Overdetermined problems, rigidity results and applications

Pieralberto Sicbaldi
Université d'Aix-Marseille

Granada

December 2015

A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω.

A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω.
Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the pipe.

A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω.
Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the pipe.
The flow velocity u does not depend on z, and $u(x, y)$ satisfies

$$
\left\{\begin{array}{r}
\Delta u+k=0 \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where k is a constant.

A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω.
Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the pipe.
The flow velocity u does not depend on z, and $u(x, y)$ satisfies

$$
\left\{\begin{array}{r}
\Delta u+k=0 \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where k is a constant.
The tangential stress is given by $\eta \frac{\partial u}{\partial \nu}$, where η is the viscosity and ν is the interior unit normal vector about $\partial \Omega$.

A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight pipe with a given cross section Ω.
Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the pipe.
The flow velocity u does not depend on z, and $u(x, y)$ satisfies

$$
\left\{\begin{array}{r}
\Delta u+k=0 \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where k is a constant.
The tangential stress is given by $\eta \frac{\partial u}{\partial \nu}$, where η is the viscosity and ν is the interior unit normal vector about $\partial \Omega$.

Question: When is the tangential stress the same at each point of a cross section of the wall of the pipe? \Longrightarrow OVERDETERMINED ELLIPTIC PROBLEM

The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the tube.

The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the tube.
We denote by $u=u(x, y)$ the height, with respect to the level of Ω, to which the liquid rises at coordinate (x, y). We have

$$
\left\{\begin{aligned}
\operatorname{div} \frac{|\nabla u|}{\sqrt{1+|\nabla u|^{2}}-\frac{\rho g}{\sigma} u} & =k & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =\cos \alpha \sqrt{1+|\nabla u|^{2}} & \text { on } \partial \Omega
\end{aligned}\right.
$$

where ρ is the density, g the gravity, σ the surface tension, α the contact angle between the liquid surface and the wall of the tube.

The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the z-axis directed along the tube.

We denote by $u=u(x, y)$ the height, with respect to the level of Ω, to which the liquid rises at coordinate (x, y). We have

$$
\left\{\begin{aligned}
\operatorname{div} \frac{|\nabla u|}{\sqrt{1+|\nabla u|^{2}}-\frac{\rho g}{\sigma} u} & =k & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =\cos \alpha \sqrt{1+|\nabla u|^{2}} & \text { on } \partial \Omega
\end{aligned}\right.
$$

where ρ is the density, g the gravity, σ the surface tension, α the contact angle between the liquid surface and the wall of the tube.

Question: When does the liquid rise to the same height at each point of the wall of the tube? \Longrightarrow OVERDETERMINED ELLIPTIC PROBLEM

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω.

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω.

Question: When the points on the contact surfaces between the liquid and the walls of the cylinder are at the same heigh? \Longrightarrow OVERDETERMINED ELLIPTIC PROBLEM

The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full of a homogeneous and incompressible liquid, into which we dip a straight solid cylinder of cross section Ω.

Question: When the points on the contact surfaces between the liquid and the walls of the cylinder are at the same heigh? \Longrightarrow OVERDETERMINED ELLIPTIC PROBLEM

$$
\left\{\begin{array}{rlrl}
\operatorname{div} \frac{|\nabla u|}{\sqrt{1+|\nabla u|^{2}}-\frac{\rho g}{\sigma} u} & =k & & \text { in } \\
u & \geq 0 & & \mathbb{R}^{2} \backslash \Omega \\
u & =a>0 & & \text { on } \\
u \Omega \\
u & \rightarrow 0 & & \mathbb{R}^{2} \backslash \Omega \\
\frac{\partial u}{\partial \nu} & =-\cot \alpha & & \text { on } \\
& \partial \Omega
\end{array}\right.
$$

A question raised by Berestycki-Caffarelli-Nirenberg

Problem: to classify domains $\Omega \in \mathbb{R}^{n}$ that support a positive solution of the overdetermined elliptic system

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

where f is a given Lipschitz function.
Generalization: same problem, with an other elliptic operator.

A question raised by Berestycki-Caffarelli-Nirenberg

Problem: to classify domains $\Omega \in \mathbb{R}^{n}$ that support a positive solution of the overdetermined elliptic system

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

where f is a given Lipschitz function.
Generalization: same problem, with an other elliptic operator.
Question (1997). Under the assumption that $\mathbb{R}^{n} \backslash \bar{\Omega}$ is connected and u is bounded, is it true that Ω must be a ball, or a half space, or a cylinder $\mathbb{R}^{j} \times B$ (where B is a ball) or the complement of one of these three domains?

The main results from PDE's community

The main results from PDE's community

Serrin (ARMA, 1971)
If Ω is bounded, than it is a ball. [True also for more general operators].

The main results from PDE's community

Serrin (ARMA, 1971)
If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (ARMA, 1997), Aftalion-Busca (ARMA, 1998) Rigidity results for exterior domains, for some functions f and under assumptions on the behavior of the solution u at infinity. [True also for more general operators - Sirakov (2002)].

The main results from PDE's community

Serrin (ARMA, 1971)
If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (ARMA, 1997), Aftalion-Busca (ARMA, 1998) Rigidity results for exterior domains, for some functions f and under assumptions on the behavior of the solution u at infinity. [True also for more general operators - Sirakov (2002)].

Berestycki-Caffarelli-Nirenberg (CPAM, 1997) Rigidity results for epigraphs, for some functions f and under assumptions of the asymptotical flatness for the boundary of the domain.

The main results from PDE's community

Serrin (ARMA, 1971)
If Ω is bounded, than it is a ball. [True also for more general operators].

Reichel (ARMA, 1997), Aftalion-Busca (ARMA, 1998) Rigidity results for exterior domains, for some functions f and under assumptions on the behavior of the solution u at infinity. [True also for more general operators - Sirakov (2002)].

Berestycki-Caffarelli-Nirenberg (CPAM, 1997)

 Rigidity results for epigraphs, for some functions f and under assumptions of the asymptotical flatness for the boundary of the domain.
Farina-Valdinoci (ARMA, 2009)

Rigidity results for epigraphs in \mathbb{R}^{2} for all functions f, and in \mathbb{R}^{3} for some classes of functions f.

Constant mean curvature surfaces

The argument used by Serrin was a generalization of the method used by Alexandroff in 1962 to prove the following:

Constant mean curvature surfaces

The argument used by Serrin was a generalization of the method used by Alexandroff in 1962 to prove the following:

Theorem. In \mathbb{R}^{n} the only enbedded compact mean curvature hypersurfaces are the spheres.

Onduloinds

In \mathbb{R}^{n} there are exist noncompact surfaces with constant mean curvature. For example the Delaunay surfaces...

Onduloinds

In \mathbb{R}^{n} there are exist noncompact surfaces with constant mean curvature. For example the Delaunay surfaces...

Theorem (S. 2010 \& Schlenk-S. 2011): It is possible to build overdetermined solutions in domains that look like full onduloids in $\mathbb{R}^{n}, n \geq 2$, for the function $f(t)=\lambda t$.

A strong parallelism with minimal surfaces

Traizet (GAFA, 2013)

$\left\{\right.$ minimal bigraphs in $\left.\mathbb{R}^{3}\right\}$	domains in \mathbb{R}^{2} that support a positive solution to the problem
	$\left\{\begin{aligned} \Delta u & =0 & & \text { in } \quad \Omega \\ u & =0 & & \text { on } \partial \Omega \end{aligned}\right.$
\{the half-plane $\}$	$\frac{\partial u}{\partial \nu}=\text { constant on } \partial \Omega$
	with the hypothesis that $\partial \Omega$ has a finite number of components, at least in the quotient if Ω is periodic

A strong parallelism with minimal surfaces

Traizet (GAFA, 2013)

	domains in \mathbb{R}^{2} that support a positive solution to the problem
$\left\{\right.$ minimal bigraphs in $\left.\mathbb{R}^{3}\right\}$	$\left\{\begin{aligned} \Delta u & =0 & & \text { in } \quad \Omega \\ u & =0 & & \text { on } \quad \partial \Omega \end{aligned}\right.$
\{the half-plane $\}$	$\frac{\partial u}{\partial \nu}=\text { constant on } \partial \Omega$
	with the hypothesis that $\partial \Omega$ has a finite number of components, at least in the quotient if Ω is periodic

Corollary. If $\partial \Omega$ is unbounded and connected then, Ω is a half-plane.

The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

for some special domains Ω given by:

The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^{3}.

The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^{3}.
2. Perturbations of the region inside a catenoid in \mathbb{R}^{3}.

The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in \mathbb{R}^{3}.
2. Perturbations of the region inside a catenoid in \mathbb{R}^{3}.
3. Perturbations of the De Giorgi-Bombieri-Giusti epigraph in \mathbb{R}^{9}.

Linked conjectures

Linked conjectures

Bernstein Conjecture (1914):

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".
\rightarrow True if $n=2$ or 3 (Ghoussoub-Gui, Ambrosio-Cabré)

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".
\rightarrow True if $n=2$ or 3 (Ghoussoub-Gui, Ambrosio-Cabré)
\rightarrow "counterexample" for $n=9$ (Del Pino-Kowalczyk-Wei)

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".
\rightarrow True if $n=2$ or 3 (Ghoussoub-Gui, Ambrosio-Cabré)
\rightarrow "counterexample" for $n=9$ (Del Pino-Kowalczyk-Wei)
Natural questions for overdetermined problems:

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".
\rightarrow True if $n=2$ or 3 (Ghoussoub-Gui, Ambrosio-Cabré)
\rightarrow "counterexample" for $n=9$ (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems:

1) "Is the half-space the only overdet. epigraph in $\mathbb{R}^{n}(n \leq 8)$?"

Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in \mathbb{R}^{n} are hyperplanes".
\rightarrow True till $n=8$ (Bernstein, De Giorgi, Almgren, Simons)
\rightarrow False from $n=9$ (Bombieri-De Giorgi-Giusti)
De Giorgi Conjecture (1978):
"The level sets of an entire solutions of $\Delta u+u-u^{3}$ in $\mathbb{R}^{n}(n \leq 8)$ increasing in one variable are hyperplanes".
\rightarrow True if $n=2$ or 3 (Ghoussoub-Gui, Ambrosio-Cabré)
\rightarrow "counterexample" for $n=9$ (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems:

1) "Is the half-space the only overdet. epigraph in $\mathbb{R}^{n}(n \leq 8)$?"
2) "If Ω is diffeomorphic to a half-space and is overdet. in \mathbb{R}^{n}
($n \leq 8$), is it true that Ω is a half-space?"

Main theorem

Theorem [Ros-Ruiz-S.]

Let f be a locally Lipschitz function and $\Omega \subset \mathbb{R}^{2}$, be a domain that support a positive bounded solution of the overdetermined elliptic system

$$
\left\{\begin{aligned}
\Delta u+f(u) & =0 \quad \text { in } \Omega \\
u & =0 \text { on } \partial \Omega \\
|\nabla u| & =1 \text { on } \partial \Omega
\end{aligned}\right.
$$

If $\partial \Omega$ is unbounded and connected, then Ω is a half-plane.

Main theorem

Theorem [Ros-Ruiz-S.]

Let f be a locally Lipschitz function and $\Omega \subset \mathbb{R}^{2}$, be a domain that support a positive bounded solution of the overdetermined elliptic system

$$
\left\{\begin{aligned}
\Delta u+f(u) & =0
\end{aligned} \begin{array}{rl}
& \text { in } \\
u & =0
\end{array} \text { on } \partial \Omega,\right.
$$

If $\partial \Omega$ is unbounded and connected, then Ω is a half-plane.

From now on, we take f, Ω and u satisfying the hypothesis of the theorem.

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2, \alpha}$ (Kinderlehrer-Nirenberg, Vogel).
Farina-Valdinoci (ARMA, 2009): If Ω is of class C^{3}, u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2, \alpha}$ (Kinderlehrer-Nirenberg, Vogel).
Farina-Valdinoci (ARMA, 2009): If Ω is of class C^{3}, u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.
First result (Ros,Ruiz,S). The previous result still holds if Ω is of class C^{2}.

Starting point and steps of the proof

Regularity: Overdetermined domains are in fact of class $C^{2, \alpha}$ (Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (ARMA, 2009): If Ω is of class C^{3}, u is increasing in one variable and $|\nabla u|$ is bounded, then Ω is a half-plane and u is one-dimensional.

First result (Ros,Ruiz,S). The previous result still holds if Ω is of class C^{2}.

The steps of the proof of the main theorem will be the following:

1. We start by showing that $\|u\|_{C^{2, \alpha}}$ is bounded in $\bar{\Omega}$.
2. Then, we prove that either u is increasing in one variable or Ω contains an internally tangent half-plane.
3. To finish, we show that if $\|u\|_{C^{2, \alpha}}$ is bounded and Ω contains an internally tangent half-plane, then Ω is a half-plane.

Boundedness of the curvature (and then of $|\nabla u|$)

Boundedness of the curvature (and then of $|\nabla u|$)

Boundedness of the curvature (and then of $|\nabla u|$)

Convergence to an harmonic overdetermined domain Ω_{∞} with $\partial \Omega_{\infty}$ connected and unbounded and $|k(O)|=1$. \longrightarrow Impossible

Limit directions

Definition. We say that $v \in \mathbb{S}^{1}$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_{n} \in \partial \Omega$ such that $\left|p_{n}\right| \rightarrow+\infty$ and

$$
\lim _{n \rightarrow+\infty} \frac{p_{n}}{\left|p_{n}\right|}=v
$$

Limit directions

Definition. We say that $v \in \mathbb{S}^{1}$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_{n} \in \partial \Omega$ such that $\left|p_{n}\right| \rightarrow+\infty$ and

$$
\lim _{n \rightarrow+\infty} \frac{p_{n}}{\left|p_{n}\right|}=v
$$

We can fix the coordinates of \mathbb{R}^{2} in order that $O=(0,0) \in \partial \Omega$, $\partial \Omega$ is tangent to the x-axis in O, and the normal inward half-line at O (contained in Ω by the moving plane) is the positive part of the y-axis.

Limit directions

Definition. We say that $v \in \mathbb{S}^{1}$ is a limit direction (LD) for $\partial \Omega$ if there exists $p_{n} \in \partial \Omega$ such that $\left|p_{n}\right| \rightarrow+\infty$ and

$$
\lim _{n \rightarrow+\infty} \frac{p_{n}}{\left|p_{n}\right|}=v
$$

We can fix the coordinates of \mathbb{R}^{2} in order that $O=(0,0) \in \partial \Omega$, $\partial \Omega$ is tangent to the x-axis in O, and the normal inward half-line at O (contained in Ω by the moving plane) is the positive part of the y-axis. We have then a limit direction at the left (resp. right) if p_{n} stays on the component of $\partial \Omega \backslash\{O\}$ that near O is on the left (resp. right) of O.

Angle between limit directions

Proposition. Let v_{l} be a LD at the left and v_{r} be a LD at the right. If the angle betwenn v_{r} and v_{l} is less or equal to π then u is increasing in one variable.

Angle between limit directions

Proposition. Let v_{l} be a LD at the left and v_{r} be a LD at the right. If the angle betwenn v_{r} and v_{l} is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π.

Angle between limit directions

Proposition. Let v_{l} be a LD at the left and v_{r} be a LD at the right. If the angle betwenn v_{r} and v_{l} is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π.
Noneasy case : when the angle is π. It is the limit case.

Angle between limit directions

Proposition. Let v_{l} be a LD at the left and v_{r} be a LD at the right. If the angle betwenn v_{r} and v_{l} is less or equal to π then u is increasing in one variable.

Easy case : when the angle is less than π.
Noneasy case : when the angle is π. It is the limit case.
Remark: If the angle is bigger than π for any choice of v_{l} and v_{r}, then Ω contains an internally tangent half-plane.

The easy case

The easy case

Moving plane method

The easy case

The easy case

Conclusion : u is increasing in one variable. Since ∇u is bounded, Ω is a half-plane.

Following the boundary of the domain till ∞

$(1,0)$ is the last limit direction at the right (possible thanks to a rotation).

Following the boundary of the domain till ∞

$\operatorname{dist}\left(p_{\epsilon}, O\right) \geq \epsilon^{-2}$
$(1,0)$ is the last limit direction at the right (possible thanks to a rotation).

Following the boundary of the domain till ∞

$\operatorname{dist}\left(p_{\epsilon}, O\right) \geq \epsilon^{-2}$
$(1,0)$ is the last limit direction at the right (possible thanks to a rotation).

Following the boundary of the domain till ∞

$\operatorname{dist}\left(p_{\epsilon}, O\right) \geq \epsilon^{-2}$
$(1,0)$ is the last limit direction at the right (possible thanks to a rotation).
Move q_{ϵ} to the origin, and pass to the limit $\epsilon \rightarrow 0 . D_{n}$ converges to an overdet. domain Ω_{∞} contained in a half plane. Then Ω_{∞} is a half-plane. We built an overdet. half-plane starting from Ω.

Radial solutions converging to u_{∞}

Proposition. Assume that for $y \in[0,+\infty[$ we have

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}(y)+f(\varphi(y))=0 \\
\varphi(0)=0, \varphi^{\prime}(0)=1, \lim _{t \rightarrow+\infty} \varphi(y)=L>0 .
\end{array}\right.
$$

Then, there exists $R_{0}>0$ such that for any $R>R_{0}$ the problem:

$$
\begin{cases}\Delta u+f(u)=0 & x \in B_{R}(O), \tag{1}\\ u=0, & x \in \partial B_{R}(O)\end{cases}
$$

has a positive radially symmetric solution u_{R}, and as $R \rightarrow+\infty$
i) $u_{R}<L$ and $\forall \rho \in(0,1),\left.u_{R}\right|_{P_{\rho R}(O)}$ converges unif. to L.
ii) The functions $v_{R}(z)=u_{R}(z-(0, R))$ converges to $u(x, y)=\varphi(y)$ locally in compact sets of $H=\{y>0\}$.

Moving a radial solution under the graph of u

The previous result allows us to put the graph of a radial solution in $B_{R}(p)$ below the graph of u.

Proposition. It is possible to move this graph without touching the graph of u till we reach the position of the ball $B_{R}(q)$.

Comparison

We take $R \rightarrow+\infty$, and we obtain that the graph of the overdetermined solution in the half-space is below the graph of u.

The maximum principle says us that Ω is a half-plane.

