Characterizations of a Clifford hypersurface in a unit sphere

Keomkyo Seo

Sookmyung Women's University, Korea

Geometric aspects on capillary problems and related topics
December 15, 2015
Granada

Joint work with Sung-Hong Min

Theorem (Brendle 2013)
The only embedded minimal torus in \mathbb{S}^{3} is the Clifford torus.
Theorem (Andrews-Li 2015)
Every embedded CMC torus in \mathbb{S}^{3} is rotationally symmetric.

In fact, Andrews-Li gave a complete classification of embedded constant mean curvature tori in \mathbb{S}^{3}.

Remark

For higher-dimensional analogues, one possible approach is to characterize a Clifford hypersurface among embedded constant mean curvature hypersurfaces in \mathbb{S}^{n+1}. Unfortunately, even when $H=0$, it is well-known that there exist infinitely many mutually noncongruent embedded minimal hypersurfaces in \mathbb{S}^{n+1} which are homeomorphic to the Clifford hypersurface due to Hsiang.

In view of this observation, we restrict ourselves to consider compact embedded constant mean curvature hypersurfaces in a unit sphere with two distinct principal curvatures.

Theorem (Andrews-Huang-Li 2015)

Let Σ be a compact embedded hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures λ and μ, whose multiplicities are m and $n-m$ respectively. If $\lambda+\alpha \mu=0$ for some positive constant, Σ is congruent to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\sqrt{\frac{1}{\alpha+1}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{\alpha}{1+\alpha}}\right)$.

m-th order mean curvature

The m-th order mean curvature H_{m} of an n-dimensional hypersurface $M \subset \mathbb{S}^{n+1}$ is defined by the elementary symmetric polynomial of degree m in the principal curvatures $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ on M as follows:

$$
\binom{n}{m} H_{m}=\sum_{1 \leqslant i_{1}<\cdots<i_{m} \leqslant n} \lambda_{i_{1}} \ldots \lambda_{i_{m}} .
$$

Clifford hypersurface

If an n-dimensional Clifford hypersurface in \mathbb{S}^{n+1} has two distinct principal curvatures λ and μ of multiplicities $n-k$ and k, respectively, then it is given by

$$
\mathbb{S}^{n-k}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{k}\left(\frac{1}{\sqrt{1+\mu^{2}}}\right)
$$

with $\lambda \mu+1=0$, that is,

$$
\mathbb{S}^{n-k}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{k}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)
$$

where λ satisfies the following identity:

$$
\begin{aligned}
&\binom{n}{m} H_{m}=\binom{n-k}{m} \lambda^{m}+\binom{n-k}{m-1}\binom{k}{1} \lambda^{m-1} \mu+ \\
& \cdots+\binom{n-k}{1}\binom{k}{m-1} \lambda \mu^{m-1}+\binom{k}{m} \mu^{m}
\end{aligned}
$$

with $\lambda \mu+1=0$.

Clifford hypersurface

In particular, if one of the principal curvatures is simple, say $k=1$, then

$$
\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)
$$

where λ satisfies the following identity:

$$
(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}
$$

Moreover, if $k=1$ and $H_{m}=0$, then $\lambda= \pm \sqrt{\frac{m}{n-m}}$ and $\mu=\mp \sqrt{\frac{n-m}{m}}$.
Thus a Clifford hypersurface is given by

$$
\mathbb{S}^{n-1}\left(\sqrt{\frac{n-m}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{m}{n}}\right) .
$$

Introduction

Theorem (Otsuki 1970)
Let M be a minimal hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures λ and μ.
(I) If the multiplicities of λ and μ are at least 2 , then M is locally congruent to a Clifford minimal hypersurface. (II) If one of λ and μ is simple, then there are infinitely many minimal hypersurfaces other than Clifford minimal hypersurfaces.

Remark

If the multiplicities of two distinct principal curvatures are at least 2 , then a compact hypersurface with constant m-th order mean curvature is congruent to a Clifford hypersurface (B.Y. Wu 2009). Thus it suffices to consider the case where one of the two distinct principal curvatures is simple.

Remark

Let Σ be a hypersurface in a space form with two distinct principal curvatures, one of them being simple. Then Σ is a part of rotationally symmetric hypersurface. [Do Carmo-Dajczer 1983]

Consider constant mean curvature hypersurfaces with two distinct principal curvatures λ and μ, μ being simple.

The existence of compact embedded constant mean curvature hypersurfaces in \mathbb{S}^{n+1} other than the totally geodesic n-spheres and Clifford hypersurfaces was obtained by [Ripoll 1986, Brito-Leite 1990, Wei-Cheng-Li 2010].

Theorem (Perdomo 2010)

For any integer $m \geqslant 2$ and H between cot $\frac{\pi}{m}$ and $\frac{\left(m^{2}-2\right) \sqrt{n-1}}{n \sqrt{m^{2}-1}}$, there exists a compact embedded hypersurface in \mathbb{S}^{n+1} with constant mean curvature H other than the totally geodesic n-spheres and Clifford hypersurfaces.

Remark

In his construction, λ and μ satisfy that $\lambda>\mu$.

Theorem (Min-S 2015)

Let Σ be an $n(\geqslant 3)$-dimensional compact embedded hypersurface in \mathbb{S}^{n+1} with constant mean curvature $H \geqslant 0$ and with two distinct principal curvatures λ and μ, μ being simple. If $\mu>\lambda$, then Σ is congruent to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where
$\lambda=\frac{n H-\sqrt{n^{2} H^{2}+4(n-1)}}{2(n-1)}$.
Remark
Constant mean curvature tori in \mathbb{S}^{3} automatically satisfy the condition that $\mu>\lambda$.

- $F: \Sigma^{n} \rightarrow \mathbb{S}^{n+1}\left(\subset \mathbb{R}^{n+2}\right)$, an immersion of a compact embedded constant mean curvature hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures, one of them being simple
- $v(x)$, the unit normal vector at $x \in \Sigma$ in \mathbb{S}^{n+1}
- h and A, the second fundamental form and the shape operator of Σ, respectively
- The normalized mean curvature H is given by

$$
H=\frac{1}{n} \operatorname{tr}(h)=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}=\frac{1}{n}[(n-1) \lambda+\mu]
$$

Since Σ is a compact embedded hypersurface, Σ divides \mathbb{S}^{n+1} into two connected components. Because the mean curvature of $F(\Sigma)$ in \mathbb{S}^{n+1} is constant, we may assume that $H \geqslant 0$ by choosing the suitable orientation of Σ. Let R be the region satisfying that v points out of R. The mean curvature vector \vec{H} satisfies that $\vec{H}=-n H v(x)$.

For a positive function Ψ on Σ, we denote by $B_{T}\left(x, \frac{1}{\Psi(x)}\right)$ a geodesic ball with radius $\frac{1}{\Psi(x)}$ which touches Σ at $F(x)$ inside the region R in \mathbb{S}^{n+1}. Note that our notation $B_{T}(x, r)$ is different from a geodesic ball $B_{r}(x)$ centered at x with radius $r>0$. Then $B_{T}\left(x, \frac{1}{\Psi(x)}\right)$ is given by the intersection of \mathbb{S}^{n+1} and a ball of radius $\frac{1}{\Psi(x)}$ centered at $p(x)=F(x)-\frac{1}{\Psi(x)} v(x)$ in \mathbb{R}^{n+2}. Define the two-point function $Z: \Sigma \times \Sigma \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
Z(x, y):=\Psi(x)(1-\langle F(x), F(y)\rangle)+\langle v(x), F(y)\rangle \tag{1}
\end{equation*}
$$

Then for any $y \in \Sigma$,

$$
\left\{\begin{array}{lll}
Z(x, y)>0 & \text { if } & F(y) \in \operatorname{int} B_{T}\left(x, \frac{1}{\Psi(x)}\right) \\
Z(x, y)=0 & \text { if } & F(y) \in \partial B_{T}\left(x, \frac{1}{\Psi(x)}\right), \\
Z(x, y)<0 & \text { if } & F(y) \notin B_{T}\left(x, \frac{1}{\Psi(x)}\right),
\end{array}\right.
$$

since

$$
\frac{2}{\Psi(x)} Z(x, y)=|F(y)-p(x)|^{2}-\left(\frac{1}{\Psi(x)}\right)^{2} .
$$

Definition (Andrews-Langford-McCoy 2013)

The interior ball curvature k is a positive function on Σ defined by

$$
k(x):=\inf \left\{\frac{1}{r}: B_{T}(x, r) \cap \Sigma=\{x\}, r>0\right\} .
$$

Remark

Because Σ is compact and embedded in \mathbb{S}^{n+1}, the function k is a well-defined positive function on Σ.
From the definition of $k(x)$ for every point $x \in \Sigma$, it follows that

$$
k(x)(1-\langle F(x), F(y)\rangle)+\langle v(x), F(y)\rangle \geqslant 0
$$

for all $y \in \Sigma$.

Let $\Phi(x):=\max \{\lambda(x), \mu(x)\}$ be the maximum value of the principal curvatures of Σ in \mathbb{S}^{n+1} at $F(x)$.
Note that the two distinct principal curvature condition guarantees that Σ has no umbilic point and hence $\Phi(x)-H>0$.

Definition (Brendle 2013, Andrews-Li 2015)

$$
k:=\sup _{x \in \Sigma} \frac{k(x)-H}{\Phi(x)-H} .
$$

For convenience, we will write $\varphi(x):=\Phi(x)-H$.
Remark
Since $k(x) \geqslant \Phi(x)$ and Σ is compact, there exists a constant $K>0$ satisfying

$$
1 \leqslant \kappa<K
$$

Define a positive function

$$
\Psi(x):=\kappa \varphi(x)+H=\kappa(\Phi(x)-H)+H
$$

on Σ. Then $\Psi(x) \geqslant k(x)$. It follows that

$$
Z(x, y)=\Psi(x)(1-\langle F(x), F(y)\rangle)+\langle v(x), F(y)\rangle \geqslant 0
$$

for all $(x, y) \in \Sigma \times \Sigma$.
Remark

- If there exists a point $(\bar{x}, \bar{y}) \in \Sigma \times \Sigma$ satisfying that $Z(\bar{x}, \bar{y})=0$, then

$$
\frac{\partial Z}{\partial x_{i}}(\bar{x}, \bar{y})=\frac{\partial Z}{\partial y_{i}}(\bar{x}, \bar{y})=0
$$

since the function Z attains its global minimum at (\bar{x}, \bar{y}).

- The global minimum of the function Z is attained at $(x, x) \in \Sigma \times \Sigma$ for all $x \in \Sigma$.

First and second order derivatives of $Z(x, y)$

Consider a pair of points $(\bar{x}, \bar{y}) \in \Sigma \times \Sigma$ such that $Z(\bar{x}, \bar{y})=0$. Then

$$
\frac{\partial Z}{\partial x_{i}}(\bar{x}, \bar{y})=\frac{\partial Z}{\partial y_{i}}(\bar{x}, \bar{y})=0 .
$$

Choose geodesic normal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ at \bar{x} in Σ satisfying that

$$
h_{i j}=\lambda_{i} \delta_{i j}
$$

with $\lambda=\lambda_{1}=\cdots=\lambda_{n-1}$ and $\mu=\lambda_{n}$ and geodesic normal coordinates $\left(y_{1}, \ldots, y_{n}\right)$ at \bar{y} in Σ.

First and second order derivatives of $Z(x, y)$

$$
\begin{gathered}
0=Z(\bar{x}, \bar{y})=\Psi(\bar{x})(1-\langle F(\bar{x}), F(\bar{y})\rangle)+\langle v(\bar{x}), F(\bar{y})\rangle \\
0=\frac{\partial Z}{\partial x_{i}}(\bar{x}, \bar{y})=\frac{\partial \Psi(\bar{x})}{\partial x_{i}}\left(1-\langle F(\bar{x}), F(\bar{y})\rangle-\Psi(\bar{x})\left\langle\frac{\partial F(\bar{x})}{\partial x_{i}}, F(\bar{y})\right\rangle\right. \\
+\sum_{k=1}^{n} h_{i}^{k}(\bar{x})\left\langle\frac{\partial F(\bar{x})}{\partial x_{k}}, F(\bar{y})\right\rangle, \\
0=\frac{\partial Z}{\partial y_{i}}(\bar{x}, \bar{y})=-\Psi(\bar{x})\left\langle F(\bar{x}), \frac{\partial F(\bar{y})}{\partial x_{i}}\right\rangle+\left\langle v(\bar{x}), \frac{\partial F(\bar{y})}{\partial x_{i}}\right\rangle .
\end{gathered}
$$

First and second order derivatives of $Z(x, y)$

$$
\begin{aligned}
0 & \leqslant \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i}^{2}}+2 \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}+\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial y_{i}^{2}} \\
& =(1-\langle F(\bar{x}), F(\bar{y})\rangle) \\
& \times\left(\Delta_{\Sigma} \Psi(\bar{x})-2 \sum_{i=1}^{n} \frac{\left|\frac{\partial \Psi(\bar{x})}{\partial x_{i}}\right|^{2}}{\Psi(\bar{x})-\lambda_{i}(\bar{x})}+\left(|A(\bar{x})|^{2}-n\right) \Psi(\bar{x})-n H \Psi(\bar{x})^{2}+n H\right) \\
& \leqslant(1-\langle F(\bar{x}), F(\bar{y})\rangle) \\
& (1-\langle F(\bar{x}), F(\bar{y})\rangle) \\
& \times\left(\Delta_{\Sigma} \Psi(\bar{x})-\frac{2}{n} \frac{\left|\nabla^{\Sigma} \Psi(\bar{x})\right|^{2}}{\Psi(\bar{x})-H}+\left(|A(\bar{x})|^{2}-n\right) \Psi(\bar{x})-n H \Psi(\bar{x})^{2}+n H\right),
\end{aligned}
$$

since $\Phi(x) \leqslant k(x) \leqslant \Psi(x)$, for $1 \leqslant i \leqslant n$

$$
\Psi(x)-\lambda_{i}=\Psi(x)-\left(n H-\sum_{j \neq i} \lambda_{j}\right)=\Psi(x)+\sum_{j \neq i} \lambda_{j}-n H \leqslant n(\Psi(x)-H) .
$$

Simons-type identity

Proposition

Let Σ be a constant mean curvature hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures λ and μ, μ being simple. Then $|\AA| \mid$ is strictly positive and

$$
\left|\nabla^{\Sigma} \AA\right|^{2}=\frac{n+2}{n}\left|\nabla^{\Sigma}\right| \AA \|^{2}
$$

Remark

It is well-known that a constant mean curvature hypersurface Σ in space forms satisfies

$$
\left|\nabla^{\Sigma} \dot{A}\right|^{2}-\left.\left|\nabla^{\Sigma}\right| \dot{A}\right|^{2} \geqslant\left.\frac{2}{n}\left|\nabla^{\Sigma}\right| \dot{A}\right|^{2}
$$

which is so-called Kato's inequality. It would be interesting to characterize the equality case. This proposition gives a sufficient condition for Kato's inequality to attain the equality.

Simons-type identity

Applying the above Proposition to the function $\varphi=\Phi-H$, where Φ is the maximum value of the principal curvatures, we get the following:
Lemma
Let Σ be a constant mean curvature hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures λ and μ, μ being simple. Then

$$
\Delta_{\Sigma} \varphi-\frac{2}{n} \frac{\left|\nabla^{\Sigma} \varphi\right|^{2}}{\varphi}+\left(|A|^{2}-n\right) \varphi-2 n H^{2} \varphi+n f(n) H \varphi^{2}=0
$$

where the function $f(n)$ is defined by

$$
f(n):=\left\{\begin{array}{lll}
\frac{n-2}{n-1} & \text { if } & \Phi=\mu, \\
n-2 & \text { if } & \Phi=\lambda .
\end{array}\right.
$$

In general, $\Phi(x) \leqslant k(x)$ for every $x \in \Sigma$.

Proposition

Let Σ be an $n(\geqslant 3)$-dimensional compact embedded hypersurface in \mathbb{S}^{n+1} with constant mean curvature H with two distinct principal curvatures, one of them being simple. If $H>0$. Then

$$
k(x)=\Phi(x)
$$

for all $x \in \Sigma$.

Proof

Suppose that $\kappa>1$. Then there exists a point $(\bar{x}, \bar{y}) \in \Sigma \times \Sigma$ with $\bar{x} \neq \bar{y}$ satisfying that $Z(\bar{x}, \bar{y})=0$.

$$
\begin{aligned}
& \frac{1}{(1-\langle F(\bar{x}), F(\bar{y})\rangle)}\left(\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i}^{2}}+2 \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}+\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial y_{i}{ }^{2}}\right) \\
& \leqslant \kappa \Delta_{\Sigma} \varphi(\bar{x})-\frac{2 \kappa}{n} \frac{\left|\nabla^{\Sigma} \varphi(\bar{x})\right|^{2}}{\varphi(\bar{x})} \\
& +\left(|A(\bar{x})|^{2}-n\right)(\kappa \varphi(\bar{x})+H)-n H(\kappa \varphi(\bar{x})+H)^{2}+n H \\
& =H|A(\bar{x})|^{2}-\kappa^{2} n H \varphi(\bar{x})^{2}-n H^{3}-\kappa n f(n) H \varphi(\bar{x})^{2},
\end{aligned}
$$

where $f(n)=\frac{n-2}{n-1}$ if $\Phi=\mu$, and $f(n)=n-2$ if $\Phi=\lambda$.

Proof

Note that

$$
\begin{aligned}
& |\AA|^{2}=|A|^{2}-n H^{2}=n g(n) \varphi^{2}, \\
& g(n)= \begin{cases}\frac{1}{n-1} & \text { if } \quad \Phi=\mu \\
n-1 & \text { if } \quad \Phi=\lambda\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{(1-\langle F(\bar{x}), F(\bar{y})\rangle)} & \left(\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i}^{2}}+2 \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}+\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial y_{i}^{2}}\right) \\
& \leqslant-n H \varphi(\bar{x})^{2}\left(\kappa^{2}+f(n) \kappa-g(n)\right) \\
& <-n H \varphi(\bar{x})^{2}(1+f(n)-g(n)) \\
& \leqslant 0
\end{aligned}
$$

where

$$
1+f(n)-g(n)= \begin{cases}\frac{2(n-2)}{n-1} & \text { if } \quad \Phi=\mu \\ 0 & \text { if } \quad \Phi=\lambda\end{cases}
$$

Proof

However, since the point $(\bar{x}, \bar{y}) \in \Sigma \times \Sigma \backslash D$ is a global minimum point of the function Z, we see

$$
0 \leqslant \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i}^{2}}+2 \sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}+\sum_{i=1}^{n} \frac{\partial^{2} Z}{\partial y_{i}^{2}},
$$

which is a contradiction. It follows that

$$
k(x)=\Phi(x)=\Psi(x)
$$

for all $x \in \Sigma$.

Theorem (Min-S)

Let Σ be an $n(\geqslant 3)$-dimensional compact embedded hypersurface in \mathbb{S}^{n+1} with constant mean curvature $H \geqslant 0$ and with two distinct principal curvatures λ and μ, μ being simple. If $\mu>\lambda$, then Σ is congruent to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where $\lambda=\frac{n H-\sqrt{n^{2} H^{2}+4(n-1)}}{2(n-1)}$.

Proof

- If $H=0$, then Σ is congruent to a Clifford minimal hypersurfaces by the work due to Otsuki.
- It suffices to consider the case $H>0$. Since $\mu>\lambda$, we have $\Phi=\mu$. By the previous proposition,

$$
\Phi(x)(1-\langle F(x), F(y)\rangle)+\langle v(x), F(y)\rangle \geqslant 0,
$$

for all $x, y \in \Sigma$.

Proof

Fix $x \in \Sigma$ and choose an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in a neighborhood of x such that $h\left(e_{n}, e_{n}\right)=\Phi$. Let $\gamma(t)$ be a geodesic on Σ such that $\gamma(0)=F(x)$ and $\gamma^{\prime}(0)=e_{n}$. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(t):=Z(F(x), \gamma(t))=\Phi(x)(1-\langle F(x), \gamma(t)\rangle)+\langle v(x), \gamma(t)\rangle .
$$

Then, by definition, $f(t) \geqslant 0$ and $f(0)=0$. A simple computation shows

$$
\begin{gathered}
f^{\prime}(t)=-\left\langle\Phi(x) F(x)-v(x), \gamma^{\prime}(t)\right\rangle, \\
f^{\prime \prime}(t)=\left\langle\Phi(x) F(x)-v(x), \gamma(t)+h\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) v(\gamma(t))\right\rangle, \\
f^{\prime \prime \prime}(t)=\left\langle\Phi(x) F(x)-v(x), \gamma^{\prime}(t)+\left(\nabla_{\gamma^{\prime}(t)}^{\Sigma} h\right)\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) v(\gamma(t))\right\rangle \\
+\left\langle\Phi(x) F(x)-v(x), h\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) \nabla_{\gamma^{\prime}(t)} v(\gamma(t))\right\rangle,
\end{gathered}
$$

where ∇ is the covariant derivative of \mathbb{R}^{n+2}.

Proof

In particular, it follows that

$$
\begin{aligned}
f(0) & =f^{\prime}(0)=0, \\
f^{\prime \prime}(0) & =\langle\Phi(x) F(x)-v(x), F(x)+\Phi(x) v(x)\rangle=0 .
\end{aligned}
$$

Moreover the fact that $f \geqslant 0$ implies that $f^{\prime \prime \prime}(0)=0$. Hence

$$
0=f^{\prime \prime \prime}(0)=\left\langle\Phi(x) F(x)-v(x), e_{n}+h_{n n n}(x) v(x)\right\rangle=-h_{n n n}(x) .
$$

Therefore we get $e_{n} \lambda=h_{11 n}=-\frac{1}{n-1} h_{n n n}=0$, which implies that λ and μ are constant on Σ by Ostuki. Thus Σ is an isoparametric hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures. From the classification of isoparametric hypersurfaces with two principal curvatures due to Cartan, it follows that Σ is congruent to the Riemannian product $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{1}{\sqrt{1+\mu^{2}}}\right)$, where λ and μ satisfy $n H=(n-1) \lambda+\mu$.

Introduction

Theorem (Simons 1968)
Let M be a compact minimal hypersurface in \mathbb{S}^{n+1}. Then we have

$$
\int_{M}|A|^{2}\left(|A|^{2}-n\right) \geqslant 0
$$

where $|A|^{2}$ denotes the squared norm of the second fundamental form on M.

Corollary
Such M is either totally geodesic, or $|A|^{2} \equiv n$, or $|A|^{2}(x)>n$ at some point $x \in M$.

Theorem (Chern-do Carmo-Kobayashi 1968, Lawson 1969) For $n \geqslant 3$, if $|A|^{2} \equiv n$ on M, then M is isometric to a Clifford minimal hypersurface $\mathbb{S}^{n-1}\left(\sqrt{\frac{n-1}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{1}{n}}\right)$.

Introduction

Theorem (Wang 2003, Perdomo 2004)
Let M be an $n(\geqslant 3)$-dimensional closed minimal hypersurface in \mathbb{S}^{n+1} with two distinct principal curvatures, one of them being simple. Then

$$
\int_{M}|A|^{2} \leqslant n \operatorname{Vol}(M)
$$

where $\operatorname{Vol}(M)$ denotes the volume of M. Moreover, equality holds if and only if M is isometric to a Clifford minimal hypersurface.

Remark

The similar curvature integral inequality holds when the m-th order mean curvature H_{m} vanishes, which was obtained by G. Wei.

Theorem (Min-S 2015)

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with constant m-th order mean curvature H_{m} and with two distinct principal curvatures λ and μ, μ being simple (i.e., multiplicity 1). For the unit principal direction vector e_{n} corresponding to μ, we have

$$
\int_{M} \operatorname{Ric}\left(e_{n}, e_{n}\right) \geqslant 0
$$

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is isometric to a Clifford hypersurface
$\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

Remark

If the multiplicities of two distinct principal curvatures are at least 2 , then a closed hypersurface with constant m-th order mean curvature is congruent to a Clifford hypersurface (B.Y. Wu 2009). Thus it suffices to consider the case where one of the two distinct principal curvatures is simple.

Remark
If $H_{m} \equiv 0$ for $1 \leqslant m<n$, then

$$
\operatorname{Ric}\left(e_{n}, e_{n}\right)=(n-1)(1+\lambda \mu)=(n-1)\left(1-\frac{m(n-m)}{n\left(m^{2}-2 m+n\right)}|A|^{2}\right) .
$$

Notations

- $M, n(\geqslant 3)$-dimensional hypersurface in the unit sphere \mathbb{S}^{n+1}.
- ∇, the Riemannian connection of M
- $e_{1}, \ldots, e_{n}, e_{n+1}$, orthonormal frame fields of the unit sphere such that e_{1}, \ldots, e_{n} are tangent to M
- $\omega^{1}, \ldots, \omega^{n}, \omega^{n+1}$, the dual coframe.

$$
\omega^{n+1}=0
$$

on M.

- h and A, the second fundamental form and the shape operator of M such that

$$
\langle A(X), Y\rangle=h(X, Y)
$$

for all $X, Y \in T_{p} M$

- $\nabla h=\sum_{i, j, k=1}^{n} h_{i j k} \omega^{i} \otimes \omega^{j} \otimes \omega^{k}$, where $h_{i j k}$ is the coefficient function of ∇h such that

$$
\begin{aligned}
h_{i j k} \equiv h_{i j ; k} & =\left(\nabla_{e_{k}} h\right)\left(e_{i}, e_{j}\right) \\
& =\nabla_{e_{k}} h\left(e_{i}, e_{j}\right)-h\left(\nabla_{e_{k}} e_{i}, e_{j}\right)-h\left(e_{i}, \nabla_{e_{k}} e_{j}\right)
\end{aligned}
$$

- $h_{i j k}=h_{i k j}$ by Codazzi equation

Now assume that M is a closed hypersurface in a unit sphere with constant m-th order mean curvature H_{m} and with two distinct principal curvatures with multiplicities $n-1,1$. May assume that $\lambda=\lambda_{1}=\cdots=\lambda_{n-1}$ and $\mu=\lambda_{n}$. We choose the orthonormal frame tangent to M such that $h_{i j}=\lambda_{i} \delta_{i j}$, that is,

$$
\begin{aligned}
& A e_{i}=\lambda e_{i} \quad \text { for } i=1, \ldots, n-1 \\
& A e_{n}=\mu e_{n}
\end{aligned}
$$

Since M has two distinct principal curvatures λ and μ,

$$
\binom{n}{m} H_{m}=\binom{n-1}{m} \lambda^{m}+\binom{n-1}{m-1} \lambda^{m-1} \mu
$$

Therefore

$$
H_{m}=\frac{m}{n} \lambda^{m-1}\left(\frac{n-m}{m} \lambda+\mu\right)
$$

Claim: $\lambda^{m}-H_{m}$ never vanishes on M.

Proof of claim.
We consider two cases: $m=1$ and $m \geqslant 2$.

- Suppose $m=1$.
- If $H_{1}=0$, then $\lambda \neq 0$. Thus $\lambda-H_{1} \neq 0$.
- If $H_{1} \neq 0$, then $\lambda-H_{1}=\frac{\lambda-\mu}{n}$. Since $\lambda \neq \mu$, it never vanishes.
- Suppose $m \geqslant 2$.
- If $H_{m} \neq 0$, then $\lambda \neq 0$. Therefore $\lambda^{m}-H_{m}=\frac{m}{n} \lambda^{m-1}(\lambda-\mu) \neq 0$.
- If $H_{m}=0$ and $\lambda \neq 0$, then $\lambda^{m}-H_{m}$ never vanishes.
- If $H_{m}=0$ and $\lambda=0$ at some point, then it follows from the equation $\lambda^{m-1}\left(\frac{n-m}{n} \lambda+\mu\right)=0$ that $\lambda \equiv 0$. Thus M has constant sectional curvature 1 by the Gauss equation, which implies that M is totally geodesic. However this is a contradiction because $\lambda \neq \mu$.

From our claim, we can define a function $w:=\left|\lambda^{m}-H_{m}\right|^{-\frac{1}{n}}$. B.Y. Wu obtained the following useful second order ordinary differential equation on M :

$$
\frac{d^{2} w}{d v^{2}}=-w\left(\frac{n H_{m}-(n-m) \lambda^{m}}{m \lambda^{m-2}}+1\right),
$$

where v is the arclength parameter of the integral curve with respect to μ.

Remark

In particular, if $H_{1} \equiv 0$, then this equation was originally obtained by Otsuki.

Theorem (Otsuki 1970)

Let Σ be a hypersurface immersed in an ($n+1$)-dimensional Riemannian manifold of constant curvature such that the multiplicities of principal curvatures are all constant. Then we have the following:

- The distribution of the space of principal vectors corresponding to each principal curvature is completely integrable.
- If the multiplicity of a principal curvature is greater than 1 , then this principal curvature is constant on each integral submanifold of the corresponding distribution of the space of principal vectors.

From the previous theorem, it follows, for each $1 \leqslant i \leqslant n-1$,

$$
\nabla_{e_{i}} \lambda=e_{i} \lambda=0
$$

Since $w=\left|\lambda^{m}-H_{m}\right|^{-\frac{1}{n}}=\left(s\left(\lambda^{m}-H_{m}\right)\right)^{-\frac{1}{n}}$ for a fixed constant $s= \pm 1$,

$$
\begin{aligned}
\nabla_{e_{i}} w & =\nabla_{e_{i}}\left(\left|\lambda^{m}-H_{m}\right|^{-\frac{1}{n}}\right) \\
& =-\frac{m}{n} s w^{n+1} \lambda^{m-1} \nabla_{e_{i}} \lambda
\end{aligned}
$$

Moreover, for $i=1, \ldots, n-1$,

$$
\nabla_{e_{i}} w=0 .
$$

For a function $f=f(w)$ on M, we compute the Laplacian of f on M as follows.

$$
\Delta f=-\frac{1}{n-1} f^{\prime}(w) w \operatorname{Ric}\left(e_{n}, e_{n}\right)+\left[f^{\prime \prime}(w)+(n-1) \frac{f^{\prime}(w)}{w}\right]\left(e_{n} w\right)^{2},
$$

where $\operatorname{Ric}\left(e_{n}, e_{n}\right)$ denotes the Ricci curvature in the direction of e_{n}.

Theorem (Min-S 2015)

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with constant m-th order mean curvature H_{m} and with two distinct principal curvatures λ and μ, μ being simple (i.e., multiplicity 1). For the unit principal direction vector e_{n} corresponding to μ, we have

$$
\int_{M} \operatorname{Ric}\left(e_{n}, e_{n}\right) \geqslant 0
$$

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is isometric to a Clifford hypersurface
$\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

Proof

Define a function $f(w)=\log w$, where $w=\left|\lambda^{m}-H_{m}\right|^{-\frac{1}{n}}$.

$$
\Delta f=-\frac{\operatorname{Ric}\left(e_{n}, e_{n}\right)}{n-1}+\frac{n-2}{w^{2}}\left(e_{n} w\right)^{2}
$$

Integrating Δf over M gives

$$
0=\int_{M}-\frac{\operatorname{Ric}\left(e_{n}, e_{n}\right)}{n-1}+\frac{n-2}{w^{2}}\left(e_{n} w\right)^{2} .
$$

Therefore

$$
\int_{M} \operatorname{Ric}\left(e_{n}, e_{n}\right)=(n-1)(n-2) \int_{M} \frac{\left(e_{n} w\right)^{2}}{w^{2}} \geqslant 0 .
$$

Proof

Moreover equality holds if and only if $e_{n} w \equiv 0$ on M in the above inequality, which is equivalent that $e_{n} \lambda \equiv 0$. Thus both λ and μ are constant, which implies that M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$ by Cartan, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

Applications

In particular, if $H_{m} \equiv 0$ for $1 \leqslant m<n$, then we have

$$
\operatorname{Ric}\left(e_{n}, e_{n}\right)=(n-1)\left(1-\frac{m(n-m)}{n\left(m^{2}-2 m+n\right)}|A|^{2}\right) .
$$

Therefore

Corollary

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with $H_{m} \equiv 0(1 \leqslant m<n)$ and with two distinct principal curvatures, one of them being simple. Then

$$
\int_{M}|A|^{2} \leqslant \frac{n\left(m^{2}-2 m+n\right)}{m(n-m)} \operatorname{Vol}(M)
$$

where equality holds if and only if M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\sqrt{\frac{n-m}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{m}{n}}\right)$.

Applications

Corollary

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with constant m-th order mean curvature and with two distinct principal curvatures, one of them being simple. Denote by e_{n} the unit principal direction vector corresponding to μ. If $\operatorname{Ric}\left(e_{n}, e_{n}\right) \leqslant 0$ on M, then M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

By making use of the Laplacian of a function of principal curvatures, we obtain a characterization theorem under a pointwise nonnegative Ricci curvature assumption:

Theorem

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with constant m-th order mean curvature H_{m} and with two distinct principal curvatures λ and μ, μ being simple. Denote by e_{n} the unit principal direction vector corresponding to μ. If $\operatorname{Ric}\left(e_{n}, e_{n}\right) \geqslant 0$ on M, then M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

Proof

Define a function $f(w)=w^{k}$ for a number $k<2-n$. Then

$$
\begin{aligned}
\Delta f & =-\frac{1}{n-1} f^{\prime}(w) w \operatorname{Ric}\left(e_{n}, e_{n}\right)+\left[f^{\prime \prime}(w)+(n-1) \frac{f^{\prime}(w)}{w}\right]\left(e_{n} w\right)^{2} \\
& =-\frac{1}{n-1} k w^{k} \operatorname{Ric}\left(e_{n}, e_{n}\right)+k(k+n-2) w^{k-2}\left(e_{n} w\right)^{2} .
\end{aligned}
$$

Integrating Δf over M, we have

$$
0=\int_{M} \Delta f=\int_{M}\left[-\frac{1}{n-1} k w^{k} \operatorname{Ric}\left(e_{n}, e_{n}\right)+k(k+n-2) w^{k-2}\left(e_{n} w\right)^{2}\right] .
$$

Proof

Therefore

$$
\begin{equation*}
\frac{1}{n-1} \int_{M} w^{k} \operatorname{Ric}\left(e_{n}, e_{n}\right)=(k+n-2) \int_{M} w^{k-2}\left(e_{n} w\right)^{2} . \tag{2}
\end{equation*}
$$

From the equality (2) and the assumption that $\operatorname{Ric}\left(e_{n}, e_{n}\right) \geqslant 0$, it follows that $e_{n} w \equiv 0$ on M. Therefore M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times \mathbb{S}^{1}\left(\frac{|\lambda|}{\sqrt{1+\lambda^{2}}}\right)$, where λ is the root of the equation $(n-m) \lambda^{m}-m \lambda^{m-2}=n H_{m}$.

Applications

In particular, when $H_{m} \equiv 0$, we give a simple proof of the previous results in [Cheng 2001, Hasanis-Savas-Halilaj 2000, 2005, Otsuki 1970, Wei 2006, 2007, Wu 2009, ...]
Corollary
Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with $H_{m} \equiv 0$ $(1 \leqslant m<n)$ and with two distinct principal curvatures, one of them being simple. Either if $|A|^{2} \geqslant \frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}$ or $|A|^{2} \leqslant \frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}$ on M, then M is isometric to the Riemannian product $\mathbb{S}^{n-1}\left(\sqrt{\frac{n-m}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{m}{n}}\right)$.

Corollary

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with constant m-th order mean curvature and with two distinct principal curvatures. If the Ricci curvature on M is nonnegative, then M is isometric to a Clifford hypersurface.

Theorem (Min-S 2015)

Let M be an $n(\geqslant 3)$-dimensional closed hypersurface in \mathbb{S}^{n+1} with $H_{m} \equiv 0(1 \leqslant m<n)$ and with two distinct principal curvatures, one of them being simple. Then we have

$$
\begin{cases}\int_{M}|A|^{p}\left(|A|^{2}-\frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}\right) \leqslant 0 & \text { if } p<\frac{n-2}{n} m, \\ \int_{M}|A|^{p}\left(|A|^{2}-\frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}\right) \geqslant 0 & \text { if } p>\frac{n-2}{n} m .\end{cases}
$$

Moreover, equalities hold if and only if M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\sqrt{\frac{n-m}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{m}{n}}\right)$.

Proof

Since $H_{m} \equiv 0$,

$$
\mu=-\frac{n-m}{m} \lambda
$$

Thus as before, we have

$$
\begin{array}{ll}
\int_{M} w^{k} \operatorname{Ric}\left(e_{n}, e_{n}\right) \geqslant 0 & \text { if } k>2-n, \\
\int_{M} w^{k} \operatorname{Ric}\left(e_{n}, e_{n}\right) \leqslant 0 & \text { if } k<2-n,
\end{array}
$$

where $w=|\lambda|^{-\frac{m}{n}}$. Let $p=-\frac{k m}{n}$. Then

$$
\begin{cases}\int_{M}|\lambda|^{p} \geqslant \frac{n-m}{m} \int_{M}|\lambda|^{p+2} & \text { if } p<\frac{n-2}{n} m, \\ \int_{M}|\lambda|^{p} \leqslant \frac{n-m}{m} \int_{M}|\lambda|^{p+2} & \text { if } p>\frac{n-2}{n} m .\end{cases}
$$

Proof

Therefore using

$$
|A|^{2}=(n-1) \lambda^{2}+\mu^{2}=\frac{n\left(m^{2}-2 m+n\right)}{m^{2}} \lambda^{2}
$$

we finally obtain

$$
\begin{cases}\int_{M}|A|^{p}\left(|A|^{2}-\frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}\right) \leqslant 0 & \text { if } p<\frac{n-2}{n} m \\ \int_{M}|A|^{p}\left(|A|^{2}-\frac{n\left(m^{2}-2 m+n\right)}{m(n-m)}\right) \geqslant 0 & \text { if } p>\frac{n-2}{n} m .\end{cases}
$$

Furthermore, equalities hold if and only if $e_{n} w \equiv 0$. Thus equalities hold if and only if M is isometric to a Clifford hypersurface $\mathbb{S}^{n-1}\left(\sqrt{\frac{n-m}{n}}\right) \times \mathbb{S}^{1}\left(\sqrt{\frac{m}{n}}\right)$.

It would be interesting to ask if the above results are still true without assuming that M has two distinct principal curvatures.

Thank you for your attention.

