A PROOF BY CALIBRATION OF AN ISOPERIMETRIC INEQUALITY IN THE HEISENBERG GROUP \mathbb{H}^n

MANUEL RITORÉ

Abstract.
Let D be a closed disk centered at the origin in the horizontal hyperplane $\{t = 0\}$ of the sub-Riemannian Heisenberg group \mathbb{H}^n, and C the vertical cylinder over D. We prove that the perimeter of any set E such that $D \subset E \subset C$ is larger than or equal to the one of the rotationally symmetric sphere with constant mean curvature of the same volume, and that equality holds only for these spheres using a recent result by Monti and Vittone [12].

1. Introduction

It was conjectured by P. Pansu in 1983 [14] that the isoperimetric regions, minimizing perimeter under a volume constraint, in the sub-Riemannian Heisenberg group \mathbb{H}^1 are the topological balls enclosed by the one-parameter family $\{S_\lambda\}_{\lambda > 0}$ of rotationally symmetric spheres of constant mean curvature λ described in [14], see also [6], [16].

The existence of isoperimetric regions in Carnot groups was proven by G.-P. Leonardi and S. Rigot [7]. Every Carnot group \mathbb{G} is equipped with an one-parameter family of dilations which has a well-known effect on the perimeter and the Haar measure, the volume of the group. Hence the isoperimetric profile of \mathbb{G}, the function assigning to each volume $v > 0$ the infimum of the perimeter of the sets of volume v, is given by

$$I_\mathbb{G}(v) = C_\mathbb{G} v^{(Q-1)/Q},$$

where $Q > 0$ is the homogeneous dimension of \mathbb{G}, and $C_\mathbb{G} > 0$ is a constant. The isoperimetric profile must be seen as an optimal isoperimetric inequality in \mathbb{G}. For any finite perimeter set $E \subset \mathbb{G}$,

(*) \[P_\mathbb{G}(E) \geq C_\mathbb{G} |E|^{(Q-1)/Q}, \]

where $P_\mathbb{G}$ is the sub-Riemannian perimeter and $|E|$ is the volume of E. Pansu’s conjecture then states that, for $\mathbb{G} = \mathbb{H}^1$, which has homogeneous dimension $Q = 4$, equality is attained in (*) precisely when E is the topological ball enclosed by some sphere S_λ. This conjecture can be extended to the higher dimensional Heisenberg groups \mathbb{H}^n, $n \geq 2$.

Several attempts to solve this conjecture have been made. R. Monti [9] and G.-P. Leonardi and S. Masnou [6] have shown that there is no direct counterpart in \mathbb{H}^1 to the Brunn-Minkowski inequality in Euclidean space. In fact, such a Brunn-Minkowski type inequality would imply that the metric balls for the Carnot-Carathéodory distance

Date: May 6, 2011.
2000 Mathematics Subject Classification. 53C17, 53C42, 49Q20.
Key words and phrases. Sub-Riemannian geometry, Heisenberg group, area-stationary surface, constant mean curvature surface, isoperimetric problem, isoperimetric region, calibration.
Research supported by MCyT-Feder grant MTM2010-21206-C02-01 and Junta de Andalucía grants FQM-325 and P09-FQM-5088.
would be isoperimetric regions, which is known to be false [8]. The author and C. Rosales showed in [16] that the only compact rotationally symmetric C^2 hypersurfaces in \mathbb{H}^n with constant mean curvature are the spheres S_λ, see also [13]. The same authors proved in [17] that the spheres S_λ are the only compact C^2 surfaces in \mathbb{H}^1 which are area-stationary under a volume constraint, thus solving the isoperimetric problem assuming C^2 regularity of the solutions. R. Monti and M. Rickly [11] proved that the spheres S_λ are isoperimetric in \mathbb{H}^3 under the additional assumption of Euclidean convexity. In [3], D. Danielli et al. provided a proof of the isoperimetric property of the spheres $S_\lambda \subset \mathbb{H}^n$ in the class of sets that are the union of the graphs of a non-negative and a non-positive function of class C^1 over a Euclidean disk centered at the origin in the horizontal hyperplane $\{t = 0\}$ in \mathbb{H}^n, and enclosing the same volume above and below such hyperplane. For a description of these results, and some other approaches, the reader may consult Chapter 8 of the monograph by L. Capogna et al. [2].

In this paper we extend the main result in [3]. We prove in Theorem 3.1 that, if C is the vertical cylinder in \mathbb{H}^n over a closed disk D centered at the origin in the horizontal hyperplane $\{t = 0\}$, and $E \subset \mathbb{H}^n$ is a finite perimeter set so that $D \subset E \subset C$, then the perimeter of E is larger than or equal to the one of the ball B_λ enclosed by the sphere S_λ with $|B_\lambda| = |E|$. Equality characterizes the spheres S_λ by a recent result of R. Monti and D. Vittone [12], who proved that a set in \mathbb{H}^n of locally finite perimeter with continuous horizontal unit normal has \mathbb{H}-regular boundary. Theorem 3.1 can be applied to a set $E \subset \mathbb{H}^n$ rotationally symmetric with respect to the vertical axis passing through the origin and satisfying $D \subset E$. Assumption $D \subset E$ has been recently removed by R. Monti [10], who has proven, using Theorem 3.1 and a symmetrization argument, that the spheres $S_\lambda \subset \mathbb{H}^n$ are isoperimetric in the class of rotationally symmetric sets of finite perimeter. Theorem 3.1 and the result of R. Monti and D. Vittone [12] together provide the only known characterization result for solutions of the isoperimetric problem in \mathbb{H}^n in the class of finite perimeter sets.

One of the classical proofs of the isoperimetric inequality in \mathbb{R}^3 was given by H. A. Schwarz [22], and extended to higher dimensional Euclidean spaces, spheres and hyperbolic spaces in a series of papers by E. Schmidt [15], [19], [20], [21]. Schwarz’s proof had two main ingredients: what is known nowadays as Schwarz’s symmetrization and a variational argument to prove that in the class of rotationally symmetric sets spheres have the smallest perimeter under a volume constraint. A unified argument, using calibrations, can be used to give a proof of the second part of Schwarz’s argument in a wide class of homogeneous Riemannian manifolds [15 § 1.3.1], and in sub-Riemannian manifolds. A symmetrization in the sub-Riemannian Heisenberg group \mathbb{H}^n is difficult to produce due to the lack of reflections with respect to hyperplanes, on which all classical symmetrizations are based.

In the proof of Theorem 3.1 we consider the right cylinder $C \subset \mathbb{H}^n$ over a closed Euclidean disk D in the horizontal hyperplane $\{t = 0\}$. On C we construct two foliations by vertically translating the upper hemisphere and the lower one of the only sphere S_λ intersecting $\{t = 0\}$ at ∂D. Using these foliations we prove that the sphere S_λ minimize the functional area $-n\lambda$ volume in the class of finite perimeter sets $E \subset \mathbb{H}^n$ satisfying $D \subset E \subset C$. Then we minimize over the spheres S_μ the functional area $-n\mu (\text{volume} - |E|)$ to get the desired result. The reader should compare our proof with the one given by E. Schmidt [19] of the isoperimetric property of balls in the n-dimensional sphere S^n in the class of rotationally symmetric sets.
We have organized this paper into two sections. In the following one we state some material needed in the proof of Theorem 3.1. Proofs of the results which cannot be found in the literature, in particular of Lemmae 2.2, 2.3, 2.4, are outlined. In section 3 we give the proof of our main result, Theorem 3.1.

The author is extremely grateful to Roberto Monti and Davide Vittone for sending him a copy of their manuscript [12], and to the referee for his valuable suggestions.

2. Preliminaries

2.1. The Heisenberg group. The Heisenberg group \mathbb{H}^n is the Lie group $(\mathbb{R}^{2n+1}, \cdot)$, where we consider in $\mathbb{R}^{2n+1} \cong \mathbb{C}^n \times \mathbb{R}$ the product

$$(z,t) \cdot (w,s) = (z + w, t + s + \sum_{i=1}^{n} \text{Im}(z_i w_i)).$$

A basis of left-invariant vector fields is given by \{\(X_1,\ldots, X_n, Y_1,\ldots, Y_n, T\)\}, where

$$X_i = \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial t}, \quad Y_i = \frac{\partial}{\partial y_i} - x_i \frac{\partial}{\partial t}, \quad i = 1,\ldots, n; \quad T = \frac{\partial}{\partial t}.$$

The only non-trivial bracket relations are \([X_i, Y_i] = -2T, i = 1,\ldots, n\). The horizontal distribution at a point \(p \in \mathbb{H}^n\) is defined by \(\mathcal{H}_p := \text{span}\{(X_i)_p, (Y_i)_p : i = 1,\ldots, n\}\).

We shall consider on \mathbb{H}^n the left-invariant Riemannian metric \(g = \langle \cdot, \cdot \rangle\) so that the basis \(\{X_1,\ldots, X_n, Y_1,\ldots, Y_n, T\}\) is orthonormal.

The Levi-Civita connection on (\mathbb{H}^n, g) is denoted by D. From Koszul formula and the Lie bracket relations we get

$$D X_i X_j = D Y_i Y_j = D T T = 0,$$

$$D X_i Y_j = -\delta_{ij} T, \quad D X_i T = Y_i, \quad D Y_i T = -X_i,$$

$$D Y_j X_j = \delta_{ij} T, \quad D T X_i = Y_i, \quad D T Y_i = -X_i.$$

For any vector field U on \mathbb{H}^n we define $J(U) := D_T T$. It follows from (2.1) that $J(X_i) = Y_i$, $J(Y_i) = -X_i$, and $J(T) = 0$, so that J defines a linear isometry when restricted to the horizontal distribution.

2.2. Volume and sub-Riemannian perimeter. The volume $|E|$ of a Borel set $E \subset \mathbb{H}^n$ is the Riemannian volume of E with respect to the metric g. The area $A(\Sigma)$ of a C^1 hypersurface $\Sigma \subset \mathbb{H}^n$ is defined as

$$A(\Sigma) := \int_{\Sigma} |N_H| d\Sigma,$$

where $d\Sigma$ is the area element induced on Σ by the Riemannian metric g, and N is a locally defined unit vector normal to Σ. For a C^2 hypersurface enclosing a bounded region E, the area coincides with the sub-Riemannian perimeter $|\partial E|$, defined as

$$|\partial E|(\Omega) := \sup \left\{ \int_{\Omega} \text{div} U \, dv : U \text{ horizontal of class } C^1, |U| \leq 1, \text{supp}(U) \subset \Omega \right\},$$

where $\Omega \subset \mathbb{H}^n$ is an open set, div U is the Riemannian divergence of the vector field U, and dv is the volume element associated to g.

A set $E \subset \mathbb{H}^n$ is of locally finite perimeter if $|\partial E|(\Omega) < +\infty$ for all bounded open sets $\Omega \subset \mathbb{H}^n$. It is of finite perimeter if $|\partial E| := |\partial E|(\mathbb{H}^n) < +\infty$. We normalize
any finite perimeter set $E \subset \mathbb{H}^n$ to include its density one points and to exclude its density zero points [8 Prop. 3.1].

The reduced boundary $\partial^* E$ of a set $E \subset \mathbb{H}^n$ of locally finite perimeter, as defined in [4 Def. 2.17], is composed of those points $p \in \mathbb{H}^n$ such that

1. $|\partial E| (U(p, r)) > 0$ for all $r > 0$,
2. there exists $\lim_{r \to 0} \int_{U(p, r)} \nu_H d|\partial E|$,
3. $|\lim_{r \to 0} \int_{U(p, r)} \nu_H d|\partial E|| = 1$.

Here $U(p, r)$ is the open metric ball with respect to the distance induced by the homogeneous norm

$$||p||_\infty := \max\{|z|, |t|^{1/2}\}, \quad p = (z, t),$$

which is globally equivalent to the Carnot-Carathéodory distance, [4 Prop. 2.7]. The perimeter measure of a set of locally finite perimeter is supported on the reduced boundary as shown in [4 Thm. 7.1].

2.3. Hypersurfaces in \mathbb{H}^n and Variational Formulae

For a C^1 hypersurface $\Sigma \subset \mathbb{H}^n$, the singular set $\Sigma_0 \subset \Sigma$ consists of the points where the tangent hyperplane coincides with the horizontal distribution. The set Σ_0 is closed and has empty interior in Σ, and so the regular set $\Sigma \setminus \Sigma_0$ of Σ is open and dense in Σ. For any $p \in \Sigma \setminus \Sigma_0$, the tangent hyperplane meets transversally the horizontal distribution, and so $T_p \Sigma \cap \mathcal{H}_p$ is $(2n - 1)$-dimensional. We say that Σ is two-sided if there is a globally defined unit vector field normal to Σ. Every C^1 hypersurface is locally two-sided.

Let Σ be a C^2 hypersurface in \mathbb{H}^n, and N a unit vector normal to Σ. The singular set $\Sigma_0 \subset \Sigma$ can be described as $\Sigma_0 = \{ p \in \Sigma : N_H(p) = 0 \}$. In the regular part $\Sigma \setminus \Sigma_0$, we can define the horizontal unit normal vector ν_H by $\nu_H := N_H/|N_H|$. Consider the unit vector field Z on $\Sigma \setminus \Sigma_0$ given by $Z := J(\nu_H)$. As Z is horizontal and orthogonal to ν_H, it follows that Z is tangent to Σ. The integral curves of Z in $\Sigma \setminus \Sigma_0$ will be called characteristic curves. Characteristic curves foliate the regular part of Σ.

Consider a C^1 vector field U with compact support on \mathbb{H}^n, and denote by $\{ \varphi_t \}_{t \in \mathbb{R}}$ the associated group of diffeomorphisms. Let E be a bounded region enclosed by a hypersurface Σ. The families $\{E_t\}$, $\{\Sigma_t\}$, for t small, are the variations of E and Σ induced by U. Let $V(t) = |E_t|$ and $A(t) = A(\Sigma_t)$. We say that the variation is volume-preserving if $V'(0) = 0$. We say that Σ is area-stationary if $A'(0) = 0$ for any variation, and volume-preserving area-stationary if $A'(0) = 0$ for any volume preserving variation.

If Σ is a C^1 hypersurface enclosing a bounded region E, it is well-known that

$$V'(0) = \int_E \text{div} U \, dv = -\int_{\Sigma} u \, d\Sigma,$$

where $u = \langle U, N \rangle$ and N is the unit vector normal to Σ pointing into E.

If Σ is C^2, and N is a unit vector field normal to Σ, the mean curvature of $\Sigma \setminus \Sigma_0$ is given by $-h := \text{div}_\Sigma \nu_H$, where $\text{div}_\Sigma U(p) := \sum_{i=1}^{2n} \langle D_{e_i} U, e_i \rangle$ for any orthonormal basis $\{e_i\}$ of $T_p \Sigma$. We say that Σ has constant mean curvature if H is constant on $\Sigma \setminus \Sigma_0$. By combining [16 Lemma 3.2] and [17 Lemma 4.3 (4.7)] we have

Lemma 2.1. Let $\Sigma \subset \mathbb{H}^n$ be a C^2 hypersurface enclosing a bounded region E, with inner unit normal vector N. Consider a variation induced by a vector field U, and let
where $\{U, T\}$ of $p \in \text{domorphism}$

(2.6) $\dot{\gamma}$

mannian length L desics in

(2.4)

2.4. Geodesics in \mathbb{H}^n. We refer the reader to [16] § 3 for detailed arguments. Geodesics in \mathbb{H}^n are horizontal curves $\gamma : I \to \mathbb{H}^n$ which are critical points of the Riemannian length $L(\gamma) := \int_I \|\dot{\gamma}\|$ for any variation by horizontal curves $t \gamma$. A vector field U along γ induces a variation by horizontal curves if and only if

(2.6) $\dot{\gamma}(\langle U, T \rangle) + 2 \langle \ddot{\gamma}, J(U) \rangle = 0$. The derivative of length for such a variation is given by

(2.7) $\frac{d}{dt} \bigg|_{t=0} L(\gamma_t) = -\int_I \langle D_t \dot{\gamma}, U \rangle$.

We remark that the variation associated to U in the statement of Lemma 2.1 is not assumed to be volume-preserving. From Lemma 2.1 and (2.3) we easily obtain

Lemma 2.2. Let $\Sigma \subset \mathbb{H}^n$ be a C^2 hypersurface enclosing a bounded region E. Assume that Σ is volume-preserving area-stationary, and let H be the (constant) mean curvature of Σ. Then Σ is a critical point of the functional $A - nHv$ for any variation.

Let Σ be a C^2 horizontal graph without singular points. We can translate it vertically to get a foliation of the vertical cylinder C over Σ. Denote by N the unit normal to the foliation, and by v_H the horizontal unit normal obtained from N. For any $p \in C$, let $\{e_i\}$ be an orthonormal basis of the leaf passing through p. Then

$$\text{div } v_H(p) = \sum_{i=1}^{2n} \langle D_e, v_H, e_i \rangle + \langle D_{N_p} v_H, N_p \rangle = -nH(p) + \langle D_{N_p} v_H, N_p \rangle.$$

Since $N = |N_H| v_H + \langle N, T \rangle T$, and $\langle D_U v_H, v_H \rangle$, $\langle D_T v_H, T \rangle$, and $\langle D_{v_H} T, v_H \rangle = (J(v_H), v_H)$ vanish, we conclude that $\langle D_{N_p} v_H, N_p \rangle = 0$. Hence

$$\text{div } v_H = -nH.$$

In [16] Lemma 3.1 (3.3)] it is proven that

(2.5) $D_u v_H = |N_H|^{-1} \sum_{i=1}^{2n-1} (\langle D_u N, z_i \rangle - \langle N, T \rangle \langle J(u), z_i \rangle) z_i + \langle z, u \rangle T,$

where $u \in T_p \Sigma$ for a given point $p \in \Sigma$, and $\{z_1, \ldots, z_{2n-1}\}$ is an orthonormal basis of $T_p \Sigma \cap \mathcal{H}_p$, with $z_1 = z = J(\langle v_H \rangle)_p$. Completing $\{z_i\}$ to an orthonormal basis of $T_p \Sigma$ by adding a vector v, we obtain from (2.5) that $\langle D_u v_H, v \rangle = 0$. Hence we conclude

$$-nH(p) = \sum_{i=1}^{2n-1} \langle D_{z_i} v_H, z_i \rangle,$$

where $\{z_i\}$ is an orthonormal basis of $T_p \Sigma \cap \mathcal{H}_p$. From (2.5), it follows that the endomorphism $v \mapsto -D_u v_H - |N_H|^{-1}\langle N, T \rangle J(v)^T$, defined in the subspace $T_p \Sigma \cap \mathcal{H}_p$, $p \in \Sigma \setminus \Sigma_0$, is selfadjoint. Thus there exists an orthonormal basis $\{v_1, \ldots, v_{2n-1}\}$ of $T_p \Sigma \cap \mathcal{H}_p$ composed of eigenvectors with eigenvalues $\kappa_1, \ldots, \kappa_{2n-1}$. By analogy with the Riemannian case they will be named principal curvatures, and we have $-nH = \kappa_1 + \ldots + \kappa_{2n-1}$.

2.4. Geodesics in \mathbb{H}^n. We refer the reader to [16] § 3 for detailed arguments. Geodesics in \mathbb{H}^n are horizontal curves $\gamma : I \to \mathbb{H}^n$ which are critical points of the Riemannian length $L(\gamma) := \int_I \|\dot{\gamma}\|$ for any variation by horizontal curves $t \gamma$. A vector field U along γ induces a variation by horizontal curves if and only if

(2.6) $\dot{\gamma}(\langle U, T \rangle) + 2 \langle \ddot{\gamma}, J(U) \rangle = 0$. The derivative of length for such a variation is given by

(2.7) $\frac{d}{dt} \bigg|_{t=0} L(\gamma_t) = -\int_I \langle D_t \dot{\gamma}, U \rangle$.

AN ISOPERIMETRIC INEQUALITY IN THE HEISENBERG GROUP \mathbb{H}^n
Observe that $D_\gamma \dot{\gamma}$ is orthogonal to both $\dot{\gamma}$ and T. Along γ consider the orthonormal basis of $T_i\mathbb{H}^n$ given by $T, \dot{\gamma}, J(\dot{\gamma}), Z_1, \ldots, Z_{2n-2}$. In the same way as for the case of \mathbb{H}^1, see [16, § 3], we take any smooth $f : I \to \mathbb{R}$ vanishing at the endpoints of I so that \(\int_I f = 0 \). The vector field U along γ so that $U_H = f J(\dot{\gamma})$, and $\langle U, T \rangle = 2 \int_I f$, satisfies (2.6). Hence (2.7) allows us to conclude that $\langle D_\gamma \dot{\gamma}, J(\dot{\gamma}) \rangle$ is constant. Now let $f : I \to \mathbb{R}$ be any smooth function vanishing at the endpoints of I. Then the vector field $U = f Z_i$, for any $i = 1, \ldots, 2n - 2$, satisfies (2.6), and hence $D_\gamma \dot{\gamma}$ is orthogonal to Z_i for all $i = 1, \ldots, 2n - 2$. So we obtain that the horizontal geodesic $\gamma : I \to \mathbb{H}^n$ satisfies the equation

\[
D_\gamma \dot{\gamma} + 2\lambda J(\dot{\gamma}) = 0,
\]

for some constant $\lambda \in \mathbb{R}$. For $\lambda \in \mathbb{R}$, $p \in \mathbb{H}^n$, and $v \in T_p \mathbb{H}^n$, $|v| = 1$, the geodesic $\gamma : I \to \mathbb{H}^n$ of curvature λ with initial conditions $\gamma(0) = p$, $\dot{\gamma}(0) = v$, will be denoted by γ^λ_p, v.

The equations of a geodesic can be computed in coordinates in the following way: let $\gamma(s) = (x_1(s), y_1(s), \ldots, x_n(s), y_n(s), t(s))$ be a horizontal geodesic. Then

\[
\dot{\gamma}(s) = \sum_{i=1}^{n} \dot{x}_i(s) (X_i)_{\gamma(s)} + \dot{y}_i(s) (Y_i)_{\gamma(s)},
\]

and

\[
\dot{t}(s) = \sum_{i=1}^{n} (\dot{x}_i y_i - x_i \dot{y}_i)(s).
\]

So equation (2.8) is transformed in

\[
\begin{align*}
\ddot{x}_i &= 2\lambda \dot{y}_i, \\
\ddot{y}_i &= -2\lambda \dot{x}_i,
\end{align*}
\]

with initial conditions $x_i(0) = (x_0)_i$, $y_i(0) = (y_0)_i$, and $\dot{x}_i(0) = A_i$, $\dot{y}_i(0) = B_i$, with $\sum_{i=1}^{n}(A_i^2 + B_i^2) = 1$.

Integrating these equations, for $\lambda = 0$, we obtain

\[
\begin{align*}
x_i(s) &= (x_0)_i + A_i s, \\
y_i(s) &= (y_0)_i + B_i s,
\end{align*}
\]

which are horizontal Euclidean straight lines in \mathbb{H}^n.

Integrating, for $\lambda \neq 0$, we obtain

\[
\begin{align*}
x_i(s) &= (x_0)_i + A_i \left(\frac{\sin(2\lambda s)}{2\lambda} \right) + B_i \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right), \\
y_i(s) &= (y_0)_i - A_i \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right) + B_i \left(\frac{\sin(2\lambda s)}{2\lambda} \right), \\
t(s) &= t_0 + \frac{1}{2\lambda} \left(s - \frac{\sin(2\lambda s)}{2\lambda} \right) + \sum_{i=1}^{n} \left\{ (A_i(x_0)_i + B_i(y_0)_i) \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right) \\
&\quad - (B_i(x_0)_i - A_i(y_0)_i) \left(\frac{\sin(2\lambda s)}{2\lambda} \right) \right\},
\end{align*}
\]
In case \(x_0 = y_0 = 0 \), we obtain
\[
x_i(s) = A_i \left(\frac{\sin(2\lambda s)}{2\lambda} \right) + B_i \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right),
\]
\[
y_i(s) = -A_i \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right) + B_i \left(\frac{\sin(2\lambda s)}{2\lambda} \right),
\]
and so \(\dot{x}_i, \dot{y}_i, i = 1, \ldots, n \), can be expressed in terms of \(x_i, y_i \) in the following way
\[
\dot{x}_i(s) = \frac{\lambda \sin(2\lambda s)}{1 - \cos(2\lambda s)} x_i(s) + \lambda y_i(s),
\]
\[
\dot{y}_i(s) = -\lambda x_i(s) + \frac{\lambda \sin(2\lambda s)}{1 - \cos(2\lambda s)} y_i(s).
\]

2.5. The spheres \(S_\lambda \). For any \(\lambda > 0 \), \(p \in \mathbb{H}^n \), consider the hypersurface \(S_{\lambda,p} \) defined by
\[
S_{\lambda,p} := \bigcup_{v \in H_\nu, |v| = 1} \gamma^v_{\nu,\lambda}([0, \pi/\lambda]).
\]
If \(p \) is translated to the point \(q = (0, \pi/(4\lambda^2)) \), then \(S_\lambda := S_{\lambda,q} \) is the union of the graphs of the functions \(f \) and \(-f \), where
\[
f(z) = \frac{1}{2\lambda^2} \{ \lambda|z| \sqrt{1 - \lambda^2 |z|^2} + \arccos (\lambda|z|) \}, \quad |z| \leq \frac{1}{\lambda}.
\]
The hypersurface \(S_\lambda \) is compact and homeomorphic to a \((2n)\)-dimensional sphere. Its singular set consists of the two points \(\pm(0, \pi/(4\lambda^2)) \) on the \(t \)-axis, called the poles. It is known that the spheres \(S_\lambda \) are \(C^2 \) but not \(C^3 \) around the singular points. These hypersurfaces were conjectured to be the (smooth) solutions to the isoperimetric problem in \(\mathbb{H}^1 \) by P. Pansu [14]. It was proven in [16] that the hypersurfaces \(S_\lambda \) are the only compact hypersurfaces of revolution with constant mean curvature \(\lambda \) in \(\mathbb{H}^n \). We shall denote by \(B_\lambda \) the topological closed ball enclosed by \(S_\lambda \). It is well known that the spheres \(S_\lambda \) consist of the union of segments of geodesics of curvature \(\lambda \) and length \(\pi/\lambda \) starting from a given point \(p \in \mathbb{H}^n \).

Lemma 2.3. The characteristic curves in \(S_\lambda \) are the geodesics of curvature \(\lambda \) joining the poles.

Proof. Since \(S^+_\lambda \) is the graph of the function \(\pm f \), the inner unit normal to \(S_\lambda \) is proportional to
\[
\sum_{i=1}^n \left\{ \left(\frac{\partial f}{\partial x_i} - y_i \right) X_i + \left(\frac{\partial f}{\partial y_i} + x_i \right) Y_i \right\} - T
\]
on \(S^-_\lambda \), and proportional to
\[
-\sum_{i=1}^n \left\{ \left(\frac{\partial(-f)}{\partial x_i} - y_i \right) X_i + \left(\frac{\partial(-f)}{\partial y_i} + x_i \right) Y_i \right\} + T
\]
on \(S^-_\lambda \). Let \(\nu_\lambda \) be the horizontal unit normal to \(S_\lambda \). From
\[
\frac{\partial f}{\partial x_i} = -\lambda |z| (1 - \lambda^2 |z|^2)^{-1/2} x_i, \quad \frac{\partial f}{\partial y_i} = -\lambda |z| (1 - \lambda^2 |z|^2)^{-1/2} y_i,
\]
we have that \(J(\nu_\lambda) \) is given by
\[
\sum_{i=1}^n \left(-\lambda x_i - \frac{(1 - \lambda^2 |z|^2)^{1/2}}{|z|} y_i \right) Y_i + \left(\lambda y_i - \frac{(1 - \lambda^2 |z|^2)^{1/2}}{|z|} x_i \right) X_i
\]
Lemma 2.4. Let
\[\lambda \sin(2\lambda s) \frac{1}{1 - \cos(2\lambda s)} = \pm \frac{(1 - \lambda^2 |z|^2)^{1/2}}{|z|}, \]
where the plus sign is chosen in case \(s \in [0, \pi/(2\lambda)] \), that is, when \(\gamma(s) \in S^-_\lambda \), and the minus sign if \(s \in [\pi/(2\lambda), \pi/\lambda] \), when \(\gamma(s) \in S^+_\lambda \). Replacing the value of \(\lambda \sin(2\lambda s)/(1 - \cos(2\lambda s)) \) in equations (2.9) and (2.10) by using (2.11), we conclude that \(\gamma \) is equal to \(J(\nu_\lambda) \), i.e., \(\gamma \) is a characteristic curve of \(S_\lambda \).

\[\square \]

Lemma 2.4. Let \(\Sigma \subset \mathbb{H}^n \) be a \(C^2 \) compact hypersurface with a finite number of isolated singular points. Assume that \(\Sigma \) has constant mean curvature. Then \(\Sigma \) is volume-preserving area-stationary. In particular, the spheres \(S_\lambda \) are volume-preserving area-stationary.

Proof. Let \(U \) be a vector field inducing a volume-preserving variation of \(\Sigma \). Let \(u = \langle U, N \rangle \). By the first variation of volume (2.3) we have \(\int_{\Sigma} u \, d\Sigma = 0 \). By the first variation of area (16), Lemma 3.2], we have
\[A'(0) = -\int_{\Sigma} \text{div}_\Sigma (u \nu_H^\top) \, d\Sigma, \]
since \(u \) has mean zero and \(\text{div}_\Sigma \nu_H \) is constant.

To analyze the above integral, we consider open balls \(B_\varepsilon(p_i) \) of radius \(\varepsilon > 0 \) centered at the points \(p_1, \ldots, p_k \) of the singular set \(\Sigma_0 \). By the divergence theorem in \(\Sigma \), we have, for \(\Sigma_\varepsilon = \Sigma \setminus \bigcup_{i=1}^k B_\varepsilon(p_i) \),
\[-\int_{\Sigma_\varepsilon} \text{div}_\Sigma (u \nu_H^\top) \, d\Sigma = \sum_{i=1}^k \int_{\partial B_\varepsilon(p_i)} u \langle \xi_i, \nu_H^\top \rangle \, d(\partial B_\varepsilon(p_i)), \]
where \(\xi_i \) is the inner unit normal vector to \(\partial B_\varepsilon(p_i) \) in \(\Sigma \), and \(d(\partial B_\varepsilon(p_i)) \) is the Riemannian volume element of \(\partial B_\varepsilon(p_i) \). Note also that
\[\left| \sum_{i=1}^k \int_{\partial B_\varepsilon(p_i)} u \langle \xi_i, \nu_H^\top \rangle \, d(\partial B_\varepsilon(p_i)) \right| \leq \left(\sup_{\Sigma} |u| \right) \sum_{i=1}^k V_{2n-1}(\partial B_\varepsilon(p_i)), \]
where \(V_{2n-1}(\partial B_\varepsilon(p_i)) \) is the Riemannian \((2n-1)\)-volume of \(\partial B_\varepsilon(p_i) \). Observe that the function \(\text{div}_\Sigma (u \nu_H^\top) \) is bounded from above by \(\sup_{\Sigma} |u| \) \text{div}_\Sigma \nu_H - |N_H| \text{div}_\Sigma N + |\nabla u| \), which is also bounded. So we can apply the dominated convergence theorem and the fact that \(V_{2n-1}(\partial B_\varepsilon(p_i)) \to 0 \), when \(\varepsilon \to 0 \), to prove that \(A'(0) = 0 \).

\[\square \]

2.6. \(\mathbb{H} \)-regular surfaces (11, 4). Let \(\Omega \subset \mathbb{H}^n \) be an open set. Then \(C^1_\mathbb{H}(\Omega) \) is the set of continuous real functions in \(\Omega \) such that \(\nabla_\mathbb{H} f \) is continuous, (4 def. 5.7], where \(\nabla_\mathbb{H} f \) is defined by
\[\nabla_\mathbb{H} f := \sum_{i=1}^n X_i(f) X_i + Y_i(f) Y_i. \]
Following [4 def. 6.1] we say that \(\Sigma \) is a Heinsberg-Carathéodory distance, there is a constant \(C > p \) by (2.14). Taking limits when \(h \to 0 \), we have \(E := \{ q \in \Omega : f(q) < 0 \} \), then \(E \) is a set of locally finite perimeter in \(\Omega \) and \(\gamma_H = -\nabla_H f/|\nabla_H f| \).

We have the following

Lemma 2.5. Let \(\Sigma \) be an Heinsberg-regular hypersurface, and let \(\nu_H \) be its horizontal unit normal vector. If \(\gamma : I \to \mathbb{H}^n \) is an integral curve of \(J(\nu_H) \) with \(\gamma(0) \in \Sigma \), then \(\gamma(I) \subset \Sigma \).

Proof. Locally \(\Sigma = \{ p \in \Omega : f(p) = 0 \} \), for some open set \(\Omega \subset \mathbb{H}^n \), and some \(f \in C^1(\Omega) \) with nonvanishing horizontal gradient. It is enough to prove the result in \(\Sigma \cap \Omega \). If \(\gamma \) is any \(C^1 \) curve then

\[
\frac{d}{ds} f(\gamma(s)) = \langle \nabla_H f(\gamma(s)), \dot{\gamma}(s) \rangle.
\]

Let us check this equality. The \(C^1 \) function \(f \) is Pansu-differentiable in its domain of definition by [4 Thm. 5.10]. By the results in [4 § 5] this implies that, for \(p \) in a fixed small neighborhood of \(a \), we have

\[
(2.13) \quad f(p) - f(a) - \langle \nabla_H f(a), \pi_a(a^{-1} \cdot p) \rangle = \|a^{-1} \cdot p\|_\infty E(a, p),
\]

where the function \(E(a, p) \) satisfies

\[
(2.14) \quad \lim_{p \to a} E(a, p) = 0,
\]

\(\| \cdot \|_\infty \) is the homogeneous norm defined in (2.2), and the projection \(\pi_a \) is defined, as in [4 Def. 2.19], by

\[
\pi_a(z, t) := \sum_{i=1}^n x_i (X_i)_a + y_i (Y_i)_a.
\]

Hence, taking \(a = \gamma(s), p = \gamma(s + h), g(s) = (f \circ \gamma)(s) \), we get from (2.13)

\[
(2.15) \quad \frac{g(s + h) - g(s)}{h} = \langle \nabla_H f(\gamma(s)), \pi_a(\gamma(s^{-1} \cdot \gamma(s + h))) \rangle
\]

\[
\quad + \|\gamma(s^{-1} \cdot \gamma(s + h))\|_\infty E(\gamma(s), \gamma(s + h)).
\]

Since \(\gamma \) is a horizontal curve, it is immediate to check that

\[
(2.16) \quad \lim_{h \to 0} \pi_a(\gamma(s^{-1} \cdot \gamma(s + h))) = \dot{\gamma}(s).
\]

On the other hand, since the norm \(\| \cdot \|_\infty \) is globally equivalent to the Carnot-Carathéodory distance, there is a constant \(C > 0 \) so that \(\|\gamma(s^{-1} \cdot \gamma(s + h))\|_\infty \leq C d(\gamma(s), \gamma(s + h)) \). As \(\gamma \) is a \(C^1 \) horizontal curve we have \(d(\gamma(s), \gamma(s + h)) \leq \|\dot{\gamma}\|_\infty h \).

So we have that \(\|a^{-1} \cdot \gamma(s + h)\|_\infty/h \) is bounded and

\[
(2.17) \quad \lim_{h \to 0} \|\gamma(s)^{-1} \cdot \gamma(s + h)\|_\infty E(\gamma(s), \gamma(s + h)) = 0,
\]

by (2.14). Taking limits when \(h \) goes to 0 in (2.6), and using (2.16) and (2.17), we get (2.12).
Assume now that γ is an integral curve of $J(-\nabla_E f/|\nabla_E f|)$ with $\gamma(0) \in \Sigma$. Since $\nabla_E f$ and $J(\nabla_E f)$ are orthogonal, equation (2.12) implies
\[
\frac{d}{ds}f(\gamma(s)) = 0.
\]
We conclude that $f \circ \gamma$ is a constant function and, since $f(\gamma(0)) = 0$, we have $f \circ \gamma \equiv 0$ in Ω, and so $\gamma(I) \subset \Sigma$. Since $\nu_H = -\nabla_E f/|\nabla_E f|$ on Σ, γ in an integral curve of $J(\nu_H)$ contained in Σ. \qed

3. Proof of the isoperimetric inequality

We shall denote by $D_r := \{(z,0) : |z| \leq r\}$ the closed Euclidean disk of radius $r > 0$ contained in the Euclidean hyperplane $\Pi_0 := \{t = 0\}$, and by $C_r := \{(z,t) : |z| \leq r\}$ the vertical cylinder over D_r. The vertical t-axis $\{(0,t) : t \in \mathbb{R}\}$ will be denoted by L. For any set $B \subset \mathbb{H}^n$, define $B^+ := B \cap \{(z,t) \in \mathbb{H}^n : t > 0\}$, $B^- := B \cap \{(z,t) \in \mathbb{H}^n : t \leq 0\}$.

We recall that to any finite perimeter set $E \subset \mathbb{H}^n$ we may add its density one points and remove its density zero points, without changing the perimeter and the volume of E. We shall always normalize a finite perimeter set in this way.

Theorem 3.1. Let $E \subset \mathbb{H}^n$ be a finite perimeter set such that $D \subset E \subset C$, where $D = D_r$, $C = C_r$, for some $r > 0$. Then
\[
(3.1) \quad |\partial E| \geq |\partial B_\mu|,
\]
where B_μ is the ball with $|\partial B_\mu| = |E|$, Equality holds in (3.1) if and only if $B_\mu = E$.

Proof. It can be easily proven that $E^\pm := E \cap (\mathbb{H}^n)^\pm$ are finite perimeter sets. The reduced boundary $\partial^* E^+$ of E^+ is contained in $(\partial^* E \cap \{t > 0\}) \cup \text{int}(D)$, where $\text{int}(D)$ is the interior of D inside Π_0.

We choose two families of functions. For $0 < \epsilon < 1$ we consider smooth functions φ_ϵ, depending on the Euclidean distance to the vertical axis L, so that $0 \leq \varphi_\epsilon \leq 1$, and
\[
\varphi_\epsilon(p) = 0, \quad d(p, L) \leq \epsilon^2, \\
\varphi_\epsilon(p) = 1, \quad d(p, L) \geq \epsilon, \\
|\nabla \varphi_\epsilon(p)| \leq 2/\epsilon, \quad \epsilon^2 \leq d(p, L) \leq \epsilon.
\]
Again for $0 < \epsilon < 1$ we consider smooth functions ψ_ϵ, depending on the distance to the Euclidean hyperplane Π_0, so that $0 \leq \psi_\epsilon \leq 1$, and
\[
\psi_\epsilon(p) = 1, \quad d(p, \Pi_0) \leq \epsilon^{-1/2}, \\
\psi_\epsilon(p) = 0, \quad d(p, \Pi_0) \geq \epsilon^{-1/2} + 1, \\
|\nabla \psi_\epsilon(p)| \leq 2, \quad \epsilon^{-1/2} \leq d(p, \Pi_0) \leq \epsilon^{-1/2} + 1.
\]

Let $\lambda := 1/r$. Then the ball B_λ satisfies $B_\lambda \cap \Pi_0 = D$. Translate vertically the closed halfspheres B_λ^+ to get a foliation of C. Let X be the vector field on $C \setminus L$ given by the horizontal unit normal to the leaves of the foliation. By (2.4), on $C \setminus L$ we have
\[
\text{div} X = -n\lambda.
\]
We consider the horizontal vector field $\psi_\epsilon \varphi_\epsilon X$, which has compact support on \mathbb{H}^n.
\[
\int_{E^+} \text{div}(\psi_\epsilon \varphi_\epsilon X) \, dv = \int_{E^+} \psi_\epsilon \varphi_\epsilon \text{div} X \, dv + \int_{E^+} \langle \nabla(\psi_\epsilon \varphi_\epsilon), X \rangle \, dv.
\]
Observe that
\[\lim_{\epsilon \to 0} \int_{E^+} \psi_\epsilon \varphi_\epsilon \, \text{div} \, X \, dv = -n \lambda |E^+|, \]
by Lebesgue’s Dominated Convergence Theorem since \(\psi_\epsilon \varphi_\epsilon \, \text{div} \, X \) is uniformly bounded, \(E^+ \) has finite volume, and \(\lim_{\epsilon \to 0} \psi_\epsilon \varphi_\epsilon = 1 \). On the other hand
\[\lim_{\epsilon \to 0} \int_{E^+} \langle \nabla (\psi_\epsilon \varphi_\epsilon), X \rangle \, dv = 0, \]
since \(\langle \varphi_\epsilon \nabla \psi_\epsilon, X \rangle \) is bounded and converges pointwise to 0, and
\[\lim_{\epsilon \to 0} \int_{E^+} |\langle \psi_\epsilon \nabla \varphi_\epsilon, X \rangle| \, dv \leq \lim_{\epsilon \to 0} \int_{(\mathbb{R}^n)^+} \psi_\epsilon |\nabla \varphi_\epsilon| \, dv = 0. \]
The last equality is easily checked taking classical cylindrical coordinates in \(\mathbb{H}^n = \mathbb{R}^{2n+1} \). So we conclude
\[\text{(3.2)} \quad \lim_{\epsilon \to 0} \int_{E^+} \text{div}(\psi_\epsilon \varphi_\epsilon X) \, dv = -n \lambda |E^+|. \]

By applying the Divergence Theorem for finite perimeter sets \([4]\) to \(E^+ \) and to the vector field \(\psi_\epsilon \varphi_\epsilon X \) we have
\[\int_{E^+} \text{div}(\psi_\epsilon \varphi_\epsilon X) \, dv = -\int_D \langle \psi_\epsilon \varphi_\epsilon X, N_D \rangle \, dD - \int_{\partial^* E \cap \{t > 0 \}} \langle \psi_\epsilon \varphi_\epsilon X, \nu_H \rangle \, d|\partial E|, \]
where \(N_D \) is the Riemannian unit normal to \(D \) pointing into \((\mathbb{H}^n)^+ \), \(dD \) is the Riemannian area element on \(D \), and \(\nu_H \) is the inner horizontal unit normal to \(\partial^* E \).
Taking limits when \(\epsilon \to 0 \), we get from \(\text{(3.2)} \) and inequality \(\langle X, \nu_H \rangle \leq 1 \),
\[\text{(3.3)} \quad -n \lambda |E^+| \geq -\int_D \langle X, N_D \rangle \, dD - \int_{\partial^* E \cap \{t > 0 \}} \, d|\partial E|, \]
with equality if and only if, \(|\partial E| \)-a.e., \(X = \nu_H \) on \(\partial E \cap (\mathbb{H}^n)^+ \).

We may replace \(E^+ \) by \(\mathbb{B}_\lambda^+ \) in the previous reasoning to obtain
\[\text{(3.4)} \quad -n \lambda |\partial \mathbb{B}_\lambda^+| = -\int_D \langle X, N_D \rangle \, dD - \int_{\partial^* \mathbb{B}_\lambda \cap \{t > 0 \}} \, d|\partial \mathbb{B}_\lambda|. \]
Hence from \(\text{(3.3)} \) and \(\text{(3.4)} \) we obtain
\[\text{(3.5)} \quad \int_{\partial^* E \cap \{t > 0 \}} \, d|\partial E| \geq \int_{\partial \mathbb{B}_\lambda \cap \{t > 0 \}} \, d|\partial \mathbb{B}_\lambda| + n \lambda (|E^+| - |\mathbb{B}_\lambda^+|), \]
with equality if and only if, \(|\partial E| \)-a.e., \(Y = \nu_H \) on \(\partial E \cap (\mathbb{H}^n)^+ \).

We consider now the foliation of \(C \) by vertical translations of the closed halfspheres \(\mathbb{S}_\lambda^- \). Let \(Y \) be the vector field on \(C \setminus L \) given by the horizontal unit normal to the leaves of the foliation. By applying the previous argument we get a similar estimate
\[\text{(3.6)} \quad \int_{\partial^* E \cap \{t < 0 \}} \, d|\partial E| \geq \int_{\partial \mathbb{B}_\lambda \cap \{t < 0 \}} \, d|\partial \mathbb{B}_\lambda| + n \lambda (|E^-| - |\mathbb{B}_\lambda^-|), \]
with equality if and only if, \(|\partial E| \)-a.e., \(Y = \nu_H \) on \(\partial E \cap (\mathbb{H}^n)^- \).

Hence, adding \(\text{(3.5)} \) and \(\text{(3.6)} \), and taking into account \(|\partial E| \geq |\partial E|(\mathbb{H}^n \setminus \Pi_0) \), that \(\partial \mathbb{B}_\lambda \cap \Pi_0 \) does not contribute to the perimeter of \(E \) and \(\mathbb{B}_\lambda \), and that \(E \cap \Pi_0 \) and \(\mathbb{B}_\lambda \cap \Pi_0 \) do not contribute to the volume of \(E \) and \(\mathbb{B}_\lambda \), we get
\[\text{(3.7)} \quad |\partial E| \geq |\partial \mathbb{B}_\lambda| + n \lambda (|E^-| - |\mathbb{B}_\lambda^-|), \]
with equality if and only if, \(|\partial E| \)-a.e., \(X = \nu_H \) on \(\partial E \cap (\mathbb{H}^n)^+ \) and \(Y = \nu_H \) on \(\partial E \cap (\mathbb{H}^n)^- \) and \(|\partial E| = |\partial E|(\mathbb{H}^n \setminus \Pi_0) \).
Let \(f(\rho) := n \rho |E| + |\partial \mathbb{B}_\rho| - n \rho |\mathbb{B}_\rho| \). By Lemmas 2.2 and 2.4, the sphere \(S_\rho \) is a critical point of \(A - n \rho V \), with \(\rho \) fixed, for any variation. So we have \(A(S_\rho)' - n \rho V(S_\rho)' = 0 \), where primes indicate the derivative with respect to \(\rho \). Hence we have

\[
 f'(\rho) = n (|E| - |\mathbb{B}_\rho|).
\]

Since the function \(\rho \mapsto |\mathbb{B}_\rho| \) is strictly decreasing and takes its values in the interval \((0, +\infty)\), we obtain that \(f(\rho) \) is an strictly convex function with a unique minimum \(\mu \) for which \(|E| = |\mathbb{B}_\mu| \). Hence we obtain from (3.7)

\[
|\partial E| \geq f(\lambda) \geq f(\mu) = |\partial \mathbb{B}_\mu|,
\]

which implies (3.1).

Assume now that equality holds in (3.8). Then, since \(f \) is strictly convex, \(\lambda = \mu \). By [12] Thm 1.2, \(\partial E \setminus L \) is an \(\mathcal{H} \)-regular hypersurface. By Lemma 2.5, the integral curves of \(J(\nu_H) \), starting from points in \(\partial E \setminus L \), are contained in \(\partial E \setminus L \).

Observe now that \(\partial D \subset (\partial E \setminus L) \cap S_\mu \). For every \(p \in \partial D \), consider the integral curve \(\gamma_p : I_p \rightarrow \mathbb{R}^n \) of \(J(\nu_H) \), where \(I_p \) is the maximal interval for which \(\gamma_p \) is defined. The trace \(\gamma_p(I_p) \) is contained in \(\partial E \setminus L \). Such a curve is also an integral curve of \(J(X) \) in \((\mathbb{H}^n)^+\) and an integral curve of \(J(Y) \) in \((\mathbb{H}^n)^-\), and so it is contained in the sphere \(S_\mu \). In fact, it is part of a characteristic curve of \(S_\mu \).

Since \(\partial E \setminus L \) is foliated by integral curves of \(J(\nu_H) \), it is easy to check that \(\partial E \supset \bigcup_{p \in \partial D} \gamma_p(I_p) = S_\mu \setminus (S_\mu)_0 = S_\mu \setminus L \). Here \((S_\mu)_0\) is the singular set of the \(C^2 \) hypersurface \(S_\mu \), as defined in § 2.3. This implies that \(S_\mu \subset \partial E \). We claim that \(\mathbb{B}_\mu \subset E \). To prove this we shall show that \(\mathbb{B}_\mu \setminus L \subset \mathcal{E} \) reasoning by contradiction. If \(\mathbb{B}_\mu \setminus L \) is not contained in \(\mathcal{E} \), as \(S_\mu = \partial \mathbb{B}_\mu \subset \partial E \), there is a point \(p \) in the interior of \(\mathbb{B}_\mu \setminus L \) so that \(p \notin \mathcal{E} \). The Euclidean orthogonal projection \(p' \) of \(p \) over \(t = 0 \) lies in \(D \subset E \). Hence there is a point \(q \) in the Euclidean segment \([p, p'] \subset \text{int} (\mathbb{B}_\rho)\) that belongs to \(\partial E \setminus L \). As \(\partial E \setminus L \) is \(\mathbb{H} \)-regular, the perimeter of \(\partial E \) in a small ball contained in \(\text{int} (\mathbb{B}_\rho) \) and centered at \(q \) is positive, and so \(|\partial E| > |\partial \mathbb{B}_\rho| \), which contradicts our assumption that equality holds in (3.8). This implies \(\mathbb{B}_\rho \subset \mathcal{E} \). As \(|\mathbb{B}_\rho| = |E| \) we obtain \(\mathbb{B}_\rho = E \) by the normalization of \(E \).

\[\square\]

References

19. _____, Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im n-dimensionalen sphärischen Raum, Math. Z. 46 (1940), 743–794. MR MR0003733 (2,626a)
20. _____, Über die isoperimetrische Aufgabe im n-dimensionalen Raum konstanter negativer Krümmung. I. Die isoperimetrischen Ungleichungen in der hyperbolischen Ebene und für Rotationskörper im n-dimensionalen hyperbolischen Raum, Math. Z. 46 (1940), 204–230. MR MR0002196 (2,12e)

Departamento de Geometría y Topología, Universidad de Granada, E–18071 Granada, España

E-mail address: ritore@ugr.es