. Two
improvements have been considered over the base system. The first
of them is the selection of the optimal number of subbands. The sec-
ond one reduces misclassification errors in high noisy environments
by using a noise reduction stage before the KL divergence estima-
tion. With this and other innovations the proposed VAD has demon-
strated an enhanced ability to discriminate speech and silences and
to be well suited for robust speech recognition.



Table 1: Recognition results for the AURORA 2 database (average WAcc for clean and multicondition training/testing).

Standard VADs Other reported VAD methods
KL Hand- labelling

G.729 AMR1 AMR2 AFE Woo Li Marzinzik Sohn
WF 66.19 74.97 83.37 81.57 83.64 77.43 84.02 83.89 83.93 84.69
WF+FD 70.32 74.29 82.89 83.29 81.09 82.11 85.23 83.80 85.42 86.86

Table 2: Recognition results for the SDC databases (average WAcc for the Finnish, Spanish and German databases).

Train/test
Standard VADs Other reported VAD methods

KL Base (No VAD)
G.729 AMR1 AMR2 AFE Sohn Woo Li Marzinzik

HM 67.93 68.59 82.58 72.53 80.52 74.95 71.80 80.52 83.54 55.08
MM 69.78 80.22 84.78 86.03 85.24 78.73 67.98 83.32 84.66 71.79
WM 88.15 93.19 94.66 94.19 94.38 91.25 71.80 93.20 94.89 92.29
Average 75.29 79.04 87.34 84.25 86.71 81.65 76.27 84.29 87.70 73.05

Table 3: Recognition results (word error rates).
AFE

Finnish Spanish German Danish Average
WM 3.96 3.39 4.87 6.02 4.56
MM 19.49 6.21 10.40 22.49 14.65
HM 14.77 9.23 8.70 20.39 13.27
Overall 12.74 6.28 7.99 16.30 10.83

AFE+KL
WM 4.29 2.94 4.65 5.87 4.44
MM 22.30 6.76 10.76 22.07 15.47
HM 10.28 7.49 8.88 17.33 11.00
Overall 12.29 5.73 8.10 15.09 10.30
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