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A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight
pipe with a given cross section Ω.
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A basic example on fluid mechanic

Consider a viscous incompressible fluid moving in a straight
pipe with a given cross section Ω.

Fix rectangular coordinates (x, y, z) in space with the z-axis
directed along the pipe.

The flow velocity u does not depend on z, and u(x, y) satisfies

{

∆u+ k = 0 in Ω

u = 0 on ∂Ω

where k is a constant.

The tangential stress is given by η ∂u
∂ν

, where η is the viscosity
and ν is the interior unit normal vector about ∂Ω.

Question: When is the tangential stress the same at each point of a cross
section of the wall of the pipe? =⇒ OVERDETERMINED ELLIPTIC PROBLEM
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The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible
liquid contained in a straight tube, subject to a gravitational field.
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The same situation, but in capillarity

Consider the equilibrium of a homogeneous and incompressible
liquid contained in a straight tube, subject to a gravitational field.

Fix rectangular coordinates (x, y, z) in space with the z-axis
directed along the tube.

We denote by u = u(x, y) the height, with respect to the level of
Ω, to which the liquid rises at coordinate (x, y). We have

{

div
|∇u|√
1+|∇u|2

− ρg
σ
u = k in Ω

∂u
∂ν

= cosα
√

1 + |∇u|2 on ∂Ω

where ρ is the density, g the gravity, σ the surface tension, α the
contact angle between the liquid surface and the wall of the tube.
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Fix rectangular coordinates (x, y, z) in space with the z-axis
directed along the tube.

We denote by u = u(x, y) the height, with respect to the level of
Ω, to which the liquid rises at coordinate (x, y). We have

{

div
|∇u|√
1+|∇u|2

− ρg
σ
u = k in Ω

∂u
∂ν

= cosα
√

1 + |∇u|2 on ∂Ω

where ρ is the density, g the gravity, σ the surface tension, α the
contact angle between the liquid surface and the wall of the tube.

Question: When does the liquid rise to the same height at each point of the
wall of the tube? =⇒ OVERDETERMINED ELLIPTIC PROBLEM
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The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full
of a homogeneous and incompressible liquid, into which we dip
a straight solid cylinder of cross section Ω.
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The exterior capillarity problem

Consider a large (mathematically speaking: infinite) reservoir full
of a homogeneous and incompressible liquid, into which we dip
a straight solid cylinder of cross section Ω.

Question: When the points on the contact surfaces between the liquid and
the walls of the cylinder are at the same heigh? =⇒ OVERDETERMINED

ELLIPTIC PROBLEM







































div
|∇u|√
1+|∇u|2

− ρg
σ
u = k in R

2\Ω
u ≥ 0 in R

2\Ω
u = a > 0 on ∂Ω

u → 0 if |(x, y)| → ∞
∂u
∂ν

= − cotα on ∂Ω
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A question raised by Berestycki-Caffarelli-Nirenberg

Problem: to classify domains Ω ∈ R
n that support a positive

solution of the overdetermined elliptic system


















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

where f is a given Lipschitz function.

Generalization: same problem, with an other elliptic operator.
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Problem: to classify domains Ω ∈ R
n that support a positive

solution of the overdetermined elliptic system


















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

where f is a given Lipschitz function.

Generalization: same problem, with an other elliptic operator.

Question (1997). Under the assumption that Rn\Ω is connected
and u is bounded, is it true that Ω must be a ball, or a half space,
or a cylinder Rj ×B (where B is a ball) or the complement of
one of these three domains?
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The main results from PDE’s community

Serrin (ARMA, 1971)
If Ω is bounded, than it is a ball. [True also for more general
operators].

Reichel (ARMA, 1997), Aftalion-Busca (ARMA, 1998)
Rigidity results for exterior domains, for some functions f and
under assumptions on the behavior of the solution u at infinity.
[True also for more general operators - Sirakov (2002) ].

Berestycki-Caffarelli-Nirenberg (CPAM, 1997)
Rigidity results for epigraphs, for some functions f and under
assumptions of the asymptotical flatness for the boundary of the
domain.

Farina-Valdinoci (ARMA, 2009)
Rigidity results for epigraphs in R

2 for all functions f , and in R
3

for some classes of functions f .
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Constant mean curvature surfaces

The argument used by Serrin was a generalization of the
method used by Alexandroff in 1962 to prove the following:
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Constant mean curvature surfaces

The argument used by Serrin was a generalization of the
method used by Alexandroff in 1962 to prove the following:

Theorem . In R
n the only enbedded compact mean curvature

hypersurfaces are the spheres.
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Onduloinds

In R
n there are exist noncompact surfaces with constant mean

curvature. For example the Delaunay surfaces...
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Onduloinds

In R
n there are exist noncompact surfaces with constant mean

curvature. For example the Delaunay surfaces...

Theorem (S. 2010 & Schlenk-S. 2011) : It is possible to build
overdetermined solutions in domains that look like full onduloids
in R

n, n ≥ 2, for the function f(t) = λ t.
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A strong parallelism with minimal surfaces

Traizet (GAFA, 2013)

{minimal bigraphs inR3}
∪

{the half-plane}
←→
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∣
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∣

domains inR2 that support a positive

solution to the problem


















∆u = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

with the hypothesis that ∂Ω has a finite

number of components, at least in the

quotient ifΩ is periodic
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domains inR2 that support a positive

solution to the problem


















∆u = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

with the hypothesis that ∂Ω has a finite

number of components, at least in the

quotient ifΩ is periodic

Corollary. If ∂Ω is unbounded and connected then, Ω is a
half-plane.
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The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to


















∆u+ u− u3 = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

for some special domains Ω given by:

– p. 10/21



The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to


















∆u+ u− u3 = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in R
3.

– p. 10/21



The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to


















∆u+ u− u3 = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in R
3.

2. Perturbations of the region inside a catenoid in R
3.

– p. 10/21



The Allen-Cahn overdetermined problem

Del Pino, Pacard, Wei (DUKE, 2015)

It is possible to find positive solutions to


















∆u+ u− u3 = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

for some special domains Ω given by:

1. Perturbations of the region inside a Delaunay onduloid in R
3.

2. Perturbations of the region inside a catenoid in R
3.

3. Perturbations of the De Giorgi-Bombieri-Giusti epigraph in R
9.
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Linked conjectures

Bernstein Conjecture (1914):
"The only entire minimal graphs in R

n are hyperplanes".

→ True till n = 8 (Bernstein, De Giorgi, Almgren, Simons)
→ False from n = 9 (Bombieri-De Giorgi-Giusti)

De Giorgi Conjecture (1978):
"The level sets of an entire solutions of ∆u+ u− u3 in R

n (n ≤ 8)
increasing in one variable are hyperplanes".

→ True if n = 2 or 3 (Ghoussoub-Gui, Ambrosio-Cabré)
→ "counterexample" for n = 9 (Del Pino-Kowalczyk-Wei)

Natural questions for overdetermined problems :
1) "Is the half-space the only overdet. epigraph in R

n (n ≤ 8)?"

2) "If Ω is diffeomorphic to a half-space and is overdet. in R
n

(n ≤ 8), is it true that Ω is a half-space?"
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Main theorem

Theorem [Ros-Ruiz-S.]

Let f be a locally Lipschitz function and Ω ⊂ R
2, be a domain

that support a positive bounded solution of the overdetermined
elliptic system



















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

|∇u| = 1 on ∂Ω

If ∂Ω is unbounded and connected, then Ω is a half-plane.
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Main theorem

Theorem [Ros-Ruiz-S.]

Let f be a locally Lipschitz function and Ω ⊂ R
2, be a domain

that support a positive bounded solution of the overdetermined
elliptic system



















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

|∇u| = 1 on ∂Ω

If ∂Ω is unbounded and connected, then Ω is a half-plane.

—
From now on, we take f , Ω and u satisfying the hypothesis of
the theorem.
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Starting point and steps of the proof

Regularity : Overdetermined domains are in fact of class C2,α

(Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (ARMA, 2009): If Ω is of class C3, u is
increasing in one variable and |∇u| is bounded, then Ω is a
half-plane and u is one-dimensional.
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Starting point and steps of the proof

Regularity : Overdetermined domains are in fact of class C2,α

(Kinderlehrer-Nirenberg, Vogel).

Farina-Valdinoci (ARMA, 2009): If Ω is of class C3, u is
increasing in one variable and |∇u| is bounded, then Ω is a
half-plane and u is one-dimensional.

First result (Ros,Ruiz,S). The previous result still holds if Ω is
of class C2.

The steps of the proof of the main theorem will be the following:

1. We start by showing that ‖u‖C2,α is bounded in Ω.

2. Then, we prove that either u is increasing in one variable or
Ω contains an internally tangent half-plane.

3. To finish, we show that if ‖u‖C2,α is bounded and Ω contains
an internally tangent half-plane, then Ω is a half-plane.
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Boundedness of the curvature (and then of |∇u|)

Ω
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Boundedness of the curvature (and then of |∇u|)

|k(pn)| → +∞

p0

p1

p2 p6p4

p5
p3

Ω

– p. 14/21



Boundedness of the curvature (and then of |∇u|)

vn(x) = kn u
(

x
kn
+ pn

)

Ω

Tn

pn

O

kn = |k(pn)| → +∞
Tn : x→ kn (x− pn) Ωn = Tn(Ω)

Convergence to an harmonic overdetermined domain Ω∞ with
∂Ω∞ connected and unbounded and |k(O)| = 1. −→ Impossible

|k(p )| → +∞
– p. 14/21



Limit directions

Definition. We say that v ∈ S
1 is a limit direction (LD) for ∂Ω if

there exists pn ∈ ∂Ω such that |pn| → +∞ and

lim
n→+∞

pn

|pn|
= v .
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1 is a limit direction (LD) for ∂Ω if

there exists pn ∈ ∂Ω such that |pn| → +∞ and

lim
n→+∞

pn

|pn|
= v .

We can fix the coordinates of R2 in order that O = (0, 0) ∈ ∂Ω,
∂Ω is tangent to the x-axis in O, and the normal inward half-line
at O (contained in Ω by the moving plane) is the positive part of
the y-axis.
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Limit directions

Definition. We say that v ∈ S
1 is a limit direction (LD) for ∂Ω if

there exists pn ∈ ∂Ω such that |pn| → +∞ and

lim
n→+∞

pn

|pn|
= v .

We can fix the coordinates of R2 in order that O = (0, 0) ∈ ∂Ω,
∂Ω is tangent to the x-axis in O, and the normal inward half-line
at O (contained in Ω by the moving plane) is the positive part of
the y-axis. We have then a limit direction at the left (resp. right) if
pn stays on the component of ∂Ω\{O} that near O is on the left
(resp. right) of O.

x

l6

l5

l2

O

N(O)
l4

l3
l1

r1

r2

r3

r4 r5

r6

(∂Ω)r

(∂Ω)l

y
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Angle between limit directions

Proposition. Let vl be a LD at the left and vr be a LD at the
right. If the angle betwenn vr and vl is less or equal to π then u

is increasing in one variable.
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Angle between limit directions

Proposition. Let vl be a LD at the left and vr be a LD at the
right. If the angle betwenn vr and vl is less or equal to π then u

is increasing in one variable.

Easy case : when the angle is less than π.

Noneasy case : when the angle is π. It is the limit case.

Remark : If the angle is bigger than π for any choice of vl and vr,
then Ω contains an internally tangent half-plane.

Ω

Half − plane ⊂ Ω
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The easy case

q4

p1

p2

p3

p4

q1

q2

q3

vrvl

O
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The easy case

Moving plane method

p1

p2

p3

p4

q1

q2

q3

vrvl

O

q4
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The easy case

Moving plane method

p1

p2

p3

p4

q1

q2

q3

vrvl

O

q4

Conclusion : u is increasing in one variable. Since ∇u is
bounded, Ω is a half-plane.
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Following the boundary of the domain till∞

Ω

O

(1, 0) is the last limit direction at the right (possible thanks to a rotation).
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Following the boundary of the domain till∞

(1, 0) is the last limit direction at the right (possible thanks to a rotation).

Ω

O
pǫ

Cǫ = {|y| ≤ ǫ x}

dist(pǫ, O) ≥ ǫ−2
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Following the boundary of the domain till∞

Gqǫ

Ω

O
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Following the boundary of the domain till∞

B1/
√
ǫ(qǫ)

Ω

O

(1, 0) is the last limit direction at the right (possible thanks to a rotation).

Cǫ = {|y| ≤ ǫ x}

dist(pǫ, O) ≥ ǫ−2

Gpǫ
qǫ

Gqǫ

pǫ
Dǫ

Move qǫ to the origin, and pass to the limit ǫ→ 0. Dn converges
to an overdet. domain Ω∞ contained in a half plane. Then Ω∞ is
a half-plane. We built an overdet. half-plane starting from Ω.
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Radial solutions converging to u∞

Proposition. Assume that for y ∈ [0,+∞[ we have

{

ϕ′′(y) + f(ϕ(y)) = 0

ϕ(0) = 0, ϕ′(0) = 1, limt→+∞ ϕ(y) = L > 0.

Then, there exists R0 > 0 such that for any R > R0 the problem:

{

∆u+ f(u) = 0 x ∈ BR(O),

u = 0, x ∈ ∂BR(O)
(1)

has a positive radially symmetric solution uR, and as R→ +∞

i) uR < L and ∀ ρ ∈ (0, 1), uR|BρR(O) converges unif. to L.

ii) The functions vR(z) = uR(z − (0, R)) converges to
u(x, y) = ϕ(y) locally in compact sets of H = {y > 0}.
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Moving a radial solution under the graph of u

N(qn)
Ω

p

O

q

BR(p)
qn

The previous result allows us to put the graph of a radial solution
in BR(p) below the graph of u.

Proposition. It is possible to move this graph without touching
the graph of u till we reach the position of the ball BR(q).
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Comparison

Ω

O

We take R→ +∞, and we obtain that the graph of the
overdetermined solution in the half-space is below the graph of
u.

The maximum principle says us that Ω is a half-plane.
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