Geometric aspects on capillary problems and related topics

Overdetermined problems, rigidity results and applications

Pieralberto Sicbaldi

Université d'Aix-Marseille

Granada

December 2015

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω .

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω .

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the pipe.

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω .

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the pipe.

The flow velocity u does not depend on z, and u(x, y) satisfies

$$\begin{cases} \Delta u + k = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where k is a constant.

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω .

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the pipe.

The flow velocity u does not depend on z, and u(x, y) satisfies

$$\begin{cases} \Delta u + k = 0 & \text{in} & \Omega \\ u = 0 & \text{on} & \partial \Omega \end{cases}$$

where k is a constant.

The tangential stress is given by $\eta \frac{\partial u}{\partial \nu}$, where η is the viscosity and ν is the interior unit normal vector about $\partial \Omega$.

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω .

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the pipe.

The flow velocity u does not depend on z, and u(x, y) satisfies

$$\begin{cases} \Delta u + k = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where k is a constant.

The tangential stress is given by $\eta \frac{\partial u}{\partial \nu}$, where η is the viscosity and ν is the interior unit normal vector about $\partial \Omega$.

Question: When is the tangential stress the same at each point of a cross section of the wall of the pipe? \implies OVERDETERMINED ELLIPTIC PROBLEM

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the tube.

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the tube.

We denote by u = u(x, y) the height, with respect to the level of Ω , to which the liquid rises at coordinate (x, y). We have

$$\begin{cases} div \frac{|\nabla u|}{\sqrt{1+|\nabla u|^2}} - \frac{\rho g}{\sigma}u &= k & \text{in} \quad \Omega \\ \frac{\partial u}{\partial \nu} &= \cos \alpha \sqrt{1+|\nabla u|^2} & \text{on} \quad \partial \Omega \end{cases}$$

where ρ is the density, g the gravity, σ the surface tension, α the contact angle between the liquid surface and the wall of the tube.

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the *z*-axis directed along the tube.

We denote by u = u(x, y) the height, with respect to the level of Ω , to which the liquid rises at coordinate (x, y). We have

$$\begin{cases} div \frac{|\nabla u|}{\sqrt{1+|\nabla u|^2}} - \frac{\rho g}{\sigma}u &= k & \text{in} \quad \Omega \\ \frac{\partial u}{\partial \nu} &= \cos \alpha \sqrt{1+|\nabla u|^2} & \text{on} \quad \partial \Omega \end{cases}$$

where ρ is the density, g the gravity, σ the surface tension, α the contact angle between the liquid surface and the wall of the tube.

Question: When does the liquid rise to the same height at each point of the wall of the tube? \implies OVERDETERMINED ELLIPTIC PROBLEM

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω .

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω .

Question: When the points on the contact surfaces between the liquid and the walls of the cylinder are at the same heigh? \implies OVERDETERMINED ELLIPTIC PROBLEM

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω .

Question: When the points on the contact surfaces between the liquid and the walls of the cylinder are at the same heigh? \implies OVERDETERMINED ELLIPTIC PROBLEM

A question raised by Berestycki-Caffarelli-Nirenberg

Problem: to classify domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the overdetermined elliptic system

$$\begin{array}{rcl} \Delta \, u + f(u) &=& 0 & \mbox{ in } \Omega \\ & u &=& 0 & \mbox{ on } \partial \Omega \\ & & \\ \frac{\partial u}{\partial \nu} &=& \mbox{ constant } \mbox{ on } \partial \Omega \end{array}$$

where f is a given Lipschitz function.

Generalization: same problem, with an other elliptic operator.

A question raised by Berestycki-Caffarelli-Nirenberg

Problem: to classify domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the overdetermined elliptic system

$$\begin{array}{rcl} \Delta \, u + f(u) &=& 0 & \mbox{ in } \Omega \\ & u &=& 0 & \mbox{ on } \partial \Omega \\ & & \\ \frac{\partial u}{\partial \nu} &=& \mbox{ constant } \mbox{ on } \partial \Omega \end{array}$$

where f is a given Lipschitz function.

Generalization: same problem, with an other elliptic operator.

Question (1997). Under the assumption that $\mathbb{R}^n \setminus \overline{\Omega}$ is connected and u is bounded, is it true that Ω must be a ball, or a half space, or a cylinder $\mathbb{R}^j \times B$ (where B is a ball) or the complement of one of these three domains?

Serrin (ARMA, 1971) If Ω is bounded, than it is a ball. [True also for more general operators].

Serrin (ARMA, 1971) If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (*ARMA*, 1997), **Aftalion-Busca** (*ARMA*, 1998) Rigidity results for exterior domains, for some functions f and under assumptions on the behavior of the solution u at infinity. [True also for more general operators - **Sirakov (2002)**].

Serrin (ARMA, 1971) If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (*ARMA*, 1997), **Aftalion-Busca** (*ARMA*, 1998) Rigidity results for exterior domains, for some functions f and under assumptions on the behavior of the solution u at infinity. [True also for more general operators - **Sirakov (2002)**].

Berestycki-Caffarelli-Nirenberg (*CPAM*, 1997) Rigidity results for epigraphs, for some functions f and under assumptions of the asymptotical flatness for the boundary of the domain.

Serrin (ARMA, 1971) If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (*ARMA*, 1997), **Aftalion-Busca** (*ARMA*, 1998) Rigidity results for exterior domains, for some functions *f* and under assumptions on the behavior of the solution *u* at infinity. [True also for more general operators - **Sirakov** (2002)].

Berestycki-Caffarelli-Nirenberg (*CPAM*, 1997) Rigidity results for epigraphs, for some functions f and under assumptions of the asymptotical flatness for the boundary of the domain.

Farina-Valdinoci (ARMA, 2009)

Rigidity results for epigraphs in \mathbb{R}^2 for all functions f, and in \mathbb{R}^3 for some classes of functions f.

The argument used by Serrin was a generalization of the method used by **Alexandroff** in 1962 to prove the following:

The argument used by Serrin was a generalization of the method used by **Alexandroff** in 1962 to prove the following:

Theorem. In \mathbb{R}^n the only enbedded compact mean curvature hypersurfaces are the spheres.

Onduloinds

In \mathbb{R}^n there are exist noncompact surfaces with constant mean curvature. For example the Delaunay surfaces...

Onduloinds

In \mathbb{R}^n there are exist noncompact surfaces with constant mean curvature. For example the Delaunay surfaces...

Theorem (S. 2010 & Schlenk-S. 2011): It is possible to build overdetermined solutions in domains that look like full onduloids in \mathbb{R}^n , $n \ge 2$, for the function $f(t) = \lambda t$.

A strong parallelism with minimal surfaces

Traizet (GAFA, 2013)

```
{the half-plane}
```

domains in \mathbb{R}^2 that support a positive solution to the problem with the hypothesis that $\partial \Omega$ has a finite number of components, at least in the

quotient if Ω is periodic

A strong parallelism with minimal surfaces

Traizet (GAFA, 2013)

{the half-plane}

domains in \mathbb{R}^2 that support a positive solution to the problem with the hypothesis that $\partial \Omega$ has a finite number of components, at least in the

quotient if Ω is periodic

Corollary. If $\partial \Omega$ is unbounded and connected then, Ω is a half-plane.

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$\begin{cases} \Delta u + u - u^3 = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \frac{\partial u}{\partial \nu} = \text{constant on } \partial \Omega \end{cases}$$

for some special domains Ω given by:

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$\begin{array}{rcl} \Delta u+u-u^3&=&0& ext{ in }\ \Omega & u&=&0& ext{ on }\ \partial\Omega & \ & \displaystyle rac{\partial u}{\partial
u}&=& ext{ constant } ext{ on }\ \partial\Omega & \end{array}$$

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^3 .

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

for some special domains Ω given by:

- 1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^3 .
- 2. Perturbations of the region inside a catenoid in \mathbb{R}^3 .

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

for some special domains Ω given by:

- 1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^3 .
- 2. Perturbations of the region inside a catenoid in \mathbb{R}^3 .
- 3. Perturbations of the De Giorgi-Bombieri-Giusti epigraph in \mathbb{R}^9 .

Bernstein Conjecture (1914):

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons)

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

 \rightarrow True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

 \rightarrow True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

 \rightarrow "counterexample" for n = 9 (Del Pino-Kowalczyk-Wei)

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

 \rightarrow True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

 \rightarrow "counterexample" for n = 9 (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems:

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

 \rightarrow True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

 \rightarrow "counterexample" for n = 9 (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems:

1) "Is the half-space the only overdet. epigraph in \mathbb{R}^n $(n \leq 8)$?"

Bernstein Conjecture (1914):

"The only entire minimal graphs in \mathbb{R}^n are hyperplanes".

 \rightarrow True till n = 8 (Bernstein, De Giorgi, Almgren, Simons) \rightarrow False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):

"The level sets of an entire solutions of $\Delta u + u - u^3$ in \mathbb{R}^n ($n \le 8$) increasing in one variable are hyperplanes".

 \rightarrow True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

 \rightarrow "counterexample" for n = 9 (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems:

1) "Is the half-space the only overdet. epigraph in \mathbb{R}^n $(n \leq 8)$?"

2) "If Ω is diffeomorphic to a half-space and is overdet. in \mathbb{R}^n $(n \leq 8)$, is it true that Ω is a half-space?"

Main theorem

Theorem [Ros-Ruiz-S.]

Let *f* be a locally Lipschitz function and $\Omega \subset \mathbb{R}^2$, be a domain that support a positive bounded solution of the overdetermined elliptic system

$$\begin{cases} \Delta u + f(u) = 0 & \text{in} & \Omega \\ \\ u = 0 & \text{on} & \partial \Omega \\ \\ |\nabla u| = 1 & \text{on} & \partial \Omega \end{cases}$$

If $\partial \Omega$ is unbounded and connected, then Ω is a half-plane.

Main theorem

Theorem [Ros-Ruiz-S.]

Let f be a locally Lipschitz function and $\Omega \subset \mathbb{R}^2$, be a domain that support a positive bounded solution of the overdetermined elliptic system

 $\begin{cases} \Delta u + f(u) &= 0 \text{ in } \Omega \\ \\ u &= 0 \text{ on } \partial \Omega \\ \\ |\nabla u| &= 1 \text{ on } \partial \Omega \end{cases}$

If $\partial \Omega$ is unbounded and connected, then Ω is a half-plane.

From now on, we take f, Ω and u satisfying the hypothesis of the theorem.

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2,\alpha}$ (Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (*ARMA*, 2009): If Ω is of class C^3 , u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2,\alpha}$ (Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (*ARMA*, 2009): If Ω is of class C^3 , u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.

First result (Ros, Ruiz, S). The previous result still holds if Ω is of class C^2 .

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2,\alpha}$ (Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (*ARMA*, 2009): If Ω is of class C^3 , u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.

First result (Ros, Ruiz, S). The previous result still holds if Ω is of class C^2 .

The steps of the proof of the main theorem will be the following:

- 1. We start by showing that $||u||_{C^{2,\alpha}}$ is bounded in $\overline{\Omega}$.
- 2. Then, we prove that either u is increasing in one variable or Ω contains an internally tangent half-plane.
- 3. To finish, we show that if $||u||_{C^{2,\alpha}}$ is bounded and Ω contains an internally tangent half-plane, then Ω is a half-plane.

Boundedness of the curvature (and then of $|\nabla u|$)

Boundedness of the curvature (and then of $|\nabla u|$)

Boundedness of the curvature (and then of $|\nabla u|$)

Convergence to an harmonic overdetermined domain Ω_{∞} with $\partial \Omega_{\infty}$ connected and unbounded and |k(O)| = 1. \longrightarrow Impossible

Limit directions

Definition. We say that $v \in \mathbb{S}^1$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_n \in \partial \Omega$ such that $|p_n| \to +\infty$ and

$$\lim_{n \to +\infty} \frac{p_n}{|p_n|} = v \,.$$

Limit directions

Definition. We say that $v \in \mathbb{S}^1$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_n \in \partial \Omega$ such that $|p_n| \to +\infty$ and

$$\lim_{n \to +\infty} \frac{p_n}{|p_n|} = v \,.$$

We can fix the coordinates of \mathbb{R}^2 in order that $O = (0,0) \in \partial\Omega$, $\partial\Omega$ is tangent to the *x*-axis in *O*, and the normal inward half-line at *O* (contained in Ω by the moving plane) is the positive part of the *y*-axis.

Limit directions

Definition. We say that $v \in \mathbb{S}^1$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_n \in \partial \Omega$ such that $|p_n| \to +\infty$ and

$$\lim_{n \to +\infty} \frac{p_n}{|p_n|} = v \,.$$

We can fix the coordinates of \mathbb{R}^2 in order that $O = (0,0) \in \partial\Omega$, $\partial\Omega$ is tangent to the *x*-axis in *O*, and the normal inward half-line at *O* (contained in Ω by the moving plane) is the positive part of the *y*-axis. We have then a limit direction at the left (resp. right) if p_n stays on the component of $\partial\Omega \setminus \{O\}$ that near *O* is on the left (resp. right) of *O*.

Proposition. Let v_l be a LD at the left and v_r be a LD at the right. If the angle betwenn v_r and v_l is less or equal to π then u is increasing in one variable.

Proposition. Let v_l be a LD at the left and v_r be a LD at the right. If the angle betwenn v_r and v_l is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π .

Proposition. Let v_l be a LD at the left and v_r be a LD at the right. If the angle betwenn v_r and v_l is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π .

Noneasy case : when the angle is π . It is the limit case.

Proposition. Let v_l be a LD at the left and v_r be a LD at the right. If the angle betwenn v_r and v_l is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π .

Noneasy case : when the angle is π . It is the limit case.

Remark : If the angle is bigger than π for any choice of v_l and v_r , then Ω contains an internally tangent half-plane.

Conclusion : u is increasing in one variable. Since ∇u is bounded, Ω is a half-plane.

(1,0) is the last limit direction at the right (possible thanks to a rotation).

(1,0) is the last limit direction at the right (possible thanks to a rotation).

(1,0) is the last limit direction at the right (possible thanks to a rotation).

(1,0) is the last limit direction at the right (possible thanks to a rotation).

Move q_{ϵ} to the origin, and pass to the limit $\epsilon \to 0$. D_n converges to an overdet. domain Ω_{∞} contained in a half plane. Then Ω_{∞} is a half-plane. We built an overdet. half-plane starting from Ω .

Radial solutions converging to u_∞

Proposition. Assume that for $y \in [0, +\infty[$ we have

$$\begin{cases} \varphi''(y) + f(\varphi(y)) = 0\\ \varphi(0) = 0, \ \varphi'(0) = 1, \lim_{t \to +\infty} \varphi(y) = L > 0. \end{cases}$$

Then, there exists $R_0 > 0$ such that for any $R > R_0$ the problem:

(1)
$$\begin{cases} \Delta u + f(u) = 0 \quad x \in B_R(O), \\ u = 0, \qquad x \in \partial B_R(O) \end{cases}$$

has a positive radially symmetric solution u_R , and as $R \to +\infty$

- i) $u_R < L$ and $\forall \rho \in (0, 1)$, $u_R|_{B_{\rho R}(O)}$ converges unif. to L.
- ii) The functions $v_R(z) = u_R(z (0, R))$ converges to $u(x, y) = \varphi(y)$ locally in compact sets of $H = \{y > 0\}$.

Moving a radial solution under the graph of \boldsymbol{u}

The previous result allows us to put the graph of a radial solution in $B_R(p)$ below the graph of u.

Proposition. It is possible to move this graph without touching the graph of *u* till we reach the position of the ball $B_R(q)$.

Comparison

We take $R \to +\infty$, and we obtain that the graph of the overdetermined solution in the half-space is below the graph of u.

The maximum principle says us that Ω is a half-plane.