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Aim and reference

The aim of this talk is to characterize stable immersed capillary
hypersurfaces in slabs and half-spaces in the Euclidean spaces
R, n>2.

e A. Ainouz and R. Souam, Stable capillary hypersurfaces in a
half-space or a slab, to appear in Indiana Univ. Math. J.
(arXiv:1411.4241).
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We let N be the outward unit normal to 9.

Fix an angle 6 € (0, 7r). Let X be a compact orientable manifold

of dimension n. A capillary immersion ¢ : ¥ — B with contact

angle 0 is:

e a proper immersion P(intX) C int B and ¢(dX) C 9B with
constant mean curvature

e the unit normal N to X for which H > 0 makes an angle 6 with
N along 0X.
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General setting, the variational problem

Such an immersion is a critical point for the following variational
problem:

An admissible variation of ¢ is a smooth map
Y :(—€,€) X ¥ — B such that ¢ = ¥(t,.) is a proper immersion
for each t and ¢y = 1.

The volume function V : (—e€, €) — R is defined by

V() = / 0
[0,t]xX

where Q) is the volume form on M.

The variation is volume preserving if V(t) = 0 for each t. We have:

Vi) = LX)

where X = %if(o, .) is the variation field of ¥.
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General setting, the variational problem

So, for a volume preserving variation the function f := (X, N)
verifies fz f=0.

Conversely any f € C®(X) with [ f = 0 is induced by a volume
preserving admissible variation.

The wetted area function W : (—e,€) — R is defined by

W(t) = / ¥
[0,t]x0%

where w is the volume form on 95.

The capillary immersion 1 is a critical point for volume preserving
admissible variations of the energy function:

E(t) = |e(Z)] — cosf W(t).
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General setting, stability

i is said to be stable if £(0) > 0 for all admissible volume
preserving variations.

Second variation formula for the energy:

" of
E'(0) = = [ £ (&F + (Jof? +Ric(N))f) + f<— f),
0 = [ £(ar+(oP+Re)r) + [ (5~
A : Laplacian on %,
o : second fundamental form of 1,
Ric is the Ricci curvature of M and
= L 5, 9) + cotbo(v, v)

9= sin@ ' T
Il: second fundamental form of 088 associated to the unit normal
—N, that is, for X, Y € T(9B), I(X,Y)=(VyX, —N).
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General setting, stability

The index form Z: symmetric bilinear form on H*(X)

I(f.8) = [ (VF.Ve) (1o + Rie(N))fs ~ [ ate,

where V is the gradient on .

2. is stable iff
Z(f,f)>0, VfeHY(Z)
Remark
More generally, if 0% has several components I'y, ..., I'x and has

constant angle of contact 6; with dB8 along I';, for each i, then it is
a critical point for the energy:

k
E(t) = |p:(2)| - ;COS@' Wi(t)




Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.



Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.

Question
Are there any other capillary immersions in half-spaces 7




Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.

Question
Are there any other capillary immersions in half-spaces 7

[Wente, 1980] An embedded capillary hypersurface in a half-space
is a spherical cap (Alexandrov's reflection technique).



Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.

Question
Are there any other capillary immersions in half-spaces 7

[Wente, 1980] An embedded capillary hypersurface in a half-space
is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a
half-space in R3 is a spherical cap.



Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.

Question
Are there any other capillary immersions in half-spaces 7

[Wente, 1980] An embedded capillary hypersurface in a half-space
is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a
half-space in R3 is a spherical cap.

[Marinov, 2012] Stable capillary surface in a half-space in R® with
embedded boundary = spherical cap.



Capillary hypersurfaces in a half-space in R"*!

Examples: spherical caps.

Question
Are there any other capillary immersions in half-spaces 7

[Wente, 1980] An embedded capillary hypersurface in a half-space
is a spherical cap (Alexandrov's reflection technique).

By the argument of Nitsche, a disk type capillary surface in a
half-space in R3 is a spherical cap.

[Marinov, 2012] Stable capillary surface in a half-space in R® with
embedded boundary = spherical cap.

[Choe-Koiso, 2014] Same result in R3 and for n > 3, a stable
capillary hypersurface with contact angle 8 > 71/2 and convex
boundary in a half-space in R"*! is a spherical cap.
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Theorem

Let¢p : 2 — R, n > 2, be a stable immersed capillary
hypersurface in a half-space in R"T! with contact angle
0<o6<m/2.

(i) If 0 = 7/2, then Y(X) is a hemisphere.

(i) If@ < 7t/2 and the restriction of { to each component of d%
is an embedding, then (%) is a spherical cap.

v

We may assume the half-space is {x,+1 > 0}. Let
ens1 = (0,...,0,1).

Lemma
Js 14+ H(p, N) 4+ cosO(N, en1) =0

The proof of the lemma combines 2 formulas
e A Minkowski formula for hypersurfaces with boundary:

div(yp — (¢, N)N) = n(1 4+ H(yp, N))
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Integrating

éwHo:né1+meo

e A formula for the integral of the unit normal

Proposition

Let¢ : 2 — R be an immersion, %. compact orientable. Then,

nAN:AgwwN—@ww

where v is the outward unit normal to 0% in X.
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Proof of the Proposition: Let 3 be a constant vector field on
R™1. Set
X=(3,N)yp" —(p, )37,

then
divX = n(3, N)

Integrating gives the result.

On 0X : cosO N +sin@v = —e,y1, where epp1 = (0, ..., 0,1). So,

o[ =t (o) o
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We can use ¢ = 1+ H(yp, N) 4+ cosO(N, e,+1) as a test function.
We have

Z(p.9) = — [ [lo? = nt¥]
+ (n—1)sin6cosb [H|BZ| +sin6 /aZ Haz} :

where Hyy is the mean curvature of dX in R” x {0} computed
with respect to the unit normal ¥ for which {N,v} and {N, 7}
have the same orientation (in (T9X)1).

By stability Z(¢, ¢) > 0.

In particular, as |c|?> > nH?, when 6 = 71/2, we get |c|?> = nH?
= p(X) is spherical.

For 6 < 7t/2, we will show v := (N, e,+1) does not change sign
on 2.

By contradiction, if not, there exists a real a so that
w = v_ + av, satisfies [, w = 0.
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Use w as a test function. We have

Z(w,w) = —nH cotf [0X]| — (n—1) cosf)/ Hys.
)

Z(p.¢) = = [ [lof2 = nt?

+ (n—1)sin6cosb [H |0X] —|—sin9/ Haz} :
oL

Stability => Z(¢, ) +sin>0 Z(w, w) > 0.
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So
—/ [lo|? = nH?] —sin6 cos 6 H|9Z| > 0.
>

But |o|?> > nH2, 0 < t/2 and H > 0, a contradiction.
Conclusion: v does not change sign on X.
OnodX,v=—cosf <0.Sov<0on2X.

We have Av = —|o|?v > 0. Maximum principle = v < 0 on X.
= P(X) is a local vertical graph at each point.

Set 0X. =T U...UTy, each I'; connected.

As 1 restricted to I'y is an embedding, ¥(T';) separates R" x {0}
into 2 components. Call D; the component onto which ¥(X) does
not project near T';.
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Consider ¥ obtained by gluing D; to X along I';, for i =1,..., k.
Let P be the orthogonal projection onto R” x {0}.

Set F =Pot.

Define F : & — RR” x {0} by

F_ F on X
N identity on D;,i=1,..., k.

F is a proper map and is local homeomorphism = Fisa covering
= F is a global homeomorphism.

= P(X) is a global graph
= (X) is a spherical cap (Wente).
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Capillary hypersurfaces in a slab in R3

Examples: cylinders, unduloids, nodoids, catenoids

[Wente, 1980] An embedded capillary hypersurface in in a slab in
R"*1 is rotationally invariant, i.e a spherical cap or a slice of a
Delaunay hypersurface (Alexandrov's reflection technique).

[Wente, 1993] There exist capillary annuli in a slab in R® which are
immersed and non-rotational.

[Vogel 1989, Finn-Vogel 1993, Zhou 1997] studied stability of
rotationally invariant capillary surfaces between 2 parallel planes in
R3+ [Fel-Rubinstein, 2015]

[Ros, 2007] stable capillary in a slab C IR3, contact angle
0 = 7t/2 = right circular cylinder.



Stable capillary surfaces in a slab in R3

Consider the slab B = {0 < x3 < 1} C R3, 9B =TIy UTI;.

Theorem

Let i : X — B, a capillary immersion of a surface . of genus 0
making contact angles 0y and 61 with Iy and I1;, respectively.
If i is stable, then {(X) is a surface of revolution.
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Stable capillary surfaces in a slab in R3

Proof: Let v be a component of 9%, with () C ITp.

Consider C : circumscribed circle in T about ¢(y), can be
assumed to have center at the origin.

u : Jacobi function associated to rotations around the x3—axis,

that is,
peX, u(p)=(p(p)Aes N(p))
u verifies
Au+|o|?u=0 on =
% =qu on 0%
ov

Aim: prove that u =0
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Stable capillary surfaces in a slab in R3

A known fact: C N () contains at least 2 points.
At each of these points p, we have : u(p) = 3%(p) = 0.
A closest point on §(y) to the origin gives another such point p.

Maximum principle = u changes sign in any neighborhood of p
unless u = 0 in a neighborhood of p and so u =0 on X (unique
continuation principle),

So, assume u # 0, then p € the boundary of at least 2 nodal
domains of u,

2. has genus 0 = u has at least 3 nodal domains 21,35, ....
Define 0 € H1(Z) by

u on 21
U= au on 2o
0 on X \ (21 U 22)

w chosen so that [y, &7 = 0.
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Stable capillary surfaces in a slab in R3

We have: Z(u,u) = 0.
Y is stable = U lies in the kernel of Z, i.e u is a Jacobi function

but, u vanishes on a non empty open set , the unique continuation
principle = = 0 = u = 0, a contradiction.

Conclusion: u =0, that is, (X) is invariant under rotations
around xz-axis.
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Case of a slab in R"™ and 8 = 71/2

[Ros, 2007] stable capillary in a slab C IR3, contact angle
0 = 7t/2 = right circular cylinder.

Stability of embedded rotationally invariant capillary hypersurfaces
in slices in R™"!with contact angle 8 = 7r/2 was studied by
[Athanassenas, Vogel ,1987] for n = 2 and by [Pedrosa-Ritoré,
1999] for any n.

For 2 < n < 7 only circular cylinders can be stable.
For n > 9 there exist unduloids which are stable.

The case n = 8 is open.

Theorem

Let p: X — R™1, n> 2, be an immersed capillary hypersurface
connecting two horizontal hyperplanes in R™1 with contact angle
6 = 7t/2. Suppose that the restriction of i to each component of
0X is an embedding.

If ¢ is stable then ¥(X) is either a circular vertical cylinder or a
vertical graph which is rotationally invariant around a vertical axis.
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Case of a slab in R"™ and 8 = 71/2

Proof: Set v := (N, ep+1), where e,11 = (0,...,1). Then, v=0
on dX.

If v =0 then X is a circular vertical cylinder.
Suppose v # 0, we will show it has a sign inside X.

By contradiction, if v changes sign, take &« € R so that
V= vy +av_ satisfies [ V=0.

Then (using that v = 0 on 0X) we have: Z(v,v) = 0. Stability
— Vv is a Jacobi function. So % = qgv = 0 on 0.

P(X) extends analytically by reflection across Iy and IT,.
Uniqueness in Cauchy-Kowalevski's theorem = v =0, i.,e v=10in
a neighborhood of 0¥ = v = 0 on X, contradiction. So v doesn’t
change sign inside X, say v > 0.
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Let p €T}, 7v: (—€,0] — X a curve parametrized by arclength so
that (0) = p and ¥(0) = v(p)

=o(v,v)

Note that
v v, v){v, e _ JHo(vy) it pI) CIh
a_ (7( , )< ) n+1>_ {_0.(1/,1/> if 1/;(1’,) Cc I,
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. . . Bv
Strong maximum principle = 57 < 0 on dX

= for a small neighborhood U; of T in X, F(U; \ T';) is contained
in the component of I1; \ F(T;) having N(p) as outward (resp.
inward) normal at F(p) if ¢(T;) C Iy (resp. if ¥(T;) C Ip).
Using a topological argument, as before, we conclude that (X) is

globally a graph over a domain in Il and thus ¢(X) is rotationally
invariant (Wente).



An open question

Question

Is a stable capillary hypersurface in a half-space or a slab in R"t!
necessarily rotationally invariant ?




