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Theorem (Brendle 2013)
The only embedded minimal torus in S3 is the Clifford torus.

Theorem (Andrews-Li 2015)
Every embedded CMC torus in S3 is rotationally symmetric.

In fact, Andrews-Li gave a complete classification of embedded constant
mean curvature tori in S3.



Remark
For higher-dimensional analogues, one possible approach is to
characterize a Clifford hypersurface among embedded constant mean
curvature hypersurfaces in Sn+1. Unfortunately, even when H = 0, it is
well-known that there exist infinitely many mutually noncongruent
embedded minimal hypersurfaces in Sn+1 which are homeomorphic to the
Clifford hypersurface due to Hsiang.

In view of this observation, we restrict ourselves to consider compact
embedded constant mean curvature hypersurfaces in a unit sphere with
two distinct principal curvatures.

Theorem (Andrews-Huang-Li 2015)
Let Σ be a compact embedded hypersurface in Sn+1 with two distinct
principal curvatures λ and µ, whose multiplicities are m and n −m
respectively. If λ+αµ = 0 for some positive constant, Σ is congruent to a

Clifford hypersurface Sn−1
(√

1
α+1

)
× S1

(√
α

1+α

)
.



m-th order mean curvature

The m-th order mean curvature Hm of an n-dimensional hypersurface
M ⊂ Sn+1 is defined by the elementary symmetric polynomial of degree
m in the principal curvatures λ1, λ2, · · · , λn on M as follows:(

n

m

)
Hm =

∑
16i1<···<im6n

λi1 . . . λim .



Clifford hypersurface

If an n-dimensional Clifford hypersurface in Sn+1 has two distinct
principal curvatures λ and µ of multiplicities n − k and k, respectively,
then it is given by

Sn−k

(
1√

1 + λ2

)
× Sk

(
1√

1 + µ2

)

with λµ+ 1 = 0, that is,

Sn−k

(
1√

1 + λ2

)
× Sk

(
|λ|√

1 + λ2

)
,

where λ satisfies the following identity:(
n

m

)
Hm =

(
n − k

m

)
λm +

(
n − k

m − 1

)(
k

1

)
λm−1µ+

· · ·+
(
n − k

1

)(
k

m − 1

)
λµm−1 +

(
k

m

)
µm

with λµ+ 1 = 0.



Clifford hypersurface

In particular, if one of the principal curvatures is simple, say k = 1, then

Sn−1

(
1√

1 + λ2

)
× S1

(
|λ|√

1 + λ2

)
,

where λ satisfies the following identity:

(n −m)λm −mλm−2 = nHm.

Moreover, if k = 1 and Hm = 0, then λ = ±
√

m
n−m and µ = ∓

√
n−m
m .

Thus a Clifford hypersurface is given by

Sn−1

(√
n −m

n

)
× S1

(√
m

n

)
.



Introduction

Theorem (Otsuki 1970)
Let M be a minimal hypersurface in Sn+1 with two distinct principal
curvatures λ and µ.
(I) If the multiplicities of λ and µ are at least 2, then M is locally
congruent to a Clifford minimal hypersurface.
(II) If one of λ and µ is simple, then there are infinitely many minimal
hypersurfaces other than Clifford minimal hypersurfaces.



Remark
If the multiplicities of two distinct principal curvatures are at least 2, then
a compact hypersurface with constant m-th order mean curvature is
congruent to a Clifford hypersurface (B.Y. Wu 2009). Thus it suffices to
consider the case where one of the two distinct principal curvatures is
simple.

Remark
Let Σ be a hypersurface in a space form with two distinct principal
curvatures, one of them being simple. Then Σ is a part of rotationally
symmetric hypersurface. [Do Carmo-Dajczer 1983]



Consider constant mean curvature hypersurfaces with two distinct
principal curvatures λ and µ, µ being simple.

The existence of compact embedded constant mean curvature
hypersurfaces in Sn+1 other than the totally geodesic n-spheres and
Clifford hypersurfaces was obtained by [Ripoll 1986, Brito-Leite 1990,
Wei-Cheng-Li 2010].

Theorem (Perdomo 2010)
For any integer m > 2 and H between cot πm and (m2−2)

√
n−1

n
√
m2−1

, there exists

a compact embedded hypersurface in Sn+1 with constant mean curvature
H other than the totally geodesic n-spheres and Clifford hypersurfaces.

Remark
In his construction, λ and µ satisfy that λ > µ.



Theorem (Min-S 2015)
Let Σ be an n(> 3)-dimensional compact embedded hypersurface in Sn+1

with constant mean curvature H > 0 and with two distinct principal
curvatures λ and µ, µ being simple. If µ > λ, then Σ is congruent to a

Clifford hypersurface Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where

λ =
nH−
√

n2H2+4(n−1)

2(n−1) .

Remark
Constant mean curvature tori in S3 automatically satisfy the condition
that µ > λ.



F : Σn → Sn+1(⊂ Rn+2), an immersion of a compact embedded
constant mean curvature hypersurface in Sn+1 with two distinct
principal curvatures, one of them being simple

ν(x), the unit normal vector at x ∈ Σ in Sn+1

h and A, the second fundamental form and the shape operator of Σ,
respectively

The normalized mean curvature H is given by

H =
1

n
tr(h) =

1

n

n∑
i=1

λi =
1

n
[(n − 1)λ+ µ].

Since Σ is a compact embedded hypersurface, Σ divides Sn+1 into two
connected components. Because the mean curvature of F (Σ) in Sn+1 is
constant, we may assume that H > 0 by choosing the suitable orientation
of Σ. Let R be the region satisfying that ν points out of R. The mean
curvature vector ~H satisfies that ~H = −nHν(x).



For a positive function Ψ on Σ, we denote by BT (x , 1
Ψ(x) ) a geodesic ball

with radius 1
Ψ(x) which touches Σ at F (x) inside the region R in Sn+1.

Note that our notation BT (x , r) is different from a geodesic ball Br (x)
centered at x with radius r > 0. Then BT (x , 1

Ψ(x) ) is given by the

intersection of Sn+1 and a ball of radius 1
Ψ(x) centered at

p(x) = F (x) − 1
Ψ(x)ν(x) in Rn+2. Define the two-point function

Z : Σ× Σ→ R by

Z (x , y) := Ψ(x)(1 − 〈F (x),F (y)〉) + 〈ν(x),F (y)〉 . (1)

Then for any y ∈ Σ,
Z (x , y) > 0 if F (y) ∈ intBT (x , 1

Ψ(x) ),

Z (x , y) = 0 if F (y) ∈ ∂BT (x , 1
Ψ(x) ),

Z (x , y) < 0 if F (y) 6∈ BT (x , 1
Ψ(x) ),

since
2

Ψ(x)
Z (x , y) = |F (y) − p(x)|2 −

(
1

Ψ(x)

)2

.



Definition (Andrews-Langford-McCoy 2013)
The interior ball curvature k is a positive function on Σ defined by

k(x) := inf

{
1

r
: BT (x , r) ∩ Σ = {x }, r > 0

}
.

Remark
Because Σ is compact and embedded in Sn+1, the function k is a
well-defined positive function on Σ.
From the definition of k(x) for every point x ∈ Σ, it follows that

k(x)(1 − 〈F (x),F (y)〉) + 〈ν(x),F (y)〉 > 0

for all y ∈ Σ.



Let Φ(x) := max{λ(x),µ(x)} be the maximum value of the principal
curvatures of Σ in Sn+1 at F (x).
Note that the two distinct principal curvature condition guarantees that
Σ has no umbilic point and hence Φ(x) −H > 0.

Definition (Brendle 2013, Andrews-Li 2015)

κ := sup
x∈Σ

k(x) −H

Φ(x) −H
.

For convenience, we will write ϕ(x) := Φ(x) −H.

Remark
Since k(x) > Φ(x) and Σ is compact, there exists a constant K > 0
satisfying

1 6 κ < K .



Define a positive function

Ψ(x) := κϕ(x) +H = κ(Φ(x) −H) +H

on Σ. Then Ψ(x) > k(x). It follows that

Z (x , y) = Ψ(x)(1 − 〈F (x),F (y)〉) + 〈ν(x),F (y)〉> 0

for all (x , y) ∈ Σ× Σ.

Remark

If there exists a point (x , y) ∈ Σ×Σ satisfying that Z (x , y) = 0, then

∂Z

∂xi
(x , y) =

∂Z

∂yi
(x , y) = 0,

since the function Z attains its global minimum at (x , y).

The global minimum of the function Z is attained at (x , x) ∈ Σ× Σ
for all x ∈ Σ.



First and second order derivatives of Z (x , y)

Consider a pair of points (x , y) ∈ Σ× Σ such that Z (x , y) = 0. Then

∂Z

∂xi
(x , y) =

∂Z

∂yi
(x , y) = 0.

Choose geodesic normal coordinates (x1, . . . , xn) at x in Σ satisfying that

hij = λiδij

with λ = λ1 = · · · = λn−1 and µ = λn and geodesic normal coordinates
(y1, . . . , yn) at y in Σ.



First and second order derivatives of Z (x , y)

0 = Z (x , y) = Ψ(x)(1 − 〈F (x),F (y)〉) + 〈ν(x),F (y)〉

0 =
∂Z

∂xi
(x , y) =

∂Ψ(x)

∂xi
(1 − 〈F (x),F (y)〉− Ψ(x)

〈
∂F (x)

∂xi
,F (y)

〉
+

n∑
k=1

h k
i (x)

〈
∂F (x)

∂xk
,F (y)

〉
,

0 =
∂Z

∂yi
(x , y) = −Ψ(x)

〈
F (x),

∂F (y)

∂xi

〉
+

〈
ν(x),

∂F (y)

∂xi

〉
.



First and second order derivatives of Z (x , y)

0 6
n∑

i=1

∂2Z

∂xi 2
+ 2

n∑
i=1

∂2Z

∂xi∂yi
+

n∑
i=1

∂2Z

∂yi 2

= (1 − 〈F (x),F (y)〉)

×

(
∆ΣΨ(x) − 2

n∑
i=1

|
∂Ψ(x)
∂xi

|2

Ψ(x) − λi (x)
+
(
|A(x)|2 − n

)
Ψ(x) − nHΨ(x)2 + nH

)
6 (1 − 〈F (x),F (y)〉)
(1 − 〈F (x),F (y)〉)

×
(
∆ΣΨ(x) −

2

n

|∇ΣΨ(x)|2

Ψ(x) −H
+
(
|A(x)|2 − n

)
Ψ(x) − nHΨ(x)2 + nH

)
,

since Φ(x) 6 k(x) 6 Ψ(x), for 1 6 i 6 n

Ψ(x) − λi = Ψ(x) − (nH −
∑
j 6=i

λj ) = Ψ(x) +
∑
j 6=i

λj − nH 6 n(Ψ(x) −H).



Simons-type identity

Proposition
Let Σ be a constant mean curvature hypersurface in Sn+1 with two
distinct principal curvatures λ and µ, µ being simple. Then |Å| is strictly
positive and

|∇ΣÅ|2 =
n + 2

n
|∇Σ|Å||2.

Remark
It is well-known that a constant mean curvature hypersurface Σ in
space forms satisfies

|∇ΣÅ|2 − |∇Σ|Å||2 >
2

n
|∇Σ|Å||2,

which is so-called Kato’s inequality. It would be interesting to
characterize the equality case. This proposition gives a sufficient
condition for Kato’s inequality to attain the equality.



Simons-type identity

Applying the above Proposition to the function ϕ = Φ−H, where Φ is
the maximum value of the principal curvatures, we get the following:

Lemma
Let Σ be a constant mean curvature hypersurface in Sn+1 with two
distinct principal curvatures λ and µ, µ being simple. Then

∆Σϕ−
2

n

|∇Σϕ|2

ϕ
+ (|A|2 − n)ϕ− 2nH2ϕ+ nf (n)Hϕ2 = 0,

where the function f (n) is defined by

f (n) :=

{
n−2
n−1 if Φ = µ,
n − 2 if Φ = λ.



In general, Φ(x)6k(x) for every x ∈ Σ.

Proposition
Let Σ be an n(> 3)-dimensional compact embedded hypersurface in Sn+1

with constant mean curvature H with two distinct principal curvatures,
one of them being simple. If H > 0. Then

k(x)=Φ(x)

for all x ∈ Σ.



Proof

Suppose that κ > 1. Then there exists a point (x , y) ∈ Σ× Σ with x 6= y
satisfying that Z (x , y) = 0.

1

(1 − 〈F (x),F (y)〉)

(
n∑

i=1

∂2Z

∂xi 2
+ 2

n∑
i=1

∂2Z

∂xi∂yi
+

n∑
i=1

∂2Z

∂yi 2

)

6 κ∆Σϕ(x) −
2κ

n

|∇Σϕ(x)|2

ϕ(x)

+
(
|A(x)|2 − n

)
(κϕ(x) +H) − nH(κϕ(x) +H)2 + nH

= H |A(x)|2 − κ2nHϕ(x)2 − nH3 − κnf (n)Hϕ(x)2,

where f (n) = n−2
n−1 if Φ = µ, and f (n) = n − 2 if Φ = λ.



Proof

Note that
|Å|2 = |A|2 − nH2 = ng(n)ϕ2,

g(n) =

{
1

n−1 if Φ = µ,
n − 1 if Φ = λ.

Then

1

(1 − 〈F (x),F (y)〉)

(
n∑

i=1

∂2Z

∂xi 2
+ 2

n∑
i=1

∂2Z

∂xi∂yi
+

n∑
i=1

∂2Z

∂yi 2

)
6 −nHϕ(x)2(κ2 + f (n)κ− g(n))

< −nHϕ(x)2(1 + f (n) − g(n))

6 0

where

1 + f (n) − g(n) =

{
2(n−2)
n−1 if Φ = µ,

0 if Φ = λ.



Proof

However, since the point (x , y) ∈ Σ× Σ \D is a global minimum point of
the function Z , we see

0 6
n∑

i=1

∂2Z

∂xi 2
+ 2

n∑
i=1

∂2Z

∂xi∂yi
+

n∑
i=1

∂2Z

∂yi 2
,

which is a contradiction. It follows that

k(x) = Φ(x) = Ψ(x)

for all x ∈ Σ.



Theorem (Min-S)
Let Σ be an n(> 3)-dimensional compact embedded hypersurface in Sn+1

with constant mean curvature H > 0 and with two distinct principal
curvatures λ and µ, µ being simple. If µ > λ, then Σ is congruent to a

Clifford hypersurface Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where

λ =
nH−
√

n2H2+4(n−1)

2(n−1) .



Proof

If H = 0, then Σ is congruent to a Clifford minimal hypersurfaces by
the work due to Otsuki.

It suffices to consider the case H > 0. Since µ > λ, we have Φ = µ.
By the previous proposition,

Φ(x)(1 − 〈F (x),F (y)〉) + 〈ν(x),F (y)〉 > 0,

for all x , y ∈ Σ.



Proof

Fix x ∈ Σ and choose an orthonormal frame {e1, . . . , en} in a
neighborhood of x such that h(en, en) = Φ. Let γ(t) be a geodesic on Σ
such that γ(0) = F (x) and γ ′(0) = en. Define a function f : R→ R by

f (t) := Z (F (x),γ(t)) = Φ(x)(1 − 〈F (x),γ(t)〉) + 〈ν(x),γ(t)〉 .

Then, by definition, f (t) > 0 and f (0) = 0. A simple computation shows

f ′(t) = − 〈Φ(x)F (x) − ν(x),γ ′(t)〉 ,

f ′′(t) = 〈Φ(x)F (x) − ν(x),γ(t) + h(γ ′(t),γ ′(t))ν(γ(t))〉 ,

f ′′′(t) =
〈
Φ(x)F (x) − ν(x),γ ′(t) + (∇Σγ′(t)h)(γ

′(t),γ ′(t))ν(γ(t))
〉

+
〈
Φ(x)F (x) − ν(x), h(γ ′(t),γ ′(t))∇γ′(t)ν(γ(t))

〉
,

where ∇ is the covariant derivative of Rn+2.



Proof

In particular, it follows that

f (0) = f ′(0) = 0,

f ′′(0) = 〈Φ(x)F (x) − ν(x),F (x) +Φ(x)ν(x)〉 = 0.

Moreover the fact that f > 0 implies that f ′′′(0) = 0. Hence

0 = f ′′′(0) = 〈Φ(x)F (x) − ν(x), en + hnnn(x)ν(x)〉 = −hnnn(x).

Therefore we get enλ = h11n = − 1
n−1hnnn = 0, which implies that λ and µ

are constant on Σ by Ostuki. Thus Σ is an isoparametric hypersurface in
Sn+1 with two distinct principal curvatures. From the classification of
isoparametric hypersurfaces with two principal curvatures due to Cartan,
it follows that Σ is congruent to the Riemannian product

Sn−1
(

1√
1+λ2

)
×S1

(
1√
1+µ2

)
, where λ and µ satisfy nH = (n−1)λ+µ.



Introduction

Theorem (Simons 1968)
Let M be a compact minimal hypersurface in Sn+1. Then we have∫

M
|A|2

(
|A|2 − n

)
> 0,

where |A|2 denotes the squared norm of the second fundamental form on
M.

Corollary
Such M is either totally geodesic, or |A|2 ≡ n, or |A|2(x) > n at some
point x ∈ M.

Theorem (Chern-do Carmo-Kobayashi 1968, Lawson 1969)
For n > 3, if |A|2 ≡ n on M, then M is isometric to a Clifford minimal

hypersurface Sn−1
(√

n−1
n

)
× S1

(√
1
n

)
.



Introduction

Theorem (Wang 2003, Perdomo 2004)
Let M be an n(> 3)-dimensional closed minimal hypersurface in Sn+1

with two distinct principal curvatures, one of them being simple. Then∫
M
|A|2 6 nVol(M),

where Vol(M) denotes the volume of M. Moreover, equality holds if and
only if M is isometric to a Clifford minimal hypersurface.

Remark
The similar curvature integral inequality holds when the m-th order mean
curvature Hm vanishes, which was obtained by G. Wei.



Theorem (Min-S 2015)
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
constant m-th order mean curvature Hm and with two distinct principal
curvatures λ and µ, µ being simple (i.e., multiplicity 1). For the unit
principal direction vector en corresponding to µ, we have∫

M
Ric(en, en) > 0,

where Ric denotes the Ricci curvature. Moreover, equality holds if and
only if M is isometric to a Clifford hypersurface

Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where λ is the root of the equation

(n −m)λm −mλm−2 = nHm.



Remark
If the multiplicities of two distinct principal curvatures are at least 2, then
a closed hypersurface with constant m-th order mean curvature is
congruent to a Clifford hypersurface (B.Y. Wu 2009). Thus it suffices to
consider the case where one of the two distinct principal curvatures is
simple.

Remark
If Hm ≡ 0 for 1 6 m < n, then

Ric(en, en) = (n − 1)(1 + λµ) = (n − 1)

(
1 −

m(n −m)

n(m2 − 2m + n)
|A|2
)

.



Notations

M, n(> 3)-dimensional hypersurface in the unit sphere Sn+1.

∇, the Riemannian connection of M

e1, . . . , en, en+1, orthonormal frame fields of the unit sphere such
that e1, . . . , en are tangent to M

ω1, . . . ,ωn,ωn+1, the dual coframe.

ωn+1 = 0

on M.

h and A, the second fundamental form and the shape operator of M
such that

〈A(X ),Y 〉 = h(X ,Y )

for all X ,Y ∈ TpM

∇h =
∑n

i ,j ,k=1 hijkω
i ⊗ωj ⊗ωk , where hijk is the coefficient

function of ∇h such that

hijk ≡ hij ;k = (∇ekh) (ei , ej )

= ∇ekh(ei , ej ) − h(∇ek ei , ej ) − h(ei ,∇ek ej )

hijk = hikj by Codazzi equation



Now assume that M is a closed hypersurface in a unit sphere with
constant m-th order mean curvature Hm and with two distinct principal
curvatures with multiplicities n − 1, 1. May assume that
λ = λ1 = · · · = λn−1 and µ = λn. We choose the orthonormal frame
tangent to M such that hij = λiδij , that is,

Aei = λei for i = 1, . . . , n − 1,
Aen = µen.

Since M has two distinct principal curvatures λ and µ,(
n

m

)
Hm =

(
n − 1

m

)
λm +

(
n − 1

m − 1

)
λm−1µ.

Therefore

Hm =
m

n
λm−1

(
n −m

m
λ+ µ

)
.



Claim: λm −Hm never vanishes on M.

Proof of claim.
We consider two cases: m = 1 and m > 2.

Suppose m = 1.

If H1 = 0, then λ 6= 0. Thus λ−H1 6= 0.
If H1 6= 0, then λ−H1 = λ−µ

n . Since λ 6= µ, it never vanishes.

Suppose m > 2.

If Hm 6= 0, then λ 6= 0. Therefore
λm −Hm = m

n λ
m−1(λ− µ) 6= 0.

If Hm = 0 and λ 6= 0, then λm −Hm never vanishes.
If Hm = 0 and λ = 0 at some point, then it follows from the
equation λm−1( n−m

n λ+ µ) = 0 that λ ≡ 0. Thus M has
constant sectional curvature 1 by the Gauss equation, which
implies that M is totally geodesic. However this is a
contradiction because λ 6= µ.



From our claim, we can define a function w := |λm −Hm |
− 1

n . B.Y. Wu
obtained the following useful second order ordinary differential equation
on M:

d2w

dv2
= −w

(
nHm − (n −m) λm

mλm−2
+ 1

)
,

where v is the arclength parameter of the integral curve with respect to µ.

Remark
In particular, if H1 ≡ 0, then this equation was originally obtained by
Otsuki.



Theorem (Otsuki 1970)
Let Σ be a hypersurface immersed in an (n + 1)-dimensional Riemannian
manifold of constant curvature such that the multiplicities of principal
curvatures are all constant. Then we have the following:

The distribution of the space of principal vectors corresponding to
each principal curvature is completely integrable.

If the multiplicity of a principal curvature is greater than 1, then this
principal curvature is constant on each integral submanifold of the
corresponding distribution of the space of principal vectors.



From the previous theorem, it follows, for each 1 6 i 6 n − 1,

∇eiλ = eiλ = 0.

Since w = |λm −Hm |
− 1

n = (s (λm −Hm))
− 1

n for a fixed constant s = ±1,

∇eiw = ∇ei (|λ
m −Hm |

− 1
n )

= −
m

n
swn+1λm−1∇eiλ.

Moreover, for i = 1, . . . , n − 1,

∇eiw = 0.



For a function f = f (w) on M, we compute the Laplacian of f on M as
follows.

∆f = −
1

n − 1
f ′(w)w Ric(en, en) +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2,

where Ric(en, en) denotes the Ricci curvature in the direction of en.



Theorem (Min-S 2015)
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
constant m-th order mean curvature Hm and with two distinct principal
curvatures λ and µ, µ being simple (i.e., multiplicity 1). For the unit
principal direction vector en corresponding to µ, we have∫

M
Ric(en, en) > 0,

where Ric denotes the Ricci curvature. Moreover, equality holds if and
only if M is isometric to a Clifford hypersurface

Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where λ is the root of the equation

(n −m)λm −mλm−2 = nHm.



Proof

Define a function f (w) = logw , where w = |λm −Hm |
− 1

n .

∆f = −
Ric(en, en)

n − 1
+

n − 2

w2
(enw)2.

Integrating ∆f over M gives

0 =

∫
M
−

Ric(en, en)

n − 1
+

n − 2

w2
(enw)2.

Therefore ∫
M

Ric(en, en) = (n − 1)(n − 2)

∫
M

(enw)2

w2
> 0.



Proof

Moreover equality holds if and only if enw ≡ 0 on M in the above
inequality, which is equivalent that enλ ≡ 0. Thus both λ and µ are
constant, which implies that M is isometric to a Clifford hypersurface

Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
by Cartan, where λ is the root of the

equation (n −m)λm −mλm−2 = nHm.



Applications

In particular, if Hm ≡ 0 for 1 6 m < n, then we have

Ric(en, en) = (n − 1)

(
1 −

m(n −m)

n(m2 − 2m + n)
|A|2
)

.

Therefore

Corollary
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
Hm ≡ 0 (1 6 m < n) and with two distinct principal curvatures, one of
them being simple. Then∫

M
|A|2 6

n(m2 − 2m + n)

m(n −m)
Vol(M),

where equality holds if and only if M is isometric to a Clifford

hypersurface Sn−1
(√

n−m
n

)
× S1

(√
m
n

)
.



Applications

Corollary
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
constant m-th order mean curvature and with two distinct principal
curvatures, one of them being simple. Denote by en the unit principal
direction vector corresponding to µ. If Ric(en, en) 6 0 on M, then M is

isometric to a Clifford hypersurface Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where λ

is the root of the equation (n −m)λm −mλm−2 = nHm.



By making use of the Laplacian of a function of principal curvatures, we
obtain a characterization theorem under a pointwise nonnegative Ricci
curvature assumption:

Theorem
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
constant m-th order mean curvature Hm and with two distinct principal
curvatures λ and µ, µ being simple. Denote by en the unit principal
direction vector corresponding to µ. If Ric(en, en) > 0 on M, then M is

isometric to a Clifford hypersurface Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where λ

is the root of the equation (n −m)λm −mλm−2 = nHm.



Proof

Define a function f (w) = wk for a number k < 2 − n. Then

∆f = −
1

n − 1
f ′(w)w Ric(en, en) +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2

= −
1

n − 1
kwk Ric(en, en) + k(k + n − 2)wk−2(enw)2.

Integrating ∆f over M, we have

0 =

∫
M
∆f =

∫
M

[
−

1

n − 1
kwk Ric(en, en) + k(k + n − 2)wk−2(enw)2

]
.



Proof

Therefore

1

n − 1

∫
M
wk Ric(en, en) = (k + n − 2)

∫
M
wk−2(enw)2. (2)

From the equality (2) and the assumption that Ric(en, en) > 0, it follows
that enw ≡ 0 on M. Therefore M is isometric to a Clifford hypersurface

Sn−1
(

1√
1+λ2

)
× S1

(
|λ|√
1+λ2

)
, where λ is the root of the equation

(n −m)λm −mλm−2 = nHm.



Applications

In particular, when Hm ≡ 0, we give a simple proof of the previous results
in [Cheng 2001, Hasanis-Savas-Halilaj 2000, 2005, Otsuki 1970, Wei
2006, 2007, Wu 2009, ...]

Corollary
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with Hm ≡ 0
(1 6 m < n) and with two distinct principal curvatures, one of them being

simple. Either if |A|2 > n(m2−2m+n)
m(n−m) or |A|2 6 n(m2−2m+n)

m(n−m) on M, then M is

isometric to the Riemannian product Sn−1
(√

n−m
n

)
× S1

(√
m
n

)
.

Corollary
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
constant m-th order mean curvature and with two distinct principal
curvatures. If the Ricci curvature on M is nonnegative, then M is
isometric to a Clifford hypersurface.



Theorem (Min-S 2015)
Let M be an n(> 3)-dimensional closed hypersurface in Sn+1 with
Hm ≡ 0 (1 6 m < n) and with two distinct principal curvatures, one of
them being simple. Then we have

∫
M
|A|p

(
|A|2 −

n(m2 − 2m + n)

m(n −m)

)
6 0 if p < n−2

n m,∫
M
|A|p

(
|A|2 −

n(m2 − 2m + n)

m(n −m)

)
> 0 if p > n−2

n m.

Moreover, equalities hold if and only if M is isometric to a Clifford

hypersurface Sn−1
(√

n−m
n

)
× S1

(√
m
n

)
.



Proof

Since Hm ≡ 0,

µ = −
n −m

m
λ.

Thus as before, we have∫
M
wk Ric(en, en) > 0 if k > 2 − n,∫

M
wk Ric(en, en) 6 0 if k < 2 − n,

where w = |λ|−
m
n . Let p = − km

n . Then
∫
M
|λ|p >

n −m

m

∫
M
|λ|p+2 if p < n−2

n m,∫
M
|λ|p 6

n −m

m

∫
M
|λ|p+2 if p > n−2

n m.



Proof

Therefore using

|A|2 = (n − 1)λ2 + µ2 =
n(m2 − 2m + n)

m2
λ2,

we finally obtain
∫
M
|A|p

(
|A|2 −

n(m2 − 2m + n)

m(n −m)

)
6 0 if p < n−2

n m,∫
M
|A|p

(
|A|2 −

n(m2 − 2m + n)

m(n −m)

)
> 0 if p > n−2

n m.

Furthermore, equalities hold if and only if enw ≡ 0. Thus equalities hold
if and only if M is isometric to a Clifford hypersurface

Sn−1
(√

n−m
n

)
× S1

(√
m
n

)
.



It would be interesting to ask if the above results are still true without
assuming that M has two distinct principal curvatures.



Thank you for your attention.


