Ecuaciones Diferenciales I 15/16

Relación de Ejercicios 4

- 1 Encuentra funciones $a, b \in C(I)$ de modo que t, t^2 sean soluciones de una ecuación lineal x'' + a(t)x' + b(t)x = 0 con $a, b \in C(I)$. Discute si el intervalo I puede ser toda la recta real o no.
- **2** Encuentra un sistema fundamental de soluciones de la ecuación 3x'' 2x' 8x = 0 (Indicación: busca soluciones de la forma $e^{\lambda t}$). Por el método de variación de constantes, encuentra la solución general de la ecuación

$$3x'' - 2x' - 8x = \cosh(t)$$

3 Encuentra la solución general de la ecuación

$$y'' + \frac{2}{x}y' + y = \frac{1}{x},$$

sabiendo que dos soluciones de la ecuación homogénea son $\frac{\sin x}{x}$, $\frac{\cos x}{x}$.

4 Se considera la ecuación

$$(1+t)x'' - (1+2t)x' + tx = te^t.$$

Se pide:

- a) comprueba que $z_0(t) = e^t$ es una solución particular de la ecuación homogénea.
- b) Efectúa el cambio $x = uz_0$ en la ecuación completa para reducir su orden y poder integrarla.

5 Consideremos la ecuación

$$x^2y'' - 7xy' + 16y = 0.$$

Encuentra una solución particular de tipo potencia $(y_1(x) = x^m)$ y usa la fórmula de Liouville para encontrar la solución general.

- 6 Sean $\varphi_1(t), \varphi_2(t), \dots, \varphi_k(t)$ funciones en $C^k(I)$ que cumplen $W(\varphi_1, \varphi_2, \dots, \varphi_k)(t) \neq 0$ para cada $t \in I$. Demuestra que existe una ecuación lineal homogénea $x^{(k)} + a_{k-1}(t)x^{(k-1)} + \dots + a_1(t)x' + a_0(t)x = 0$ con $a_{k-1}, \dots, a_1, a_0 \in C(I)$ tal que $\varphi_1(t), \varphi_2(t), \dots, \varphi_k(t)$ es un sistema fundamental. ¿Es cierta esta conclusión cuando $W(\varphi_1, \varphi_2, \dots, \varphi_k)(t) = 0$ para cada $t \in I$?
- 7 Se considera la ecuación

$$y' + y^2 + \alpha(t)y + \beta(t) = 0$$

donde $\alpha, \beta: I \to \mathbb{R}$ son funciones continuas. Dada una solución y(t) definida en un intervalo abierto $J \subset I$ se define

$$x(t) = ce^{\int_{t_0}^t y(s)ds}$$

donde c es una constante y $t_0 \in J$. Demuestra que x(t) es solución de una ecuación lineal y homogénea de segundo orden.

- **8** Se considera la ecuación x'' + a(t)x = 0 donde $a \in C^1(I)$.
 - a) Dadas dos soluciones $x_1(t)$ y $x_2(t)$ de la ecuación anterior, demuestra que la función producto $z(t) = x_1(t)x_2(t)$ es solución de la ecuación de tercer orden z''' + 4a(t)z' + 2a'(t)z = 0.
 - b) Se supone que $x_1(t)$ y $x_2(t)$ forman un sistema fundamental para la ecuación de segundo orden, demuestra que las funciones $x_1(t)^2$, $x_1(t)x_2(t)$, $x_2(t)^2$ forman un sistema fundamental de la ecuación de tercer orden. Indicación: prueba la identidad

$$\det \begin{pmatrix} v_1^2 & w_1^2 & v_1 w_1 \\ 2v_1 v_2 & 2w_1 w_2 & v_2 w_1 + v_1 w_2 \\ v_2^2 & w_2^2 & v_2 w_2 \end{pmatrix} = (w_1 v_2 - v_1 w_2)^3.$$

1

- **9** Demuestra que las funciones $f_j(t) = |t j|, j = 1, ..., n$ son l.i. en $I =]0, \infty[$. Indicación: las funciones f_j son derivables en cada intervalo]0, 1[,]1, 2[,...]
- 10 a) Encuentra dos funciones $f_1, f_2 \in C^1(I)$ que sean linealmente independientes (l.i.) en I mientras que sus derivadas son linealmente dependientes.
 - b) Demuestra que si $f_1, f_2, \dots f_n \in C^1(I)$ son funciones tales que f_0, f_1, \dots, f_n son l.i. entonces f'_1, f'_2, \dots, f'_n son también l.i. La notación f_0 se emplea para la función constante $f_0(t) = 1$.
- 11 a) Dada la ecuación del oscilador armónico $x'' + \omega^2 x = 0$ con $\omega > 0$, demuestra que las funciones $\cos \omega t$, $\sin \omega t$ forman un sistema fundamental.
 - b) Consideramos ahora el oscilador forzado $x'' + \omega^2 x = A\sin(\Omega t) + B\cos(\Omega t)$, donde $\Omega > 0$ es un número real. Demuestra que esta ecuación admite una solución del tipo $x(t) = a\cos(\Omega t) + b\sin(\Omega t)$ si $\Omega \neq \omega$.
 - c) Resuelve la ecuación $x'' + \omega^2 x = \sum_{i=1}^n \alpha_i \sin(\Omega_i t + \phi_i)$ cuando $\omega \neq \Omega_i$ para cada i.
 - d) ¿Cómo son las soluciones en el caso $\Omega_i = \omega$ para algún i?
- 12 Se considera la ecuación $x^{(k)} + a_{k-1}x^{(k-1)} + \cdots + a_1x' + a_0x = \sum_{i=1}^n A_i e^{\lambda_i t}$ donde a_0, \dots, a_{k-1} y $\lambda_1, \dots, \lambda_n$ son constantes. Encuentra la condición necesaria y suficiente para que la ecuación admita una solución del tipo $x(t) = \sum_{i=1}^n c_i e^{\lambda_i t}$.