Stable capillary hypersurfaces in slabs and half-spaces

Rabah Souam

CNRS Institut de Mathématiques de Jussieu - Paris Rive Gauche

Geometric aspects on capillary problems and related topics

Granada, December 14-17, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The aim of this talk is to characterize stable immersed capillary hypersurfaces in slabs and half-spaces in the Euclidean spaces \mathbb{R}^{n+1} , $n \geq 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The aim of this talk is to characterize stable immersed capillary hypersurfaces in slabs and half-spaces in the Euclidean spaces \mathbb{R}^{n+1} , $n \geq 2$.

• A. Ainouz and R. Souam, Stable capillary hypersurfaces in a half-space or a slab, to appear in Indiana Univ. Math. J. (arXiv:1411.4241).

General setting, capillary hypersurfaces

Let $(M^{n+1}, \langle, \rangle)$ be an oriented Riemannian manifold of dimension $n+1, n \geq 2$ and $\mathcal{B} \subset M$ a domain with smooth boundary.

General setting, capillary hypersurfaces

Let $(M^{n+1}, \langle, \rangle)$ be an oriented Riemannian manifold of dimension $n+1, n \geq 2$ and $\mathcal{B} \subset M$ a domain with smooth boundary.

We let \overline{N} be the outward unit normal to $\partial \mathcal{B}$.

Let $(M^{n+1}, \langle, \rangle)$ be an oriented Riemannian manifold of dimension $n+1, n \geq 2$ and $\mathcal{B} \subset M$ a domain with smooth boundary.

We let \overline{N} be the outward unit normal to $\partial \mathcal{B}$.

Fix an angle $\theta \in (0, \pi)$. Let Σ be a compact orientable manifold of dimension *n*. A capillary immersion $\psi : \Sigma \to \mathcal{B}$ with contact angle θ is:

• a proper immersion $\psi(\operatorname{int} \Sigma) \subset \operatorname{int} \mathcal{B}$ and $\psi(\partial \Sigma) \subset \partial \mathcal{B}$ with constant mean curvature

Let $(M^{n+1}, \langle, \rangle)$ be an oriented Riemannian manifold of dimension $n+1, n \geq 2$ and $\mathcal{B} \subset M$ a domain with smooth boundary.

We let \overline{N} be the outward unit normal to $\partial \mathcal{B}$.

Fix an angle $\theta \in (0, \pi)$. Let Σ be a compact orientable manifold of dimension *n*. A capillary immersion $\psi : \Sigma \to \mathcal{B}$ with contact angle θ is:

- a proper immersion $\psi(\operatorname{int} \Sigma) \subset \operatorname{int} \mathcal{B}$ and $\psi(\partial \Sigma) \subset \partial \mathcal{B}$ with constant mean curvature
- the unit normal N to Σ for which $H \ge 0$ makes an angle θ with \overline{N} along $\partial \Sigma$.

Such an immersion is a critical point for the following variational problem:

An admissible variation of ψ is a smooth map $\Psi: (-\epsilon, \epsilon) \times \Sigma \to \mathcal{B}$ such that $\psi_t = \Psi(t, .)$ is a proper immersion for each t and $\psi_0 = \psi$.

Such an immersion is a critical point for the following variational problem:

An admissible variation of ψ is a smooth map $\Psi : (-\epsilon, \epsilon) \times \Sigma \to \mathcal{B}$ such that $\psi_t = \Psi(t, .)$ is a proper immersion for each t and $\psi_0 = \psi$.

The volume function $V:(-\epsilon,\epsilon)\to \mathbb{R}$ is defined by

$$V(t) = \int_{[0,t] imes \Sigma} \Psi^* \Omega$$

where Ω is the volume form on M.

The variation is *volume preserving* if V(t) = 0 for each *t*.

Such an immersion is a critical point for the following variational problem:

An admissible variation of ψ is a smooth map $\Psi : (-\epsilon, \epsilon) \times \Sigma \to \mathcal{B}$ such that $\psi_t = \Psi(t, .)$ is a proper immersion for each t and $\psi_0 = \psi$.

The volume function $V:(-\epsilon,\epsilon)\to\mathbb{R}$ is defined by

$$V(t) = \int_{[0,t] imes \Sigma} \Psi^* \Omega$$

where Ω is the volume form on M.

The variation is *volume preserving* if V(t) = 0 for each t. We have:

$$V'(0) = \int_{\Sigma} \langle X, N \rangle$$

where $X = \frac{\partial \Psi}{\partial t}(0, .)$ is the variation field of $\Psi_{a, a}$.

So, for a volume preserving variation the function $f := \langle X, N \rangle$ verifies $\int_{\Sigma} f = 0$.

Conversely any $f \in C^{\infty}(\Sigma)$ with $\int_{\Sigma} f = 0$ is induced by a volume preserving admissible variation.

So, for a volume preserving variation the function $f := \langle X, N \rangle$ verifies $\int_{\Sigma} f = 0$.

Conversely any $f \in C^{\infty}(\Sigma)$ with $\int_{\Sigma} f = 0$ is induced by a volume preserving admissible variation.

The wetted area function $W:(-\epsilon,\epsilon)\to \mathbb{R}$ is defined by

$$W(t) = \int_{[0,t] imes \partial \Sigma} \Psi^* \omega$$

where ω is the volume form on $\partial \mathcal{B}$.

So, for a volume preserving variation the function $f := \langle X, N \rangle$ verifies $\int_{\Sigma} f = 0$.

Conversely any $f \in C^{\infty}(\Sigma)$ with $\int_{\Sigma} f = 0$ is induced by a volume preserving admissible variation.

The wetted area function $W:(-\epsilon,\epsilon) \to \mathbb{R}$ is defined by

$$W(t) = \int_{[0,t]\times\partial\Sigma} \Psi^*\omega$$

where ω is the volume form on $\partial \mathcal{B}$.

The capillary immersion ψ is a critical point for volume preserving admissible variations of the energy function:

$$E(t) = |\psi_t(\Sigma)| - \cos\theta W(t).$$

 ψ is said to be stable if $E''(0) \ge 0$ for all admissible volume preserving variations.

・ロト・日本・モト・モート ヨー うへで

 ψ is said to be stable if $E''(0) \ge 0$ for all admissible volume preserving variations.

Second variation formula for the energy:

$$E^{''}(0) = -\int_{\Sigma} f\left(\Delta f + (|\sigma|^2 + \operatorname{Ric}(N))f\right) + \int_{\partial\Sigma} f\left(\frac{\partial f}{\partial\nu} - qf\right),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 ψ is said to be stable if $E''(0) \ge 0$ for all admissible volume preserving variations.

Second variation formula for the energy:

$$E''(0) = -\int_{\Sigma} f\left(\Delta f + (|\sigma|^2 + \operatorname{Ric}(N))f\right) + \int_{\partial\Sigma} f\left(\frac{\partial f}{\partial\nu} - qf\right),$$

 Δ : Laplacian on Σ , σ : second fundamental form of ψ , Ric is the Ricci curvature of M and

$$q = \frac{1}{\sin\theta} \mathsf{II}(\bar{\nu}, \bar{\nu}) + \cot\theta \, \sigma(\nu, \nu).$$

II: second fundamental form of $\partial \mathcal{B}$ associated to the unit normal $-\overline{N}$, that is, for $X, Y \in T(\partial \mathcal{B})$, $II(X, Y) = \langle \nabla_Y X, -\overline{N} \rangle$.

The index form \mathcal{I} : symmetric bilinear form on $H^1(\Sigma)$

$$\mathcal{I}(f,g) = \int_{\Sigma} \langle \nabla f, \nabla g \rangle - (|\sigma|^2 + \operatorname{Ric}(N)) fg - \int_{\partial \Sigma} q \, fg,$$

・ロト・日本・モト・モート ヨー うへで

where ∇ is the gradient on $\Sigma.$

The index form \mathcal{I} : symmetric bilinear form on $H^1(\Sigma)$

$$\mathcal{I}(f,g) = \int_{\Sigma} \langle \nabla f, \nabla g \rangle - (|\sigma|^2 + \operatorname{Ric}(N)) fg - \int_{\partial \Sigma} q \, fg,$$

where ∇ is the gradient on $\Sigma.$

 $\boldsymbol{\Sigma}$ is stable iff

$$\mathcal{I}(f,f) \geq 0, \quad \forall f \in H^1(\Sigma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The index form \mathcal{I} : symmetric bilinear form on $H^1(\Sigma)$

$$\mathcal{I}(f,g) = \int_{\Sigma} \langle \nabla f, \nabla g \rangle - (|\sigma|^2 + \operatorname{Ric}(N)) fg - \int_{\partial \Sigma} q \, fg,$$

where ∇ is the gradient on Σ .

 Σ is stable iff

$$\mathcal{I}(f,f) \geq 0, \quad \forall f \in H^1(\Sigma)$$

Remark

More generally, if $\partial \Sigma$ has several components $\Gamma_1, \ldots, \Gamma_k$ and has constant angle of contact θ_i with $\partial \mathcal{B}$ along Γ_i , for each *i*, then it is a critical point for the energy:

$$E(t) = |\psi_t(\Sigma)| - \sum_{i=1}^k \cos \theta_i W_i(t)$$

Examples: spherical caps.

Examples: spherical caps.

Question

Are there any other capillary immersions in half-spaces ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples: spherical caps.

Question

Are there any other capillary immersions in half-spaces ?

[Wente, 1980] An embedded capillary hypersurface in a half-space is a spherical cap (Alexandrov's reflection technique).

Examples: spherical caps.

Question

Are there any other capillary immersions in half-spaces ?

[Wente, 1980] An embedded capillary hypersurface in a half-space is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a half-space in \mathbb{R}^3 is a spherical cap.

Examples: spherical caps.

Question

Are there any other capillary immersions in half-spaces ?

[Wente, 1980] An embedded capillary hypersurface in a half-space is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a half-space in \mathbb{R}^3 is a spherical cap.

[Marinov, 2012] Stable capillary surface in a half-space in \mathbb{R}^3 with embedded boundary \Rightarrow spherical cap.

Examples: spherical caps.

Question

Are there any other capillary immersions in half-spaces ?

[Wente, 1980] An embedded capillary hypersurface in a half-space is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a half-space in \mathbb{R}^3 is a spherical cap.

[Marinov, 2012] Stable capillary surface in a half-space in \mathbb{R}^3 with embedded boundary \Rightarrow spherical cap.

[Choe-Koiso, 2014] Same result in \mathbb{R}^3 and for $n \ge 3$, a stable capillary hypersurface with contact angle $\theta \ge \pi/2$ and convex boundary in a half-space in \mathbb{R}^{n+1} is a spherical cap.

Theorem

Let $\psi : \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be a stable immersed capillary hypersurface in a half-space in \mathbb{R}^{n+1} with contact angle $0 < \theta \le \pi/2$.

- (i) If $\theta = \pi/2$, then $\psi(\Sigma)$ is a hemisphere.
- (ii) If $\theta < \pi/2$ and the restriction of ψ to each component of $\partial \Sigma$ is an embedding, then $\psi(\Sigma)$ is a spherical cap.

Theorem

Let $\psi : \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be a stable immersed capillary hypersurface in a half-space in \mathbb{R}^{n+1} with contact angle $0 < \theta \le \pi/2$.

- (i) If $\theta = \pi/2$, then $\psi(\Sigma)$ is a hemisphere.
- (ii) If $\theta < \pi/2$ and the restriction of ψ to each component of $\partial \Sigma$ is an embedding, then $\psi(\Sigma)$ is a spherical cap.

We may assume the half-space is $\{x_{n+1} \ge 0\}$. Let $e_{n+1} = (0, \dots, 0, 1)$.

Lemma

$$\int_{\Sigma} 1 + H \langle \psi, N
angle + \cos heta \langle N, e_{n+1}
angle = 0$$

Theorem

Let $\psi : \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be a stable immersed capillary hypersurface in a half-space in \mathbb{R}^{n+1} with contact angle $0 < \theta \le \pi/2$.

- (i) If $\theta = \pi/2$, then $\psi(\Sigma)$ is a hemisphere.
- (ii) If $\theta < \pi/2$ and the restriction of ψ to each component of $\partial \Sigma$ is an embedding, then $\psi(\Sigma)$ is a spherical cap.

We may assume the half-space is $\{x_{n+1} \ge 0\}$. Let $e_{n+1} = (0, \ldots, 0, 1)$.

Lemma

$$\int_{\Sigma} 1 + H \langle \psi, N
angle + \cos heta \langle N, e_{n+1}
angle = 0$$

The proof of the lemma combines 2 formulas

Theorem

Let $\psi: \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be a stable immersed capillary hypersurface in a half-space in \mathbb{R}^{n+1} with contact angle $0 < \theta \le \pi/2$.

- (i) If $\theta = \pi/2$, then $\psi(\Sigma)$ is a hemisphere.
- (ii) If $\theta < \pi/2$ and the restriction of ψ to each component of $\partial \Sigma$ is an embedding, then $\psi(\Sigma)$ is a spherical cap.

We may assume the half-space is $\{x_{n+1} \ge 0\}$. Let $e_{n+1} = (0, \ldots, 0, 1)$.

Lemma

$$\int_{\Sigma} 1 + {\it H} \langle \psi, {\it N}
angle + \cos heta \langle {\it N}, {\it e_{n+1}}
angle = 0$$

The proof of the lemma combines 2 formulas

• A Minkowski formula for hypersurfaces with boundary:

Theorem

Let $\psi: \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be a stable immersed capillary hypersurface in a half-space in \mathbb{R}^{n+1} with contact angle $0 < \theta \le \pi/2$.

- (i) If $\theta = \pi/2$, then $\psi(\Sigma)$ is a hemisphere.
- (ii) If $\theta < \pi/2$ and the restriction of ψ to each component of $\partial \Sigma$ is an embedding, then $\psi(\Sigma)$ is a spherical cap.

We may assume the half-space is $\{x_{n+1} \ge 0\}$. Let $e_{n+1} = (0, \ldots, 0, 1)$.

Lemma

$$\int_{\Sigma} 1 + H \langle \psi, N
angle + \cos heta \langle N, e_{n+1}
angle = 0$$

The proof of the lemma combines 2 formulas

• A Minkowski formula for hypersurfaces with boundary: $\operatorname{div}(\psi - \langle \psi, N \rangle N) = n(1 + H \langle \psi, N \rangle)$

Integrating

$$\int_{\Sigma} \langle \psi, \nu
angle = n \int_{\Sigma} 1 + H \langle \psi, N
angle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Integrating

$$\int_{\Sigma} \langle \psi,
u
angle = n \int_{\Sigma} 1 + H \langle \psi, N
angle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• A formula for the integral of the unit normal

Integrating

$$\int_{\Sigma} \langle \psi,
u
angle = n \int_{\Sigma} 1 + H \langle \psi, N
angle$$

• A formula for the integral of the unit normal

Proposition

Let $\psi: \Sigma \to \mathbb{R}^{n+1}$ be an immersion, Σ compact orientable. Then,

$$n\int_{\Sigma}N=\int_{\partial\Sigma}\langle\psi,\nu\rangle N-\langle\psi,N\rangle\nu$$

where ν is the outward unit normal to $\partial \Sigma$ in Σ .

Proof of the Proposition: Let \vec{a} be a constant vector field on \mathbb{R}^{n+1} . Set

$$X = \langle \vec{a}, N \rangle \psi^T - \langle \psi, N \rangle \vec{a}^T,$$

then

div
$$X = n \langle \vec{a}, N \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Integrating gives the result.

Proof of the Proposition: Let \vec{a} be a constant vector field on \mathbb{R}^{n+1} . Set

$$X = \langle \vec{a}, N \rangle \psi^{T} - \langle \psi, N \rangle \vec{a}^{T},$$

then

div
$$X = n \langle \vec{a}, N \rangle$$

Integrating gives the result.

On $\partial \Sigma$: $\cos \theta N + \sin \theta \nu = -e_{n+1}$, where $e_{n+1} = (0, \dots, 0, 1)$. So,

$$n\int_{\Sigma} N = -\frac{1}{\cos\theta} \left(\int_{\partial\Sigma} \langle \psi, \nu \rangle \right) e_{n+1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\mathcal{I}(\phi,\phi) = -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] + (n-1)\sin\theta\cos\theta \left[H \left| \partial\Sigma \right| + \sin\theta \int_{\partial\Sigma} H_{\partial\Sigma} \right]$$

where $H_{\partial \Sigma}$ is the mean curvature of $\partial \Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial \Sigma)^{\perp}$).
We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\mathcal{I}(\phi,\phi) = -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] + (n-1)\sin\theta\cos\theta \left[H \left| \partial\Sigma \right| + \sin\theta \int_{\partial\Sigma} H_{\partial\Sigma} \right]$$

where $H_{\partial\Sigma}$ is the mean curvature of $\partial\Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial\Sigma)^{\perp}$).

By stability $\mathcal{I}(\phi, \phi) \geq 0$.

We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\mathcal{I}(\phi,\phi) = -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] + (n-1)\sin\theta\cos\theta \left[H \left| \partial \Sigma \right| + \sin\theta \int_{\partial \Sigma} H_{\partial \Sigma} \right]$$

where $H_{\partial\Sigma}$ is the mean curvature of $\partial\Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial\Sigma)^{\perp}$).

By stability $\mathcal{I}(\phi, \phi) \ge 0$. In particular, as $|\sigma|^2 \ge nH^2$, when $\theta = \pi/2$, we get $|\sigma|^2 \equiv nH^2$

We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\mathcal{I}(\phi,\phi) = -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] + (n-1)\sin\theta\cos\theta \left[H \left| \partial \Sigma \right| + \sin\theta \int_{\partial \Sigma} H_{\partial \Sigma} \right]$$

where $H_{\partial\Sigma}$ is the mean curvature of $\partial\Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial\Sigma)^{\perp}$).

By stability $\mathcal{I}(\phi, \phi) \geq 0$. In particular, as $|\sigma|^2 \geq nH^2$, when $\theta = \pi/2$, we get $|\sigma|^2 \equiv nH^2 \Rightarrow \psi(\Sigma)$ is spherical.

We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\begin{aligned} \mathcal{I}(\phi,\phi) &= -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] \\ &+ (n-1)\sin\theta\cos\theta \left[H \left| \partial \Sigma \right| + \sin\theta \int_{\partial \Sigma} H_{\partial \Sigma} \right] \end{aligned}$$

where $H_{\partial\Sigma}$ is the mean curvature of $\partial\Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial\Sigma)^{\perp}$).

By stability $\mathcal{I}(\phi, \phi) \geq 0$. In particular, as $|\sigma|^2 \geq nH^2$, when $\theta = \pi/2$, we get $|\sigma|^2 \equiv nH^2 \Rightarrow \psi(\Sigma)$ is spherical. For $\theta < \pi/2$, we will show $v := \langle N, e_{n+1} \rangle$ does not change sign on Σ .

We can use $\phi = 1 + H\langle \psi, N \rangle + \cos \theta \langle N, e_{n+1} \rangle$ as a test function. We have

$$\begin{aligned} \mathcal{I}(\phi,\phi) &= -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] \\ &+ (n-1)\sin\theta\cos\theta \left[H \left| \partial \Sigma \right| + \sin\theta \int_{\partial \Sigma} H_{\partial \Sigma} \right] \end{aligned}$$

where $H_{\partial\Sigma}$ is the mean curvature of $\partial\Sigma$ in $\mathbb{R}^n \times \{0\}$ computed with respect to the unit normal $\overline{\nu}$ for which $\{N, \nu\}$ and $\{\overline{N}, \overline{\nu}\}$ have the same orientation (in $(T\partial\Sigma)^{\perp}$).

By stability $\mathcal{I}(\phi, \phi) \geq 0$. In particular, as $|\sigma|^2 \geq nH^2$, when $\theta = \pi/2$, we get $|\sigma|^2 \equiv nH^2 \Rightarrow \psi(\Sigma)$ is spherical.

For $\theta < \pi/2$, we will show $v := \langle N, e_{n+1} \rangle$ does not change sign on Σ .

By contradiction, if not, there exists a real α so that $w := v_{-} + \alpha v_{+}$ satisfies $\int_{\Sigma} w = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Use w as a test function.

Use w as a test function. We have

$$\mathcal{I}(w, w) = -nH \cot \theta |\partial \Sigma| - (n-1) \cos \theta \int_{\partial \Sigma} H_{\partial \Sigma}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Use w as a test function. We have

$$\mathcal{I}(w, w) = -nH \cot \theta |\partial \Sigma| - (n-1) \cos \theta \int_{\partial \Sigma} H_{\partial \Sigma}.$$

$$\begin{split} \mathcal{I}(\phi,\phi) &= -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] \\ &+ (n-1)\sin\theta\cos\theta \left[H \left| \partial\Sigma \right| + \sin\theta \int_{\partial\Sigma} H_{\partial\Sigma} \right]. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Use w as a test function. We have

$$\mathcal{I}(w, w) = -nH \cot \theta |\partial \Sigma| - (n-1) \cos \theta \int_{\partial \Sigma} H_{\partial \Sigma}.$$

$$\begin{aligned} \mathcal{I}(\phi,\phi) &= -\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] \\ &+ (n-1)\sin\theta\cos\theta \left[H \left| \partial\Sigma \right| + \sin\theta \int_{\partial\Sigma} H_{\partial\Sigma} \right]. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stability $\Longrightarrow \mathcal{I}(\phi, \phi) + \sin^2 \theta \, \mathcal{I}(w, w) \ge 0.$

・ロト・日本・モート モー うへぐ

So $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta \cos\theta H |\partial\Sigma| \ge 0.$

 $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta \cos\theta \, H |\partial\Sigma| \ge 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction.

$$-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta\cos\theta \, H |\partial\Sigma| \ge 0.$$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ .

 $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta \cos\theta \, H |\partial\Sigma| \ge 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ . On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \le 0$ on Σ .

$$-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta\cos\theta \, H |\partial\Sigma| \ge 0.$$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ . On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \le 0$ on Σ . We have $\Delta v = -|\sigma|^2 v \ge 0$.

$$-\int_{\Sigma} \left[|\sigma|^2 - nH^2
ight] - \sin heta \cos heta H |\partial \Sigma| \ge 0.$$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ . On $\partial \Sigma$, $v = -\cos \theta < 0$. So v < 0 on Σ .

So

We have $\Delta v = -|\sigma|^2 v \ge 0$. Maximum principle $\Rightarrow v < 0$ on Σ .

So

 $-\int_{\Sigma}\left[|\sigma|^2-nH^2
ight]-\sin heta\cos heta\,H|\partial\Sigma|\geq 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ . On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \le 0$ on Σ . We have $\Delta v = -|\sigma|^2 v \ge 0$. Maximum principle $\Rightarrow v < 0$ on Σ . $\Rightarrow \psi(\Sigma)$ is a local vertical graph at each point.

So

 $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta\cos\theta \, H |\partial\Sigma| \ge 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction. Conclusion: v does not change sign on Σ . On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \le 0$ on Σ . We have $\Delta v = -|\sigma|^2 v \ge 0$. Maximum principle $\Rightarrow v < 0$ on Σ . $\Rightarrow \psi(\Sigma)$ is a local vertical graph at each point. Set $\partial \Sigma = \Gamma_1 \cup \ldots \cup \Gamma_k$, each Γ_i connected.

 $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta\cos\theta \, H |\partial\Sigma| \ge 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction.

Conclusion: v does not change sign on Σ .

So

On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \leq 0$ on Σ .

We have $\Delta v = -|\sigma|^2 v \ge 0$. Maximum principle $\Rightarrow v < 0$ on Σ .

 $\Longrightarrow \psi(\Sigma)$ is a local vertical graph at each point.

Set $\partial \Sigma = \Gamma_1 \cup \ldots \cup \Gamma_k$, each Γ_i connected.

As ψ restricted to Γ_I is an embedding, $\psi(\Gamma_i)$ separates $\mathbb{R}^n \times \{0\}$ into 2 components.

 $-\int_{\Sigma} \left[|\sigma|^2 - nH^2 \right] - \sin\theta \cos\theta \, H |\partial\Sigma| \ge 0.$

But $|\sigma|^2 \ge nH^2$, $\theta < \pi/2$ and H > 0, a contradiction.

Conclusion: v does not change sign on Σ .

So

On $\partial \Sigma$, $v = -\cos \theta < 0$. So $v \leq 0$ on Σ .

We have $\Delta v = -|\sigma|^2 v \ge 0$. Maximum principle $\Rightarrow v < 0$ on Σ .

 $\Longrightarrow \psi(\Sigma)$ is a local vertical graph at each point.

Set $\partial \Sigma = \Gamma_1 \cup \ldots \cup \Gamma_k$, each Γ_i connected.

As ψ restricted to Γ_i is an embedding, $\psi(\Gamma_i)$ separates $\mathbb{R}^n \times \{0\}$ into 2 components. Call D_i the component onto which $\psi(\Sigma)$ does not project near Γ_i .

Consider $\widetilde{\Sigma}$ obtained by gluing D_i to Σ along Γ_i , for i = 1, ..., k. Let P be the orthogonal projection onto $\mathbb{R}^n \times \{0\}$. Set $F = P \circ \psi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider $\widetilde{\Sigma}$ obtained by gluing D_i to Σ along Γ_i , for i = 1, ..., k. Let P be the orthogonal projection onto $\mathbb{R}^n \times \{0\}$.

Set $F = P \circ \psi$. Define $\widetilde{F} : \widetilde{\Sigma} \to \mathbb{R}^n \times \{0\}$ by

$$\widetilde{F} = \begin{cases} F & \text{on } \Sigma \\ \text{identity} & \text{on } D_i, i = 1, \dots, k. \end{cases}$$

Consider $\widetilde{\Sigma}$ obtained by gluing D_i to Σ along Γ_i , for i = 1, ..., k. Let P be the orthogonal projection onto $\mathbb{R}^n \times \{0\}$.

Set $F = P \circ \psi$. Define $\widetilde{F} : \widetilde{\Sigma} \to \mathbb{R}^n \times \{0\}$ by

$$\widetilde{F} = \begin{cases} F & \text{on } \Sigma \\ \text{identity} & \text{on } D_i, i = 1, \dots, k. \end{cases}$$

 \widetilde{F} is a proper map and is local homeomorphism $\Rightarrow \widetilde{F}$ is a covering $\Rightarrow \widetilde{F}$ is a global homeomorphism.

Consider $\widetilde{\Sigma}$ obtained by gluing D_i to Σ along Γ_i , for i = 1, ..., k. Let P be the orthogonal projection onto $\mathbb{R}^n \times \{0\}$.

Set $F = P \circ \psi$. Define $\widetilde{F} : \widetilde{\Sigma} \to \mathbb{R}^n \times \{0\}$ by

$$\widetilde{F} = \begin{cases} F & \text{on } \Sigma \\ \text{identity} & \text{on } D_i, i = 1, \dots, k. \end{cases}$$

 \widetilde{F} is a proper map and is local homeomorphism $\Rightarrow \widetilde{F}$ is a covering $\Rightarrow \widetilde{F}$ is a global homeomorphism.

 $\Rightarrow \psi(\Sigma)$ is a global graph

Consider $\widetilde{\Sigma}$ obtained by gluing D_i to Σ along Γ_i , for i = 1, ..., k. Let P be the orthogonal projection onto $\mathbb{R}^n \times \{0\}$.

Set $F = P \circ \psi$. Define $\widetilde{F} : \widetilde{\Sigma} \to \mathbb{R}^n \times \{0\}$ by

$$\widetilde{F} = \begin{cases} F & \text{on } \Sigma \\ \text{identity} & \text{on } D_i, i = 1, \dots, k. \end{cases}$$

 \widetilde{F} is a proper map and is local homeomorphism $\Rightarrow \widetilde{F}$ is a covering $\Rightarrow \widetilde{F}$ is a global homeomorphism.

$$\Rightarrow \psi(\Sigma)$$
 is a global graph

 $\Rightarrow \psi(\Sigma)$ is a spherical cap (Wente).

Capillary hypersurfaces in a slab in \mathbb{R}^3

Examples: cylinders, unduloids, nodoids, catenoids

・ロト・日本・モト・モート ヨー うへで

Examples: cylinders, unduloids, nodoids, catenoids [Wente, 1980] An embedded capillary hypersurface in in a slab in \mathbb{R}^{n+1} is rotationally invariant, i.e a spherical cap or a slice of a Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1980] An embedded capillary hypersurface in in a slab in \mathbb{R}^{n+1} is rotationally invariant, i.e a spherical cap or a slice of a Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1993] There exist capillary annuli in a slab in \mathbb{R}^3 which are immersed and non-rotational.

[Wente, 1980] An embedded capillary hypersurface in in a slab in \mathbb{R}^{n+1} is rotationally invariant, i.e a spherical cap or a slice of a Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1993] There exist capillary annuli in a slab in \mathbb{R}^3 which are immersed and non-rotational.

[Vogel 1989, Finn-Vogel 1993, Zhou 1997] studied stability of rotationally invariant capillary surfaces between 2 parallel planes in \mathbb{R}^3

[Wente, 1980] An embedded capillary hypersurface in in a slab in \mathbb{R}^{n+1} is rotationally invariant, i.e a spherical cap or a slice of a Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1993] There exist capillary annuli in a slab in \mathbb{R}^3 which are immersed and non-rotational.

[Vogel 1989, Finn-Vogel 1993, Zhou 1997] studied stability of rotationally invariant capillary surfaces between 2 parallel planes in \mathbb{R}^3 + [Fel-Rubinstein, 2015]

[Wente, 1980] An embedded capillary hypersurface in in a slab in \mathbb{R}^{n+1} is rotationally invariant, i.e a spherical cap or a slice of a Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1993] There exist capillary annuli in a slab in \mathbb{R}^3 which are immersed and non-rotational.

[Vogel 1989, Finn-Vogel 1993, Zhou 1997] studied stability of rotationally invariant capillary surfaces between 2 parallel planes in \mathbb{R}^3 + [Fel-Rubinstein, 2015]

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Consider the slab $\mathcal{B} = \{0 \le x_3 \le 1\} \subset \mathbb{R}^3$, $\partial \mathcal{B} = \Pi_0 \cup \Pi_1$.

Theorem

Let $\psi : \Sigma \to \mathcal{B}$, a capillary immersion of a surface Σ of genus 0 making contact angles θ_0 and θ_1 with Π_0 and Π_1 , respectively. If ψ is stable, then $\psi(\Sigma)$ is a surface of revolution.

Proof: Let γ be a component of $\partial \Sigma$, with $\psi(\gamma) \subset \Pi_0$.

Proof: Let γ be a component of $\partial \Sigma$, with $\psi(\gamma) \subset \Pi_0$.

Consider $\mathcal C$: circumscribed circle in Π_0 about $\psi(\gamma)$, can be assumed to have center at the origin.

・ロト・日本・モート モー うへぐ

Proof: Let γ be a component of $\partial \Sigma$, with $\psi(\gamma) \subset \Pi_0$.

Consider C : circumscribed circle in Π_0 about $\psi(\gamma)$, can be assumed to have center at the origin.

u: Jacobi function associated to rotations around the x_3 -axis, that is,

$$p \in \Sigma$$
, $u(p) = \langle \psi(p) \wedge e_3, N(p) \rangle$

Proof: Let γ be a component of $\partial \Sigma$, with $\psi(\gamma) \subset \Pi_0$.

Consider C : circumscribed circle in Π_0 about $\psi(\gamma)$, can be assumed to have center at the origin.

u: Jacobi function associated to rotations around the x_3 -axis, that is,

$$p \in \Sigma$$
, $u(p) = \langle \psi(p) \wedge e_3, N(p) \rangle$

u verifies

$$\Delta u + |\sigma|^2 u = 0$$
 on Σ
 $rac{\partial u}{\partial
u} = q u$ on $\partial \Sigma$

Proof: Let γ be a component of $\partial \Sigma$, with $\psi(\gamma) \subset \Pi_0$.

Consider C : circumscribed circle in Π_0 about $\psi(\gamma)$, can be assumed to have center at the origin.

u: Jacobi function associated to rotations around the x_3 -axis, that is,

$$p \in \Sigma$$
, $u(p) = \langle \psi(p) \wedge e_3, N(p) \rangle$

u verifies

$$\Delta u + |\sigma|^2 u = 0$$
 on Σ
 $rac{\partial u}{\partial
u} = q u$ on $\partial \Sigma$

Aim: prove that $u \equiv 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
A known fact: $\mathcal{C} \cap \psi(\gamma)$ contains at least 2 points.

A known fact: $C \cap \psi(\gamma)$ contains at least 2 points. At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$.

A known fact: $\mathcal{C} \cap \psi(\gamma)$ contains at least 2 points.

At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$.

A closest point on $\psi(\gamma)$ to the origin gives another such point p.

A known fact: $C \cap \psi(\gamma)$ contains at least 2 points. At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$. A closest point on $\psi(\gamma)$ to the origin gives another such point p. Maximum principle $\Rightarrow u$ changes sign in any neighborhood of p unless $u \equiv 0$ in a neighborhood of p and so $u \equiv 0$ on Σ (unique continuation principle),

A known fact: $\mathcal{C} \cap \psi(\gamma)$ contains at least 2 points.

At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$.

A closest point on $\psi(\gamma)$ to the origin gives another such point p. Maximum principle $\Rightarrow u$ changes sign in any neighborhood of p unless $u \equiv 0$ in a neighborhood of p and so $u \equiv 0$ on Σ (unique continuation principle),

So, assume $u \not\equiv 0$, then $p \in$ the boundary of at least 2 nodal domains of u,

A known fact: $\mathcal{C} \cap \psi(\gamma)$ contains at least 2 points.

At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$.

A closest point on $\psi(\gamma)$ to the origin gives another such point p. Maximum principle $\Rightarrow u$ changes sign in any neighborhood of p unless $u \equiv 0$ in a neighborhood of p and so $u \equiv 0$ on Σ (unique continuation principle),

So, assume $u \not\equiv 0$, then $p \in$ the boundary of at least 2 nodal domains of u,

 Σ has genus $0 \Longrightarrow u$ has at least 3 nodal domains $\Sigma_1, \Sigma_2, \ldots$.

A known fact: $\mathcal{C} \cap \psi(\gamma)$ contains at least 2 points.

At each of these points p, we have : $u(p) = \frac{\partial u}{\partial v}(p) = 0$.

A closest point on $\psi(\gamma)$ to the origin gives another such point p. Maximum principle $\Rightarrow u$ changes sign in any neighborhood of p unless $u \equiv 0$ in a neighborhood of p and so $u \equiv 0$ on Σ (unique continuation principle),

So, assume $u \not\equiv 0$, then $p \in$ the boundary of at least 2 nodal domains of u,

 Σ has genus $0 \Longrightarrow u$ has at least 3 nodal domains $\Sigma_1, \Sigma_2, \ldots$. Define $\widetilde{u} \in H^1(\Sigma)$ by

$$\widetilde{u} = \begin{cases} u & \text{on } \Sigma_1 \\ \alpha \, u & \text{on } \Sigma_2 \\ 0 & \text{on } \Sigma \setminus (\Sigma_1 \cup \Sigma_2) \end{cases}$$

 α chosen so that $\int_{\Sigma} \widetilde{u} = 0$.

We have: $\mathcal{I}(\widetilde{u}, \widetilde{u}) = 0$.

We have: $\mathcal{I}(\widetilde{u}, \widetilde{u}) = 0$.

 ψ is stable $\Longrightarrow \widetilde{u}$ lies in the kernel of \mathcal{I} , i.e \widetilde{u} is a Jacobi function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We have: $\mathcal{I}(\widetilde{u}, \widetilde{u}) = 0$.

 ψ is stable $\Longrightarrow \widetilde{u}$ lies in the kernel of \mathcal{I} , i.e \widetilde{u} is a Jacobi function

but, \tilde{u} vanishes on a non empty open set , the unique continuation principle $\implies \tilde{u} \equiv 0 \implies u \equiv 0$, a contradiction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We have: $\mathcal{I}(\widetilde{u}, \widetilde{u}) = 0$.

 ψ is stable $\Longrightarrow \widetilde{u}$ lies in the kernel of \mathcal{I} , i.e \widetilde{u} is a Jacobi function

but, \tilde{u} vanishes on a non empty open set , the unique continuation principle $\implies \tilde{u} \equiv 0 \implies u \equiv 0$, a contradiction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion: $u \equiv 0$, that is, $\psi(\Sigma)$ is invariant under rotations around x_3 -axis.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces in slices in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$ was studied by [Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré, 1999] for any n.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces in slices in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$ was studied by [Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré, 1999] for any n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $2 \le n \le 7$ only circular cylinders can be stable.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces in slices in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$ was studied by [Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré, 1999] for any n.

For $2 \le n \le 7$ only circular cylinders can be stable.

For $n \ge 9$ there exist unduloids which are stable.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces in slices in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$ was studied by [Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré, 1999] for any n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $2 \le n \le 7$ only circular cylinders can be stable.

For $n \ge 9$ there exist unduloids which are stable.

The case n = 8 is open.

[Ros, 2007] stable capillary in a slab $\subset \mathbb{R}^3$, contact angle $\theta = \pi/2 \Rightarrow$ right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces in slices in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$ was studied by [Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré, 1999] for any n.

For $2 \le n \le 7$ only circular cylinders can be stable.

For $n \ge 9$ there exist unduloids which are stable.

The case n = 8 is open.

Theorem

Let $\psi: \Sigma \to \mathbb{R}^{n+1}$, $n \ge 2$, be an immersed capillary hypersurface connecting two horizontal hyperplanes in \mathbb{R}^{n+1} with contact angle $\theta = \pi/2$. Suppose that the restriction of ψ to each component of $\partial \Sigma$ is an embedding.

If ψ is stable then $\psi(\Sigma)$ is either a circular vertical cylinder or a vertical graph which is rotationally invariant around a vertical axis.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \not\equiv 0$, we will show it has a sign inside Σ .

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \not\equiv 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \neq 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \not\equiv 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$. Stability $\implies \tilde{v}$ is a Jacobi function.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \not\equiv 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$. Stability

 $\implies \widetilde{v}$ is a Jacobi function. So $\frac{\partial \widetilde{v}}{\partial v} = q \widetilde{v} = 0$ on $\partial \Sigma$.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \not\equiv 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$. Stability

 $\implies \widetilde{v}$ is a Jacobi function. So $\frac{\partial \widetilde{v}}{\partial v} = q \widetilde{v} = 0$ on $\partial \Sigma$.

 $\psi(\Sigma)$ extends analytically by reflection across Π_1 and Π_2 . Uniqueness in Cauchy-Kowalevski's theorem $\Rightarrow \tilde{v} \equiv 0$, i.e $v \equiv 0$ in a neighborhood of $\partial \Sigma$

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \neq 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$. Stability

 $\implies \widetilde{v}$ is a Jacobi function. So $\frac{\partial \widetilde{v}}{\partial v} = q \widetilde{v} = 0$ on $\partial \Sigma$.

 $\psi(\Sigma)$ extends analytically by reflection across Π_1 and Π_2 . Uniqueness in Cauchy-Kowalevski's theorem $\Rightarrow \tilde{v} \equiv 0$, i.e $v \equiv 0$ in a neighborhood of $\partial \Sigma \Rightarrow v \equiv 0$ on Σ , contradiction.

Proof: Set $v := \langle N, e_{n+1} \rangle$, where $e_{n+1} = (0, ..., 1)$. Then, $v \equiv 0$ on $\partial \Sigma$.

If $v \equiv 0$ then Σ is a circular vertical cylinder.

Suppose $v \neq 0$, we will show it has a sign inside Σ .

By contradiction, if v changes sign, take $\alpha \in \mathbb{R}$ so that $\tilde{v} := v_+ + \alpha v_-$ satisfies $\int_{\Sigma} \tilde{v} = 0$.

Then (using that $v \equiv 0$ on $\partial \Sigma$) we have: $\mathcal{I}(\tilde{v}, \tilde{v}) = 0$. Stability

 $\implies \widetilde{v}$ is a Jacobi function. So $\frac{\partial \widetilde{v}}{\partial v} = q \widetilde{v} = 0$ on $\partial \Sigma$.

 $\psi(\Sigma)$ extends analytically by reflection across Π_1 and Π_2 . Uniqueness in Cauchy-Kowalevski's theorem $\Rightarrow \tilde{v} \equiv 0$, i.e $v \equiv 0$ in a neighborhood of $\partial \Sigma \Rightarrow v \equiv 0$ on Σ , contradiction. So v doesn't change sign inside Σ , say $v \ge 0$.

$$v \ge 0,$$

 $\Delta v = -|\sigma|^2 v \le 0,$
 $v = 0 \quad \text{on} \quad \partial \Sigma.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Maximum principle $\Rightarrow v > 0$ on $int(\Sigma) \Rightarrow \psi(int(\Sigma))$ is a local vertical graph.

$$v \ge 0,$$

 $\Delta v = -|\sigma|^2 v \le 0,$
 $v = 0 \quad \text{on} \quad \partial \Sigma.$

Maximum principle $\Rightarrow v > 0$ on $int(\Sigma) \Rightarrow \psi(int(\Sigma))$ is a local vertical graph.

Set $\partial \Sigma = \Gamma_1 \cup \ldots \cup \Gamma_k$. For each *i*, $\psi(\Gamma_i)$ separates Π_1 or Π_2 into 2 components. Consider the orthogonal $P : \mathbb{R}^{n+1} \to \Pi_1$ and set $F = P \circ \psi$.

$$v \ge 0,$$

 $\Delta v = -|\sigma|^2 v \le 0,$
 $v = 0 \quad \text{on} \quad \partial \Sigma.$

Maximum principle $\Rightarrow v > 0$ on $int(\Sigma) \Rightarrow \psi(int(\Sigma))$ is a local vertical graph.

Set $\partial \Sigma = \Gamma_1 \cup \ldots \cup \Gamma_k$. For each *i*, $\psi(\Gamma_i)$ separates Π_1 or Π_2 into 2 components. Consider the orthogonal $P : \mathbb{R}^{n+1} \to \Pi_1$ and set $F = P \circ \psi$.

Let $p \in \Gamma_i$, $\gamma : (-\epsilon, 0] \to \Sigma$ a curve parametrized by arclength so that $\gamma(0) = p$ and $\dot{\gamma}(0) = \nu(p)$.

$$\frac{d}{dt} \langle F(\gamma(t)) - F(p), N(p) \rangle |_{0} = 0$$

$$\frac{d^{2}}{dt^{2}} \langle F(\gamma(t) - F(p), N(p)) \rangle |_{0} = \langle \frac{D}{dt} \psi(\gamma') |_{0}, N(p) \rangle$$

$$= \sigma(\nu, \nu)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $p \in \Gamma_i$, $\gamma : (-\epsilon, 0] \to \Sigma$ a curve parametrized by arclength so that $\gamma(0) = p$ and $\dot{\gamma}(0) = \nu(p)$.

$$\frac{d}{dt} \langle F(\gamma(t)) - F(p), N(p) \rangle |_{0} = 0$$

$$\frac{d^{2}}{dt^{2}} \langle F(\gamma(t) - F(p), N(p)) \rangle |_{0} = \langle \frac{D}{dt} \psi(\gamma') |_{0}, N(p) \rangle$$

$$= \sigma(\nu, \nu)$$

Note that

$$\frac{\partial \nu}{\partial \nu} = -\sigma(\nu, \nu) \langle \nu, e_{n+1} \rangle = \begin{cases} +\sigma(\nu, \nu) & \text{if } \psi(\Gamma_i) \subset \Pi_1 \\ -\sigma(\nu, \nu) & \text{if } \psi(\Gamma_i) \subset \Pi_2 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strong maximum principle $\Rightarrow \frac{\partial v}{\partial v} < 0$ on $\partial \Sigma$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strong maximum principle $\Rightarrow \frac{\partial v}{\partial v} < 0$ on $\partial \Sigma$ \Rightarrow for a small neighborhood U_i of Γ_i in Σ , $F(U_i \setminus \Gamma_i)$ is contained in the component of $\Pi_1 \setminus F(\Gamma_i)$ having N(p) as outward (resp. inward) normal at F(p) if $\psi(\Gamma_i) \subset \Pi_1$ (resp. if $\Psi(\Gamma_i) \subset \Pi_2$).

Strong maximum principle $\Rightarrow \frac{\partial \nu}{\partial \nu} < 0$ on $\partial \Sigma$

⇒ for a small neighborhood U_i of Γ_i in Σ , $F(U_i \setminus \Gamma_i)$ is contained in the component of $\Pi_1 \setminus F(\Gamma_i)$ having N(p) as outward (resp. inward) normal at F(p) if $\psi(\Gamma_i) \subset \Pi_1$ (resp. if $\Psi(\Gamma_i) \subset \Pi_2$). Using a topological argument, as before, we conclude that $\psi(\Sigma)$ is globally a graph over a domain in Π_1 and thus $\psi(\Sigma)$ is rotationally

invariant (Wente).

Question

Is a stable capillary hypersurface in a half-space or a slab in \mathbb{R}^{n+1} necessarily rotationally invariant ?

