
Improved feature extraction based on
and nonlinear feature no
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Abstract

This paper is mainly focused on showing experimental re-
sults of a feature extraction algorithm that combines spec-
tral noise reduction and nonlinear feature normalization.
The successfulness of this approach has been shown in
a previous work, and in this one, we present several im-
provements that result in a performance comparable to
that of the recently approved AFE for DSR. Noise reduc-
tion is now based on a Wiener filter instead of spectral
subtraction. The voice activity detection based on the
full-band energy has been replaced with a new one using
spectral information. Relative improvements of 24.81%
and 17.50% over our previous system are obtained for
AURORA 2 and 3 respectively. Results for AURORA 2
are not as good as those for the AFE, but for AURORA 3
a relative improvement of 5.27% is obtained.

1. Introduction

In a previous work [1] we have presented a feature ex-
traction algorithm that combines spectral noise reduction
and nonlinear feature normalization. In this paper, we
present several improvements of the system that yield a
performance comparable to that of the AFE [2]. The
block diagram of the system is shown in Fig. 1. Main
blocks are: voice activity detection (VAD), noise reduc-
tion (WF), frame-dropping (FD) and feature normaliza-
tion (FN).

Voice activity detection is used for the estimation of
the mean noise spectrum in the spectral noise reduction
block, and for the frame-dropping algorithm at the back-
end. The performance of the whole system is greatly af-
fected by this block and therefore, an accurate VAD is
needed for high performance. The previous VAD, based
on the full-band energy, has been replaced by a more ac-
curate one, which uses detailed spectral information.

Spectral noise reduction has also been improved. In
the previous version of the system it was based on a sim-
ple spectral subtraction algorithm, now relies on a more
sophisticated Wiener-filtering algorithm (WF). The im-
plementation of the noise reduction filter is based on that
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Figure 1: Block diagram of the system

sed for the AFE.
he feature normalization algorithm, previously per-
d in a sentence-by-sentence basis, has been re-

d by a segmental version, which provides effective
alization with delays of about half a second. The
rmance of the segmental version is comparable to
f the batch version.
he organization of the paper is as follows. In section
nt-end processing is described, including VAD and
er filter implementation details. In section 3, we de-

the segmental version of the feature normalization
ithm. Experimental results are shown in section 4,
n section 5, we summarize the conclusions of this
.

2. Front-End processing

LTSE VAD Algorithm

ront-end uses a new VAD that reports important
vements in speech/pause detection accuracy in low
noisy conditions. The proposed algorithm is based
e estimation of the averaged maximum SNR over a



neighborhood of the actual frame, and can be described
as follows.

During a short initialization period, the mean noise
spectrum N(k) (k= 0, 1, ..., NFFT-1) is estimated. The
input utterance is decomposed into overlapped frames be-
ing their spectrum, namely X(k, n), processed by means
of a (2N + 1)-frame window. By defining the so called
long-term spectral envelope (LTSE) as

LTSE(k) = max {X(k, n + l)}
l=+N

l=−N (1)

where n is the actual frame and k= 0, 1, ..., NFFT-1.
The decision rule is formulated in terms of the long-

term spectral divergence (LTSD) calculated as the devia-
tion of the LTSE respect to the mean noise spectrum

LTSD = 10 log10

(
1

NFFT

NFFT−1∑
k=0

LTSE2(k)

N2(k)

)

(2)
which is compared to an adaptive threshold γ.

The threshold is fixed during the initialization of the
VAD according to the observed noise energy E. By defin-
ing optimal thresholds γ0 and γ1 for clean and high noise
conditions, respectively, a linear adjust is used. The op-
timum threshold γ is calculated as a function of the esti-
mated noise energy E

γ =




γ0 E ≤ E0
γ0−γ1

E0−E1

E + γ0 −
γ0−γ1

1−
E1

E0

E0 < E < E1

γ1 E ≥ E1

(3)

where E0 and E1 are the estimated average noise energy
for clean and high noise conditions, respectively.

The VAD is defined to be adaptive to time-varying
noise environments with the following recursion for up-
dating the noise spectrum during non-speech periods

N(k) = αN(k) + (1 − α)NK(k) (4)

where NK is the average spectrum magnitude over a K-
frame neighborhood

NK(k) =
1

2K + 1

K∑
l=−K

X(k, n − l) (5)

and k= 0, 1, ..., NFFT/2.
Finally, a hangover was found to be beneficial to

maintain a high accuracy detecting speech periods at low
SNR levels. Thus, the LTSE VAD yields an excellent
classification of speech and pause periods. An example
of the operation of the LTSE VAD on an utterance of the
Spanish SpeechDat-Car database is shown in Fig. 2.

When compared to the previously published VAD at
ICSLP 2002, this new VAD leads to a more efficient ap-
plication of the noise suppression and frame-dropping al-
gorithms. As an example, for the utterances recorded
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e 2: VAD output for an utterance of the Span-
eechDat-Car database (recording conditions: high
, good road, distant microphone).

the distant microphone under high noisy conditions
Spanish SpeechDat-Car database, the LTSD-based

correctly detects a 93.71% of the real speech frames
our previously proposed quantile-based VAD only

ted 85.82%. Further improvements are obtained
the SNR becomes lower since the noise rapidly de-
s the speech/pause detection accuracy of VAD’s that
he full-band energy as feature for the formulation of
cision rule.

or the experiments conducted on the AURORA-2
ase, the 8 kHz input signal sample was decom-
into overlapping frames with a 10-ms shift. A 12-
long-term window and NFFT= 256 was found

good choices for the noise conditions being stud-
ptimal detection threshold γ0= 5 dB and γ1= 1.5

ere determined for clean and noisy conditions, re-
ively, while the threshold calibration curve was de-
between E0= 30 dB (low noise energy) and E1=
(high noise energy). The hangover mechanism de-

he speech to non-speech VAD transition during 8
s while it is deactivated when the LTSD exceeds
. For the noise update algorithm a forgetting factor
5, and a 3-frame neighborhood (K=3) are used.

Spectral noise reduction

iener filter is designed in two steps as described in
nly the first stage filter without mel-scale warping

d in this work. Temporal and frequency smoothing
lied to the magnitude spectrum of noisy frames, and
aximum attenuation is fixed at 22dB. A FIR filter
ived from the frequency domain design and further
thed by truncation of its impulse response with a
ing window of length 17.
oise spectrum estimation is performed using a re-



cursive first order filter with a forgetting factor λ = 0.99.
The update is performed for frames labeled as non-speech
by the VAD.

3. Back-end processing

Features obtained by the front-end are further processed
at the back-end. First, frame dropping is applied to re-
move long speech pauses from the input feature stream.
The algorithm simply discards all input frames labeled as
non-speech by the VAD.

After frame dropping, feature normalization is per-
formed. It is based on a nonlinear transformation that
maps the estimated probability distribution of each cep-
stral coefficient into a Gaussian reference one [1, 3, 4].
The transformation is obtained by matching the cumu-
lative distributions functions (CDF) of distorted features
Cy with the reference Gaussian distribution Cx

Cx(x) = Cy(y) (6)

x = C−1
x (Cy(y)) (7)

In previous works [1, 3], we have approximated this
transformation using the cumulative histogram of each
distorted feature to obtain an estimation of its CDF. In this
work, we have replaced this estimation with a more suit-
able one for a segmental implementation. The new ap-
proach is formulated in terms of the relation between or-
der statistics of a data set and the corresponding CDF [5].
This is a very efficient approach that has been success-
fully applied to feature normalization in speaker recogni-
tion systems [6, 7].

Let Yt be a temporal buffer for a given distorted fea-
ture

Yt = {y
−T , . . . , yt, . . . , yT } (8)

The order statistics of this data set can be obtained by
simply rearranging the data in ascending order

y(1) ≤ y(r) ≤ · · · ≤ y(r) ≤ . . . y(2T+1) (9)

An asymptotically unbiased point estimation of the CDF
can be obtained as

Ĉ(y(r)) =
r − 0.5

2T + 1
∀ r = 1, . . . , 2T + 1 (10)

Using (10) and (7), an estimation of the transformed
value of yt can be obtained as

x̂t = C−1
x (Ĉ(yt)) = C−1

x

(
r(yt) − 0.5

2T + 1

)
(11)

where r(yt) denotes the rank of yt (i.e. the index r of
the order statistics that corresponds to the value yt). This
value can be obtained by counting the number of values
less or equal than yt in the temporal buffer Yt. Note that
as Cx and T are fixed, if the values

G[r] = C−1
x

(
r − 0.5

2T + 1

)
∀ r = 1, . . . , 2T + 1 (12)
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Set A Set B Set C Overall

Multi 16,47% 21,79% 20,70% 19,44%
Clean 30,46% 30,59% 28,78% 30,18%
Average 23,46% 26,19% 24,74% 24,81%

Aurora 2 Relative Improvement

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �

Finnish Spanish German Danish Average
 (x40%) 23,62% 6,57% 19,52% 16,57%
(x35%) 20,12% -8,98% 15,34% 8,83%
 (x25%) 52,81% 21,36% 19,19% 31,12%
all 29,69% 4,82% 17,97% 17,50%

Aurora 3 Relative Improvement

le 1: Relative improvements over the previous system

bulated in advance, the transformed value (11) can
tained by simply indexing the table G.

his algorithm is much more efficient than HEQ [3]
se only 2T comparisons are needed to obtain the
ormed value of a given feature. Furthermore, exper-
al results have shown that its performance is almost
me achieved with HEQ.

4. Experimental results

rimental results for the proposed system have been
ed for two different versions of the new feature

alization algorithm. Both versions have been evalu-
sing re-endpointed versions of the databases as de-
d in [1].

he first version is a batch one that uses all the fea-
of a given input utterance to perform the normaliza-
Comparative results for this version are summarized
le 1, where relative improvements are computed us-
ur previous results [1] as the baseline. The higher
rmance of the new front-end is mainly due to the
effective spectral noise reduction and the better per-
nce of the new VAD.

fficial results with respect to the AFE baseline are
n in Tables 2 and 3. It is clear that for AURORA 2,
s are not as good as those obtained for the AFE are,
ly small differences can be observed. The averaged
error rate is only 0.32% higher and the relative per-
nce is only a 9.72% worse when compared to AFE.

he AURORA 3 databases, the performance of the
ystem is better than the corresponding AFE base-
The new system performs better in well-match and
m-mismatch conditions, and the averaged relative
vement is 5.27%.

e have also evaluated the performance of the pro-
segmental version of the feature normalization al-
m for a buffer length of 121 frames (a delay of 600

Results are summarized in Tables 4 and 5.

lthough results are not as good as those of the batch
n, they prove the successfulness of a segmental im-
ntation of the feature normalization algorithm with
short delays.



Set A Set B Set C Overall
Multi 6,16% 6,50% 7,27% 6,52%
Clean 12,83% 12,07% 13,63% 12,69%
Average 9,49% 9,28% 10,45% 9,60%

Aurora 2 Word Error Rate

Set A Set B Set C Overall

Multi -8,59% -4,21% -3,86% -5,89%
Clean -21,13% -10,50% -4,46% -13,54%
Average -14,86% -7,35% -4,16% -9,72%

Aurora 2 Relative Improvement

Table 2: Results for AURORA 2. Batch version

Finnish Spanish German Danish Average
Well (x40%) 4,14% 3,13% 4,37% 6,01% 4,41%
Mid (x35%) 10,60% 6,43% 10,10% 14,31% 10,36%
High (x25%) 12,69% 10,20% 8,93% 21,07% 13,22%

Overall 8,54% 6,05% 7,52% 12,68% 8,70%

Aurora 3 Word Error Rate

Finnish Spanish German Danish Average
Well (x40%) -5,88% 6,85% 10,63% 9,35% 5,24%
Mid (x35%) 44,44% -5,76% -10,26% 22,69% 12,78%
High (x25%) 5,23% -20,71% -2,06% -3,23% -5,19%
Overall 14,51% -4,45% 0,15% 10,87% 5,27%

Aurora 3 Relative Improvement

Table 3: Results for AURORA 3. Batch version

Set A Set B Set C Overall
Multi 6,33% 6,55% 7,51% 6,65%
Clean 13,16% 12,04% 13,64% 12,81%
Average 9,74% 9,29% 10,57% 9,73%

Aurora 2 Word Error Rate

Set A Set B Set C Overall

Multi -12,68% -7,21% -8,87% -9,73%
Clean -28,78% -14,51% -9,10% -19,14%
Average -20,73% -10,86% -8,99% -14,43%

Aurora 2 Relative Improvement

Table 4: Results for AURORA 2. Segmental version

Finnish Spanish German Danish Average
Well (x40%) 4,14% 3,31% 5,09% 6,68% 4,80%
Mid (x35%) 10,60% 6,61% 11,27% 16,86% 11,34%
High (x25%) 13,25% 8,99% 10,78% 20,44% 13,37%

Overall 8,68% 5,89% 8,68% 13,68% 9,23%

Aurora 3 Word Error Rate

Finnish Spanish German Danish Average
Well (x40%) -5,88% 1,49% -4,09% -0,75% -2,31%
Mid (x35%) 44,44% -8,72% -23,03% 8,91% 5,40%
High (x25%) 1,05% -6,39% -23,20% -0,15% -7,17%
Overall 13,46% -4,05% -15,50% 2,78% -0,83%

Aurora 3 Relative Improvement

Table 5: Results for AURORA 3. Segmental version
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5. Conclusions

s work, we have presented several improvements of
ure extraction algorithm based on the combination
ctral noise reduction and nonlinear feature normal-
n.
new VAD algorithm is presented that improves

the noise estimation and the frame dropping as it
des better speech/noise discrimination.
he feature normalization algorithm has been modi-
o improve its computational efficiency and to sim-
the implementation of its segmental version. The
rmance of this new algorithm is only slightly worse
hat of the corresponding batch version.
inally, the reported results show that the proposed

performance is comparable to that of the AFE for
RA 2 and even better for AURORA 3.
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