Universidad de Granada. Ecuaciones Diferenciales I 4 de Julio de 2018.

NOMBRE:

1. Se considera la ecuación integral

$$u(x) = 1 + \lambda u(x) \int_{x}^{1} u(s)ds$$

con $\lambda > 0$, donde la incógnita $u: I \to \mathbb{R}$ es una función continua definida en algún intervalo abierto I con $1 \in I$.

- 1.1. Demuestra que una posible solución no puede tener ceros.
- 1.2. Encuentra una ecuación diferencial asociada (con condición inicial) equivalente.
- 1.3 Demuestra que la ecuación integral tiene una solución, dando el intervalo maximal de definición.
- 2. Calcula la familia de trayectorias ortogonales a la familia de curvas

$$x = y - 1 + Ce^{-y},$$

con $C \in \mathbb{R}$. Dibuja la gráfica de la familia de curvas obtenidas.

- 3. Sea $\Phi(t)$ una matriz fundamental de un sistema lineal homogéneo x' = A(t)x, y $\Psi(t)$ matriz fundamental de $x' = -A(t)^T x$, donde $A(t)^T$ es la matriz transpuesta de A(t).
- 3.1. Demuestra que la función matricial $\Psi(t)^T \Phi(t)$ es constante.
- 3.2. Demuestra que el cambio $y = \Psi(t)^T x$ lleva el sistema x' = A(t)x a y' = 0.
- 4. Se considera la ecuación

$$Lq'' + Rq' + \frac{1}{C}q = \operatorname{sen}(\omega t).$$

- 4.1. Describe el circuito eléctrico modelado por esta ecuación.
- 4.2. Calcula la solución general cuando L=0.
- 4.3. Calcula la solución general cuando $CR^2 > 4L > 0$.
- 5. Dada una matriz $A \in \mathbb{R}^{d \times d}$ se define la matriz

$$\cos(A) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} A^{2n}.$$

- 5.1. Demuestra que la serie matricial anterior es convergente.
- 5.2. Calcula $\cos(A)$ si A es la matriz $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$