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ABSTRACT
This paper shows a revised statistical test for voice activity detec-
tion in noise adverse environments. The method is based on a re-
vised contextual likelihood ratio test (LRT) defined over a multiple
observation window. The new approach not only evaluates the two
hypothesis consisting on all the observations to be speech or non-
speech but all the possible hypothesis defined over the individual
observations. The implicit hangover mechanism artificially added
by the original method was not found in the revised method so its
design can be further improved. With these and other innovations
the proposed method showed a high speech/non-speech discrimina-
tion over a wide range of SNR conditions. The experimental frame-
work showed that the revised method yields significant improve-
ments over standardized VADs for discontinuous voice transmission
and distributed speech recognition, as well as over recently reported
methods.

Index Terms— Speech processing, speech enhancement, speech
analysis.

1. INTRODUCTION

Emerging applications in the field of speech processing are demand-
ing increasing levels of performance in noise adverse environments.
Examples of such systems are the new voice services including dis-
continuous speech transmission [1, 2] or distributed speech recog-
nition (DSR) over wireless and IP networks [3]. These systems of-
ten require a noise reduction scheme working in combination with
a precise voice activity detector (VAD) in order to compensate its
harmful effect on the speech signal. During the last decade numer-
ous researchers have studied different strategies for detecting speech
in noise and the influence of the VAD on the performance of speech
processing systems. Sohn et al. [4] proposed a robust VAD algo-
rithm based on a statistical likelihood ratio test (LRT) involving a
single observation vector. Later, Cho et al [5] suggested an improve-
ment based on a smoothed LRT. Most VADs in use today normally
consider hangover algorithms based on empirical models to smooth
the VAD decision. It has been shown recently that incorporating
contextual information in a multiple observation LRT (MO-LRT) [6]
reports benefits for speech/pause discrimination in high noise envi-
ronments. This paper analyzes this method and shows a new LRT
VAD that extends the number of hypothesis on the individual multi-
ple observation that are tested.

2. MULTIPLE OBSERVATION LIKELIHOOD RATIO TEST

In a two-hypothesis test, the optimal decision rule minimizing the
error probability is the Bayes classifier. Given an observation vector
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ỹ to be classified, the problem is reduced to selecting the class (G0 or
G1) with the largest posterior probability P (Gi|ỹ). From the Bayes
rule, a likelihood ratio test (LRT) can be defined as:

L(ỹ) = p(ỹ|G1)

p(ỹ|G0)

G1

>
<
G0

P (G0)

P (G1)
(1)

where the observation vector is classified as G1 if the likelihood ra-
tio L(ỹ) is greater than the ratio P (G0)/P (G1) between the a priori
class probabilities, otherwise it is classified as G0. Frequently, there
is a need to shift the operating point of the classifier in favor of one
of the two classes so that L(ỹ) is compared to a threshold η repre-
senting the separation between the classes.

A LRT for detecting the presence of speech in a noisy signal
based on a Gaussian model was proposed by Sohn et al. [4] and sev-
eral improvements [5, 7] have been considered to improve its perfor-
mance. Among them, the multiple observation LRT (MO-LRT) [6]
considers not just a single observation vector ỹt measured at a frame
t, but also an N -frame neighborhood {ỹt−N , ..., ỹt, ..., ỹt+N}:

�(ỹt−N , ...ỹt+N ) =
pyt−N ,...,yt+N |G1(ỹt−N , ..., ỹt+N |G1)

pyt−N ,...,yt+N |G0(ỹt−N , ..., ỹt+N |G0)
(2)

This test involves the evaluation of an N-th order LRT incorpo-
rating contextual information to the decision rule and exhibits signif-
icant improvements in speech/pause discrimination over the original
LRT proposed by Sohn [4]. This smoothed test introduces a non-
controllable hangover mechanism that needs to be studied and dis-
cussed. This paper reformulates the MO-LRT previously proposed
in [6] and shows a new and effective LRT yielding high speech/pause
discrimination accuracy. The hangover is then eliminated and not af-
fected by the selection of the number of frames involved in the LRT.

3. REVISED MO-LRT

It is interesting to analyze the hypothesis that are being tested in the
evaluation of the previous MO-LRT VAD. Note that the decision is
made in favor of one of the two hypothesis:

G1 : ŷl = ŝl + n̂l

G0 : ŷl = ŝl
(3)

for l = t−N, ..., t, ..., t+N . The VAD operates on a frame by frame
basis and assigns a class to the central frame at time t. In this way,
the test evaluates the probability that “all” the observations in theN -
frame neighborhood of the central frame to be non-speech or speech.
This is the reason to revise the method in order to evaluate not just
the two previous hypothesis G0 and G1 but also other hypothesis
that could be equally possible.
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Let ℵ = {Hm,m = 1, 2, ..., 22N+1} be the set of all the pos-
sible hypothesis considering all the individual observations to be
speech or non-speech in the multiple observation vector {ỹt−N , ...,

ỹt, ..., ỹt+N} that is reindexed as Ŷ= {ŷ1, ..., ŷN+1, ..., ŷ2N+1} for
convenience of the presentation. Each hypothesisHm can be defined
in terms of a binary integer representation:

m =

2N+1X
k=1

2bk (4)

where bk define if the observation k is non-speech (bk = 0) or
speech (bk = 1):

bk = 1 : ŷk = ŝk + n̂k

bk = 0 : ŷk = ŝk k = 1, 2, ..., N + 1
(5)

Thus, each hypothesis Hm consists of 2N+1 individual hypothesis
involving the 2N+1 observations. The classification problem is then
reformulated as selecting the class i with the higher posterior prob-
ability P (Hi|Ŷ) and assigning speech (G1) or non-speech (G0) to
the current frame depending on the bit bN+1 associated toHi.

If the set ℵ of all the possible hypothesis is splitted depending
on the value of the central frame bit bN+1 as:

M1 = {Hm ∈ ℵ : bN+1 = 1}
M0 = {Hm ∈ ℵ : bN+1 = 0} (6)

the posterior probabilities are defined to be:

p(G1|Ŷ) =Pm∈M1
p(Hm|Ŷ)

p(G0|Ŷ) =Pm∈M0
p(Hm|Ŷ) (7)

and

P (G1) =
P

m∈M1
P (Hm)

P (G0) =
P

m∈M0
P (Hm)

(8)

Using the Bayes rule:

p(G1|Ŷ) = 1

P (Ŷ)

P
m∈M1

P (Hm)p(Ŷ|Hm)

p(G0|Ŷ) = 1

P (Ŷ)

P
m∈M0

P (Hm)p(Ŷ|Hm)
(9)

a revised LRT can be defined as:

Λ =
p(G1|Ŷ)
p(G0|Ŷ) =

P
m∈M1

P (Hm)p(Ŷ|Hm)
P

m∈M0
P (Hm)p(Ŷ|Hm)

(10)

An effective approximation to the statistical test described above
is to replace the summation by the maximum value of the probability
of the hypothesis inM1 andM0:

Λ∗ =
maxm∈M1 p(Ŷ|Hm)

maxm∈M0 p(Ŷ|Hm)
(11)

By taking logarithms this test is expressed in a more compact form:

log Λ∗ = max
m∈M1

lm − max
m∈M0

lm (12)

where:

lm =

2N+1X
k=1

log p(ŷk|bk) (13)

If we restrict the number of possible hypothesis by removing those
corresponding to more than one speech to non-speech or non-speech

to speech transition in the N -frame neighborhood, the test can be
rewritten in matrix form:

L = KB1 + (I−K)B0 (14)

where:

L = [l1, l2, ..., l2N+1]
T

B0 = [log p(ŷ1|0), ..., log p(ŷ2N+1|0)]T
B1 = [log p(ŷ1|1), ..., log p(ŷ2N+1|1)]T

(15)

andK is the Hankel matrix:

K =

2
66666666666664

0 0 ... 0 ... 0 0
0 0 ... 0 ... 0 1
0 0 ... 0 ... 1 1
... ... ... ... ... ... ...
0 1 ... 1 ... 1 1
1 1 ... 1 ... 1 1
1 1 ... 1 ... 1 0

1 1 ... 0 ... 0 0
1 0 ... 0 ... 0 0

3
77777777777775

(16)

Moreover, if the matrix K is splitted into two submatrices K0 and
K1 by extracting fromK the rows with a central 0 or 1, respectively,
the test is easily reduced to:

log Λ∗ = maxL1 − maxL0 (17)

where:

L1 = K1B1 + (I−K1)B0

L0 = K0B1 + (I−K0)B0
(18)

Note thatK0 = I−K1 and equation 18 is reduced to:

L1 = K1B1 + (I−K1)B0

L0 = (I−K1)B1 +K1B0
(19)

As an example, for N = 1, the matrices K, K0 and K1 are
defined to be:

K =

2
666664

0 0 0
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0

3
777775

K1 =

2
4

1 1 1
1 1 0
0 1 1

3
5

K0 =

2
4

0 0 0
0 0 1
1 0 0

3
5

(20)

and L1 and L0 are computed by:
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Fig. 1. Comparison between the original MO-LRT and the revised
MO-LRT for VAD in clean conditions.
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(21)

The algorithm for voice activity detection is based on a compar-
ison of a likelihood ratio to a given threshold η:

log Λ∗
G1

>
<
G0

η (22)

For the computation of the logarithmic probability vectors B0 and
B1, an adequate statistical model needs to be selected. In this work,
the discrete Fourier transform (DFT) coefficients of the clean speech
(Sj) and the noise (Nj) are assumed to be asymptotically indepen-
dent Gaussian random variables:

p(ŷ|G0) =
QJ−1

j=0
1

πλN (j)
exp{− |Yj |2

λN (j)
}

p(ŷ|G1) =
QJ−1

j=0
1

π[λN (j)+λS(j)]
exp{− |Yj |2

λN (j)+λS(j)
}

(23)

where Yj represents the noisy speech DFT coefficients and λN (j)
and λS(j) denote the variances of Nj and Sj , respectively. Thus,
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Fig. 2. Comparison between the original MO-LRT and the revised
MO-LRT for VAD in high noise car environment.

the logarithmic probabilities found in B0 and B1 can be computed
as in [6] through the “a priori” and “a posteriori” SNRs defined by:

γj =
|Yj |2
λN (j)

ξj =
λS(j)

λN (j)
(24)

that are estimated using the Ephraim and Malah minimum mean-
square error (MMSE) estimator [8].

The algorithm is adaptive and suitable for non-stationary noise
environments since the statistical properties are updated when the
frame is classified as a non-speech frame. In this way, the variance
of the noise λN is updated as:

λN (j) = αλN (j) + (1 − α)|Yj |2 (25)

Fig. 1 shows the operation of the original MO-LRT VAD and the
revised one over an utterance of the Spanish SpeechDatCar database
[9] in clean conditions (25 dB SNR). Note that the new algorithm
removes the saving period at the word beginnings and endings be-
ing more accurate in such a low noise conditions. It is interesting
to point out that the hangover of the original MO-LRT was a result
of extending the decision over a neighborhood of the current frame.
However, the new statistical test exhibits the same smoothing pro-
cess and reduced variance of the decision variable with the benefit
of being suitable for a more effective hangover mechanism develop-
ment. Under the noisiest conditions (5 dB SNR), the new algorithm
has a similar behavior to the previous VAD as shown in figure 2.

4. EXPERIMENTAL RESULTS

The ROC (receiving operating characteristic) curves have shown to
be very effective for the evaluation of voice activity detectors [10,
11]. These plots, which show the trade-off between the error proba-
bilities of speech and non-speech detection as the threshold η varies,
completely describe the VAD error rate. In this analysis, the Spanish
SpeechDat-Car (SDC)[9] database was used. This database consists
of recordings from distant and close-talking microphones in car envi-
ronments at different driving conditions. For the computation of the
speech and non-speech distributions, a semiautomatic “speech/non-
speech” labeling process was conducted on the close talking micro-
phone. Figs. 3 and 4 show the non-speech hit rate (HR0) versus the
false alarm rate (FAR0=1-HR1, where HR1 denotes the speech hit
rate) for recordings from the distant microphone and under quiet and
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Fig. 4. ROC curves in high noise conditions (high speed over a good
road) and distant talking microphone.

high noise conditions, respectively. The revised method yields better
results than the previous method. These improvements are obtained
by the robustness of the decision rule and by removing the implicit
hangover found in the previous method and developing a more suit-
able design. The proposed algorithm also outperforms a number of
standardized VAD methods including the ITU-T G.729 [1], ETSI
AMR (opts. 1 and 2) [2] and the ETSI Advanced Front-End (AFE)
[3] for distributed speech recognition (DSR), as well as other re-
cently published VAD methods [4, 12, 13, 11]. The best results are
obtained forN= 8 while increasing the number of observations over
this value reports no additional improvements. In particular, the pro-
posed VAD outperforms the Sohn’s VAD [4], that assumes a single
observation in the decision rule and a HMM-based hangover.

5. CONCLUSIONS

This paper revises a multiple observation likelihood ratio test for
voice activity detection in noisy environments. The new approach
not only evaluates the two hypothesis consisting on all the obser-
vations to be speech or non-speech, but all the possible hypothesis
defined over the individual observations. The revised statistical test

exhibits the same smoothing process and reduced variance of the
decision variable with the benefit of being suitable for a more effec-
tive hangover mechanism development. The experimental results
showed a high speech/non-speech discrimination accuracy over a
wide range of SNR conditions and significant improvements over
standardized VADs such as ITU-T G.729, ETSI AMR and ETSI
AFE, as well as other publicly available approaches.
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