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Abstract
In this paper, a unified approach to speech enhancement, feature
extraction and feature normalization for speech recognition in
adverse recording conditions is presented. The proposed front-
end system consists of several different, independent, process-
ing modules. Each of the algorithms contained in these modules
has been independently applied to the problem of speech recog-
nition in noise, significantly improving the recognition rates. In
this work, these algorithms are merged in a single front-end and
their combined performance is demonstrated. Specifically, the
proposed advanced front-end extracts noise-invariant features
via the following modules: Wiener filtering, voice-activity de-
tection, robust feature extraction (nonlinear modulation or frac-
tal features), parameter equalization and frame-dropping. The
advanced front-end is applied to extremely adverse environ-
ments where most feature extraction schemes fail. We show
that by combining speech enhancement, robust feature extrac-
tion and feature normalization up to a fivefold error rate reduc-
tion can be achieved for certain tasks.
Index Terms: Speech Recognition, Nonlinear Features, Param-
eter Equalization, Noise Suppression, Noise Invariant Features

1. Introduction
The natural interaction between humans and machines requires
the services of robust automatic speech recognition (ASR). The
key limitation of current systems is an unreliable level of per-
formance due to the noise conditions in the application envi-
ronment. For example, in aeronautics, the lack of robustness
prevents the more wide-spread introduction of spoken dialogue
systems in fixed installations, such as the aircraft cockpit. This
application presents strong interest in the aeronautic commu-
nity as speech-based interaction could provide enhanced safety
and efficiency. To create the conditions of an acceptable and
robust natural interaction between human and machines, it is
necessary to introduce a breakthrough in performance of robust
speech understanding. The overall objective of the EU project
called ‘Human Input That Works In Real Environments’ (HI-
WIRE) is to set the basis for a much more dependable speech
recognition system in the context of noisy environments.

The presence of (several types of) noise in the speech sig-
nal can significantly affect the recognition accuracy rates. The
performance reduction in the presence of additive noise is due
to the contamination of the speech signal and the correspond-
ing change of the feature vectors distributions. A variety of
algorithms has been used in the past to improve ASR in noise

including signal denoising, speech enhancement, selection of
noise-invariant features and feature compensation. Next, we in-
troduce the algorithms that we have selected to include in this
advanced front-end, the Hiwire Advanced Front-End (HAFE).

The first requirement of our front-end was to feature an ef-
ficient noise suppression subsystem consisting of an accurate
Voice Activity Detection (VAD), working in combination with
a Wiener-based Noise Suppression Filter (WF) and a Frame-
Dropping (FD) algorithm. The VAD module could, also, con-
tribute to other key components of robust speech recognition
processes like the Non-linear Feature Normalization. An iden-
tification of the voiced part of speech could significantly con-
tribute to the efficiency of speech detection. With the accurate
VAD decisions being possible, frame-dropping is used to re-
move long non-speech periods from the feature streams. This
simple technique has been shown to be very effective, [1].

A Wiener denoising filter is, also, incorporated. Wiener
filtering is a signal processing technique that has found a wide
applicability under the assumption that the noise is additive, [2].
The estimates for the speech and noise signals require a reliable
speech-silence detection process and this introduces the need
for an accurate VAD algorithm, too.

The denoised speech signal is the input of the robust fea-
ture extraction process. The proposed system yields two dif-
ferent feature streams. The first stream could be either the Mel
Frequency Cepstral Coefficients (MFCCs) [3], or the Teager-
Energy Cepstral Coefficients (TECCs) [4], mapping the basic
speech structure i.e. the formant structure. On the other hand,
the second stream, consisting of either nonlinear modulation or
dynamic fractal features, captures the time-varying nature of
speech and its micro-structure, [5]. These features provide ad-
ditional robustness to noise, enhancing further the WF output.

Another popular front-end processing algorithm is feature
normalization that attempts to reduce the mismatch between
training and operating feature distribution. The problem is to
find a transformation that decreases the mismatch between the
training (reference) and operating (recognition) environments.
The proposed system incorporates a Parameter Equalization
(PEQ) module where the testing features are equalized accord-
ing to some statistics computed over the training features.

The paper is organized as follows: First, the system mod-
ules are presented in Section 2, producing implementation de-
tails and indicating how they interact with the other modules. In
Section 3, we describe the speech databases, the speech recog-
nition task setups and finally, the obtained results. The proposed
system is evaluated in two different tasks, the Aurora-3 Spanish
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Task and the HIWIRE Database task showing significant im-
provement in ASR performance.

2. Advanced Frontend Modules
The HAFE system consists of the following modules: (i) the
raw speech signal processing modules (Wiener filtering, voice
activity detection), (ii) the feature extraction module that pro-
duces standard MFCCs or TECCs and a variety of nonlinear
features motivated by the AM-FM speech model and the theory
of fractal speech modeling, (iii) the parametric feature normal-
ization module, (iv) the mean/variance normalization process,
and (v) the frame dropping module. The modules operate in
cascade, in the order specified. Note that the nonlinear features
are used in conjunction with either the MFCCs or the TECCs
in a second (independent) feature stream. The various modules
are presented next.

2.1. Wiener filter

The first stage of the front-end is a Wiener filter module that
performs time domain noise suppression on the speech signal.
The filter is designed in the frequency domain as

Ht(f) =
“p

ξt(f)
”

/
“
1 +

p
ξt(f)

”
(1)

where ξt(f) = |X̂t(f)|2/|N̂t(f)|2 is an estimate of the a-
priori SNR, and |N̂t(f)|2 is an estimate of the background
noise power spectrum.

The background noise power spectrum estimate is obtained
using a 1st-order recursive filter during non-speech periods

|N̂t(f)| = λ|N̂t−1(f)|+ (1− λ)|Yt(f)| (2)

with λ = 0.99 and |Y (f)| the magnitude spectrum of the input
signal.

The clean speech signal estimate |X̂t(f)| is obtained in an
iterative approach as follows: First, spectral subtraction is used
to obtain a first estimation of the clean speech

|X1
t (f)| = β|X̂t−1(f)|+ (1− β)max(|Yt(f)| − |N̂t(f), 0)

(3)
where |X̂t−1(f)| is the clean signal estimate in the previous
frame. Using this estimation and Eq. (1), a first version of the
filter H1

t (f) is obtained; which is used to obtain a better esti-
mate of the clean speech signal |X2

t (f)| = H1
t (f)|Yt(f)|. The

process is repeated using |X2
t (f)| and Eq. (1) to get Ht(f) and

|X̂t(f)| = Ht(f)|Yt(f)|. Finally, the frequency domain filter
Ht(f) is transformed to the time domain, and applied to the
input signal.

2.2. VAD

The voice activity detection module is based on the long-term
VAD described in [6]. It is used for the estimation of the back-
ground noise characteristics for the Wiener filter design and,
also, for the frame-dropping algorithm described in the follow-
ing sections. The algorithm offers improved speech/non-speech
classification accuracy by using contextual temporal informa-
tion instead of relying on instantaneous power spectrum mea-
sures.

The VAD decision is based on the Long-Term Spectral Di-
vergence (LTSD) that is defined as

LTSDN (l) = 10 log10

 
1

NFFT

NFFT−1X

k=0

LTSE2(k, l)

N2(k)

!

where LTSEN (k, l) = max {X(k, l + j)}j=+N
j=−N being

X(k, l) the amplitude spectrum of the input signal for the kth

band of a frame l, and N(k) an estimate of the noise spectrum
obtained by averaging over non-speech frames.

2.3. Robust Feature Extraction

The proposed front-end extracts two data streams that are as-
sumed independent. The first one captures the coarse structure
of the speech signals, while the second one provides additional
information concerning their fine-structure, [5, 7]. The first fea-
ture stream consists of either the standard MFCCs or the TECC
features (presented in the next section). The second (optional)
stream consists of modulation or fractal features presented in
Sections 2.3.2 and 2.3.3, respectively.

2.3.1. Teager Energy Cepstral Coefficients (TECC)

The typical MFCCs are estimated over a filterbank of triangular
filters with 50% overlap as the log mean squared amplitudes of
the bandpass signals, [3]. On the other hand, we propose incor-
porating information about the time-varying nature of speech
using the instantaneous Teager-Kaiser (TK) energy instead of
the typical approach. This way, the acoustic information the
features’ is ‘richer’. In addition, we use an auditory-inspired
filterbank, [4], instead of the triangular filterbank taking ad-
vantage of the human hearing process. The proposed features
are shown to be more robust in additive noise and provide ad-
ditional acoustic information when compared to the MFCCs.
These auditory filters are implemented by Gammatone filters
and they are smoother and broader than the triangular filters.

The TECC estimation algorithm is described with the fol-
lowing steps:

i. Use a Gammatone filterbank to estimate a sequence of
bandpass, speech signals. The number of filters is rang-
ing from 25 to 200 filters,

ii. Estimate the mean TK-energy for each one of the framed
bandpass signals,

iii. Estimate the Cepstrum coefficients of the log mean ener-
gies using DCT, and

iv. Truncate the Cepstrum coefficients to keep the first 13
coefficients (including the 0th-coefficient, c0).

The first two steps combine the auditory filtering scheme
with the more ‘natural’ approach of the speech TK-energy no-
tion. These steps differentiate the proposed algorithm from the
typical MFCC extraction algorithm. The ASR results show sig-
nificant improvement, especially in noisy recognition tasks, [4].

2.3.2. Modulation Features - FMPs and IFMs

Based on the AM-FM model, [8], a speech signal s(t) can be
represented as a sum of a small number N of AM-FM signals
ri(t), where ri(t) = ai(t) cos

“R t

0
fi(τ)dτ)

”
and ai(t), fi(t)

(and i = 1, . . . , N ) are the Instantaneous Amplitude (IA) and
Frequency (IF) modulating signals. Moreover, the nonlinear
AM-FM model proposes that the speech resonances ri(t) are
not constant but they can fluctuate around their center frequen-
cies and these fluctuations are mapped onto the IF signals. On
the contrary, the linear model of speech assumes that these reso-
nances (and the respective formants’ center frequencies) remain
constant for relatively short periods of time. This nonlinear
model provides additional acoustic information incorporating
2nd -order phenomena that the linear model doesn’t capture.
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For the decomposition process, we propose using a fixed,
Mel-scaled, Gabor filterbank to estimate the bandpassed sig-
nals. The filterbank is constant-Q with fixed bandwidth overlap
(50%). The Gabor filters are selected due to their optimal span
in the Time-Frequency Domains. Finally, we have concluded
that the optimal number of filters is 6 when extracting these sets
of modulation features, [5].

The Frequency Modulation Percentages (FMP) features are
defined as FMPi = Bi/Fi for each speech resonance i, where
Bi is the mean bandwidth (an amplitude-weighted version of
the fi(t)-signal deviation) and Fi is the weighted mean fre-
quency value of ith-resonance and they provide more accurate
and more noise-invariant estimates [9].

In addition to these features, we have examined the use of
the Weighted Mean Inst. Frequency Coefficients (IFMs), [4].
As mentioned above, formant frequencies are not constant dur-
ing a single pitch period but they can vary around a center fre-
quency. The IFM coefficients Fi are defined as the (amplitude)
weighted mean frequency value of the ith-resonance incorpo-
rating some information concerning its fluctuations. The pro-
posed features provide information about the accurate speech
formant fine structure, taking advantage of the excellent time-
resolution of the ESA, [5]. Transitional phenomena and instan-
taneous formant variations are mapped onto these FM features.
Most often, MFCCs (or even TECCs) fail to capture a signifi-
cant part the dynamic nature of speech. Thus, we provide this
additional information by augmenting the feature vectors with
the modulation features, like FMPs or IFMs.

2.3.3. Multiscale Fractal Dimension

The Multiscale Fractal Dimensions (MFDs) have been pro-
posed for nonlinear speech analysis and speech recognition
in [7, 10]. The main concept is based on the morphological
covering algorithm that computes the Minkowski-Boulingand
dimension DM of a planar set. This is computed by dilat-
ing the graph of the speech signal with disks B of increasing
radii ε. If AB(ε) is the area of the dilated graph, DM equals
2 − limε→∞ log[AB(ε)]/ log(ε). This limit can be estimated
from the slope of a line fit to the log[AB(ε)] vs log(ε) data us-
ing least squares. The successive local estimates of DM over
moving scale windows yield the MFD.

For the MFD feature set we estimate DM on the scalar
speech signals and sample the MFD function at the specific
scale values ε. We have experimentally observed that the vari-
ation of the MFD function is better captured by sampling (at 6
scales) over a logarithmic scale.

2.4. PEQ

Parametric equalization, [11], is a parametric form of the his-
togram equalization techniques based on a two Gaussian mix-
ture model. The first Gaussian is used to represent non-speech
frames, while the second one represents speech frames. For
each class, a parametric linear transformation is defined to map
the clean and noisy representation spaces,

x̂ = µn,x + (y − µn,y)

„
Σn,x

Σn,y

«1/2

if y is non-speech (4)

x̂ = µs,x + (y − µs,y)

„
Σs,x

Σs,y

«1/2

if y is speech (5)

where µn,x, Σn,x, µs,x and Σs,x correspond to the Gaussians,
modeling clean, non-speech and speech frames, respectively.

The quantities µn,y , Σn,y , µs,y and Σs,y correspond to the
Gaussians modeling noisy non-speech and speech frames. With
these definitions of the linear transformations, the noisy means
µn,y and µs,y are transformed into the clean means µn,x and
µs,x, and the noisy covariance matrices Σn,y and Σs,y are
transformed into the clean covariance matrices Σn,x and Σs,x

(for both, the non-speech and speech models). The clean Gaus-
sians for speech and non-speech frames can be estimated from
the training database, while the noisy Gaussians are estimated
from the utterances to be equalized.

To select whether the current frame y is speech or non-
speech, the LTSD VAD is used. However, this implies a hard
decision between both linear transformations that could create
discontinuities in the limit of the non-speech/speech decision.
Instead, a soft decision can be used,

x̂ = P (n|y)

 
µn,x + (y − µn,y)

„
Σn,x

Σn,y

«1/2
!

+P (s|y)

 
µs,x + (y − µs,y)

„
Σs,x

Σs,y

«1/2
!

(6)

by including the conditional probabilities of frame y being
non-speech or speech. The posterior probabilities P (n|y) and
P (s|y) are obtained using a simple two-class Gaussian classi-
fier on the log-energy term (the c0 cepstral coefficient). This
classifier is used to obtain the class probabilities P (n|y) and
P (s|y) and, also, to obtain the mean and covariance matri-
ces µn,y , Σn,y , µs,y and Σs,y for the non-speech and speech
classes for the given noisy input utterance. Then, the input ut-
terance can be equalized using Eq. (6). This equation leads to a
non-linear interpolation of two class-dependent linear transfor-
mations.

2.5. Frame-Dropping - FD

To prevent long non-speech segments to cause insertion errors
in the decoding, a simple frame-dropping algorithm is imple-
mented that makes use of the VAD information provided by the
LTSD algorithm previously described. Those frames labeled
as non-speech by the LTSD VAD are removed from the input
stream of the speech recognition engine. To prevent misclas-
sified speech frames to be removed, a simple hang-over algo-
rithm is implemented that delays the VAD decision at the end
of speech periods.

3. Experiments
The ASR features are extracted by the proposed front-end sys-
tem, according to the sequence of preprocessing and post-
processing modules mentioned in the previous sections. The
nonlinear (modulation or fractal) features are concatenated with
either the typical MFCCs or the nonlinear TECCs. The ASR
evaluation tasks have been performed on the Aurora-3, Span-
ish and the HIWIRE Speech databases [12], using the HMM-
based HTK Toolkit system, [13]. For the Aurora task, context-
independent, 16-state, left-right word HMMs with 3 gaussian
mixtures are used. The grammar used is the all-pair, unweighted
grammar. In the case of the HIWIRE task, the HMM models are
trained on the clean speech TIMIT database and tested on the
four different noise-scenario test sets (clean, LN, MN and HN)
of the HIWIRE database. The HMM models are 3-state, left-
right phone models with 128 mixtures per state. A finite-state
grammar with perplexity equal to 14,9 is used as the language
model. Finally, the dictionary contains 133 words.
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The input vectors are split into two different data streams,
one for the standard MFCCs or TECCs and the second one for
the nonlinear features. These data streams are assumed statisti-
cally independent. The augmented features consist of 13 sam-
ples for the ‘standard’ features (MFCCs/TECCs and their 0th-
cepstral coefficient, c0) and 6 for either the modulation or the
fractal features. All feature vectors are extended by their 1st

and 2nd time-derivatives and they are smoothed out by Cep-
stral Mean Subtraction (CMS) or Cepstral Mean and Variance
Normalization (CMVN) to face noise mismatches, addition-
ally to the other denoising techniques. It is shown in [11] that
CMS/CMVN schemes in combination with PEQ may improve
further the recognition results. Finally, the frame length equals
to 30 msec with frame-period equal to 10 msec.

The weights of the two independent data streams are opti-
mized on held-out data. In practice, the stream-weight for the
nonlinear features increases with the SNR level, another indica-
tion of the robustness of the nonlinear features.

Apart from the baseline features, all the other features have
been extracted by the full HAFE system using all of its mod-
ules (WF, VAD, PEQ, CMS/CMVN and FD), besides the clean-
speech case where the WF and PEQ modules are disabled.
Wiener filtering smoothes out some part of the acoustic infor-

Correct Word Accuracy Rates (%)
on the Aurora 3, Spanish Task

WM MM HM
Features
MFCC (Basel.) 93.68 92.73 65.18
MFCC 96.93 92.98 91.25
TECC 96.90 92.56 91.82
TECC+FMP 97.39 93.75 92.72
TECC+IFM 97.31 94.23 92.81
TECC+MFD 96.98 92.89 92.42
All Features + WF+PEQ+CMS/CMVN+FD

(a)

Correct Word Accuracy Rates (%)
on the HIWIRE Database Task

Clean LN MN HN
Features
MFCC (Basel.) 92.51 45.96 23.31 2.15
MFCC 85.80 69.61 53.82 13.26
TECC 92.80 76.56 53.84 11.81
TECC+FMP 93.86 81.11 61.77 15.61
TECC+IFM 92.13 74.75 58.68 13.45

All Features + WF+PEQ+CMS/CMVN+FD
(b)

Table 1: Correct Word Accuracy Rates concerning the proposed
Frontend. The ASR results are for the (a) Aurora-3, Spanish
Task and (b) HIWIRE Task. The baseline features are estimated
by the HTK Toolkit.

mation. So, WF and PEQ modules should be disabled when
HAFE is applied to clean speech signals, [2, 11]. However, for
all other noise scenarios, the full HAFE should be applied.

4. Discussion – Conclusions
In this paper we have presented an advanced front-end sys-
tem where noise-invariant techniques have been incorporated.

This front-end has been applied successfully in extremely ad-
verse environments with significant improvement of the ASR
performance. These promising results have been obtained
when combining these feature extraction techniques with noise-
suppression preprocessing and post-processing modules. We
have shown that it is possible to combine heterogeneous sub-
systems and yield improved recognition results.
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