Minimal and cmc surfaces in \mathbb{S}^{3} foliated by circles

Sung-ho Park

HUFS

Dec. 16. 2015

Circle-foliated surfaces in \mathbb{R}^{3}

A circle foliated surface in \mathbb{R}^{3} is a surface parametrized by

$$
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}+\sin \theta e_{2}\right)
$$

where e_{1} and e_{2} are smooth $O N$ vectors, and $c(t)$ and $r(t)$ are smooth. $(c(t)$: center of circle, $r(t)$: radius of circle)

Circle-foliated surfaces in \mathbb{R}^{3}

A circle foliated surface in \mathbb{R}^{3} is a surface parametrized by

$$
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}+\sin \theta e_{2}\right),
$$

where e_{1} and e_{2} are smooth $O N$ vectors, and $c(t)$ and $r(t)$ are smooth. $(c(t)$: center of circle, $r(t)$: radius of circle)

An isometric immersion $\psi: M \rightarrow \mathbb{R}^{3}$ is

- minimal if $H=0$
- a cmc surface if $H=$ const

Circle-foliated minimal surfaces in \mathbb{R}^{3} :
Plane, Catenoid, Riemann's minimal surface, (Helicoid)

Circle-foliated minimal surfaces in \mathbb{R}^{3} :
Plane, Catenoid, Riemann's minimal surface, (Helicoid)

Circle-foliated cmc surfaces in \mathbb{R}^{3} :
Delaunay surfaces (cmc surfaces of rotation), sphere (Nitsche '89)

Circle foliated surfaces in \mathbb{S}^{3}

Let $\mathbb{S}^{3} \subset \mathbb{R}^{4}$ be the unit sphere centered at the origin.
A smooth complete surface $\Sigma \subset \mathbb{S}^{3}$ is foliated by circles (circle-foliated) if, for a smooth orthonormal frames $\left\{e_{1}(t), e_{2}(t)\right\}$ of \mathbb{R}^{4} and smooth $c(t)$ and $r(t)$,

$$
\begin{equation*}
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}(t)+\sin \theta e_{2}(t)\right) \tag{1}
\end{equation*}
$$

with $\|c(t)\|^{2}+r^{2}(t)=1$.

Circle foliated surfaces in \mathbb{S}^{3}

Let $\mathbb{S}^{3} \subset \mathbb{R}^{4}$ be the unit sphere centered at the origin.
A smooth complete surface $\Sigma \subset \mathbb{S}^{3}$ is foliated by circles (circle-foliated) if, for a smooth orthonormal frames $\left\{e_{1}(t), e_{2}(t)\right\}$ of \mathbb{R}^{4} and smooth $c(t)$ and $r(t)$,

$$
\begin{equation*}
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}(t)+\sin \theta e_{2}(t)\right) \tag{1}
\end{equation*}
$$

with $\|c(t)\|^{2}+r^{2}(t)=1$.

Let $\psi: \Sigma \rightarrow \mathbb{S}^{3} \subset \mathbb{R}^{4}$ be an isometric immersion

- ψ is minimal iff $\triangle_{\Sigma} \psi=-2 \psi$
- ψ has cmc H iff $\triangle_{\Sigma} \psi=2 H \nu-2 \psi$, where ν is a unit normal of $\psi(\Sigma) \subset \mathbb{S}^{3}$.

Examples of circle-foliated minimal surfaces in \mathbb{S}^{3} :

- (Ruled minimal surfaces in \mathbb{S}^{3}, B. Lawson) Every ruled minimal surface in \mathbb{S}^{3} is an open submanifold of \mathcal{M}_{α} given by

$$
T(x, y)=(\cos x \cos y, \sin x \cos y, \cos \alpha x \sin y, \sin \alpha x \sin y)
$$

for some $\alpha \geq 0$. (\mathcal{M}_{0} : great sphere, \mathcal{M}_{1} : Clifford torus)

- Rotationally symmetric minimal surfaces

Examples of circle-foliated minimal surfaces in \mathbb{S}^{3} :

- (Ruled minimal surfaces in \mathbb{S}^{3}, B. Lawson) Every ruled minimal surface in \mathbb{S}^{3} is an open submanifold of \mathcal{M}_{α} given by

$$
T(x, y)=(\cos x \cos y, \sin x \cos y, \cos \alpha x \sin y, \sin \alpha x \sin y)
$$

for some $\alpha \geq 0$. (\mathcal{M}_{0} : great sphere, \mathcal{M}_{1} : Clifford torus)

- Rotationally symmetric minimal surfaces

Theorem (Kutev-Milousheva, 2010)

There are two types of circle-foliated minimal surfaces in \mathbb{S}^{3} :

- The first type is ruled, that is, \mathcal{M}_{α}
- As for the second type surfaces, the circles are principal lines

Examples of circle-foliated minimal surfaces in \mathbb{S}^{3} :

- (Ruled minimal surfaces in \mathbb{S}^{3}, B. Lawson) Every ruled minimal surface in \mathbb{S}^{3} is an open submanifold of \mathcal{M}_{α} given by

$$
T(x, y)=(\cos x \cos y, \sin x \cos y, \cos \alpha x \sin y, \sin \alpha x \sin y)
$$

for some $\alpha \geq 0$. (\mathcal{M}_{0} : great sphere, \mathcal{M}_{1} : Clifford torus)

- Rotationally symmetric minimal surfaces

Theorem (Kutev-Milousheva, 2010)
There are two types of circle-foliated minimal surfaces in \mathbb{S}^{3} :

- The first type is ruled, that is, \mathcal{M}_{α}
- As for the second type surfaces, the circles are principal lines \leftarrow rotationally symmetric

Theorem (P)

1. Circle-foliated minimal surface in \mathbb{S}^{3} is either ruled or rotationally symmetric
2. Circle-foliated minimal surface in \mathbb{S}^{3} is either ruled or rotationally symmetric
3. Circle-foliated cmc surface in \mathbb{S}^{3} is either a sphere, or ruled or rotationally symmetric

Rotationally symmetric minimal surfaces in \mathbb{S}^{3} (Hynd-McCuan-P)

Stereographic 3-sphere $\mathbb{S}^{3}=\left(\mathbb{R}^{3}, \frac{4 d s_{0}^{2}}{\left(1+|X|^{2}\right)^{2}}\right)$.

Rotationally symmetric minimal surfaces in \mathbb{S}^{3} (Hynd-McCuan-P)
Stereographic 3-sphere $\mathbb{S}^{3}=\left(\mathbb{R}^{3}, \frac{4 d s_{0}^{2}}{\left(1+|X|^{2}\right)^{2}}\right)$.
For $X: M \rightarrow \mathbb{R}^{3}$,

$$
H_{s}=\frac{1}{2}\left(1+|X|^{2}\right) H+X \cdot N
$$

Rotationally symmetric minimal surfaces in \mathbb{S}^{3} (Hynd-McCuan-P)
Stereographic 3-sphere $\mathbb{S}^{3}=\left(\mathbb{R}^{3}, \frac{4 d s_{0}^{2}}{\left(1+|X|^{2}\right)^{2}}\right)$.
For $X: M \rightarrow \mathbb{R}^{3}$,

$$
H_{s}=\frac{1}{2}\left(1+|X|^{2}\right) H+X \cdot N
$$

Parametrization of rotationally symmetric surface:

$$
X(\theta, \phi)=\left(\sqrt{1+r^{2}}+r \cos \phi\right)(\cos \theta, \sin \theta, 0)+(r \sin \phi) e 3
$$

$$
\begin{aligned}
H_{s} & =\frac{\sqrt{r^{2}+1}\left(r\left(r^{2}+1\right) r^{\prime \prime}-r^{2}+r^{4}-1\right)}{2 r\left(r^{2}+r^{2}+1\right)^{3 / 2}} \\
c & =\frac{r}{\sqrt{\left(r^{2}+1\right)\left(r^{2}+r^{2}+1\right)}}+\frac{H_{s}}{r^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
H_{s} & =\frac{\sqrt{r^{2}+1}\left(r\left(r^{2}+1\right) r^{\prime \prime}-r^{2}+r^{4}-1\right)}{2 r\left(r^{\prime 2}+r^{2}+1\right)^{3 / 2}} \\
c & =\frac{r}{\sqrt{\left(r^{2}+1\right)\left(r^{2}+r^{2}+1\right)}}+\frac{H_{s}}{r^{2}+1}
\end{aligned}
$$

Remark

1. S. Brendle proved that Clifford torus is the only embedded minimal torus in \mathbb{S}^{3} (Lawson's conjecture).
2. B.Andrews and H . Li showed that every embedded cmc torus in \mathbb{S}^{3} is rotationally symmetric.

Frenet type formula by Frank-Giering:

Let $\left\{P_{t}\right\}$ be a smooth one-parameter family of planes in \mathbb{R}^{4} passing through the origin. There is a one-parameter family of orthonormal frames $\left\{e_{1}(t), e_{2}(t), e_{3}(t), e_{4}(t)\right\}$ of \mathbb{R}^{4} such that $e_{1}(t)$ and $e_{2}(t)$ span P_{t}, and the following equations hold

$$
\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)^{\prime}=\left(\begin{array}{cccc}
0 & \beta & \kappa & 0 \\
-\beta & 0 & 0 & \tau \\
-\kappa & 0 & 0 & \eta \\
0 & -\tau & -\eta & 0
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)
$$

where ${ }^{\prime}=\partial / \partial t$ and $\kappa^{2} \geq \tau^{2}$.

Basic computations

Let Σ be circle-foliated in \mathbb{S}^{3}, parametrized by,

$$
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}(t)+\sin \theta e_{2}(t)\right)
$$

- Let \tilde{P}_{t} be the plane containing circle.

Basic computations

Let Σ be circle-foliated in \mathbb{S}^{3}, parametrized by,

$$
X(t, \theta)=c(t)+r(t)\left(\cos \theta e_{1}(t)+\sin \theta e_{2}(t)\right)
$$

- Let \tilde{P}_{t} be the plane containing circle.

Then $c(t) \perp \tilde{P}_{t}$ and $c_{1}=0=c_{2}$ for $c_{i}=c \cdot e_{i}$.
Let

$$
\begin{aligned}
c^{\prime}(t)= & \sum_{i=1}^{4} \alpha_{i} e_{i}=\left(c_{3} e_{3}+c_{4} e_{4}\right)^{\prime} \\
= & -\kappa c_{3} e_{1}-\tau c_{4} e_{2}+\left(c_{3}^{\prime}-\eta c_{4}\right) e_{3}+\left(c_{4}^{\prime}+\eta c_{3}\right) e_{4} \\
\Rightarrow X_{t}= & \left(\alpha_{1}+r^{\prime} \cos \theta-r \beta \sin \theta\right) e_{1}+\left(\alpha_{2}+r^{\prime} \sin \theta+r \beta \cos \theta\right) e_{2} \\
& +\left(\alpha_{3}+r \kappa \cos \theta\right) e_{3}+\left(\alpha_{4}+r \tau \sin \theta\right) e_{4}, \\
X_{\theta}= & -r \sin \theta e_{1}+r \cos \theta e_{2} .
\end{aligned}
$$

Let N be the normal of Σ. Then

$$
N \perp X, X_{t}, X_{\theta}
$$

Let N be the normal of Σ. Then

$$
N \perp X, X_{t}, X_{\theta}
$$

Since

$$
\begin{aligned}
*\left(X_{t} \wedge X_{\theta} \wedge X\right)= & r \cos \theta\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{1} \\
& +r \sin \theta\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{2} \\
& +\left[r c_{4}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r^{2}\left(\alpha_{4}+r \tau \sin \theta\right)\right] e_{3} \\
& -\left[r c_{3}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r^{2}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{4},
\end{aligned}
$$

let

$$
\begin{aligned}
N & =\frac{*\left(X_{t} \wedge X_{\theta} \wedge X\right)}{r\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right]} \\
& =\epsilon \cos \theta e_{1}+\epsilon \sin \theta e_{2}+\gamma e_{3}+\delta e_{4}
\end{aligned}
$$

($\epsilon=0$ if denominator is 0)

Let N be the normal of Σ. Then

$$
N \perp X, X_{t}, X_{\theta}
$$

Since

$$
\begin{aligned}
*\left(X_{t} \wedge X_{\theta} \wedge X\right)= & r \cos \theta\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{1} \\
& +r \sin \theta\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{2} \\
& +\left[r c_{4}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r^{2}\left(\alpha_{4}+r \tau \sin \theta\right)\right] e_{3} \\
& -\left[r c_{3}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r^{2}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] e_{4},
\end{aligned}
$$

let

$$
\begin{aligned}
N & =\frac{*\left(X_{t} \wedge X_{\theta} \wedge X\right)}{r\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right]} \\
& =\epsilon \cos \theta e_{1}+\epsilon \sin \theta e_{2}+\gamma e_{3}+\delta e_{4}
\end{aligned}
$$

($\epsilon=0$ if denominator is 0)
Let $E=X_{t} \cdot X_{t}, \cdots, I=X_{t t} \cdot N, \cdots$, and

$$
\begin{equation*}
\mathcal{H}:=I G+n E-2 m F=2 H\left(E G-F^{2}\right)\|N\| \tag{2}
\end{equation*}
$$

Ruled minimal surfaces in \mathbb{S}^{3}

If X is ruled, then $c(t) \equiv 0$ and $r(t) \equiv 1$
$\Rightarrow c_{i}=0, \alpha_{i}=0, r^{\prime}=0$, and

$$
\mathcal{H}=\eta \kappa^{2} \cos ^{2} \theta+\eta \tau^{2} \sin ^{2} \theta-\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right) \cos \theta \sin \theta-\beta \kappa \tau
$$

Ruled minimal surfaces in \mathbb{S}^{3}

If X is ruled, then $c(t) \equiv 0$ and $r(t) \equiv 1$
$\Rightarrow c_{i}=0, \alpha_{i}=0, r^{\prime}=0$, and

$$
\mathcal{H}=\eta \kappa^{2} \cos ^{2} \theta+\eta \tau^{2} \sin ^{2} \theta-\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right) \cos \theta \sin \theta-\beta \kappa \tau
$$

Since $\mathcal{H}=0, \kappa^{\prime} \tau-\kappa \tau^{\prime}=0$. Then

$$
\begin{aligned}
& \text { i } \kappa^{\prime}=\tau^{\prime}=0 \text { with }|\kappa|>|\tau| \text { or } \\
& \text { ii } \kappa^{2}=\tau^{2}
\end{aligned}
$$

Ruled minimal surfaces in \mathbb{S}^{3}

If X is ruled, then $c(t) \equiv 0$ and $r(t) \equiv 1$
$\Rightarrow c_{i}=0, \alpha_{i}=0, r^{\prime}=0$, and

$$
\mathcal{H}=\eta \kappa^{2} \cos ^{2} \theta+\eta \tau^{2} \sin ^{2} \theta-\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right) \cos \theta \sin \theta-\beta \kappa \tau
$$

Since $\mathcal{H}=0, \kappa^{\prime} \tau-\kappa \tau^{\prime}=0$. Then

$$
\text { i } \kappa^{\prime}=\tau^{\prime}=0 \text { with }|\kappa|>|\tau| \text { or }
$$

$$
\text { ii } \kappa^{2}=\tau^{2}
$$

If i holds and $\kappa \neq 0, \tau=0$ then $\eta=0$ and X is a great sphere.

Ruled minimal surfaces in \mathbb{S}^{3}

If X is ruled, then $c(t) \equiv 0$ and $r(t) \equiv 1$
$\Rightarrow c_{i}=0, \alpha_{i}=0, r^{\prime}=0$, and

$$
\mathcal{H}=\eta \kappa^{2} \cos ^{2} \theta+\eta \tau^{2} \sin ^{2} \theta-\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right) \cos \theta \sin \theta-\beta \kappa \tau
$$

Since $\mathcal{H}=0, \kappa^{\prime} \tau-\kappa \tau^{\prime}=0$. Then

$$
\begin{aligned}
& \text { i } \kappa^{\prime}=\tau^{\prime}=0 \text { with }|\kappa|>|\tau| \text { or } \\
& \text { ii } \kappa^{2}=\tau^{2}
\end{aligned}
$$

If i holds and $\kappa \neq 0, \tau=0$ then $\eta=0$ and X is a great sphere.
If i holds and $\tau \neq 0$ then $\eta=0$ and $\beta=0$. May assume that $\kappa=1$ by a change of the variable.

In the Frenet equation, we may let

$$
e_{1}=(\cos t, \sin t, 0,0), e_{2}=(0,0, \cos \tau t, \sin \tau t)
$$

Then

$$
X(t, \theta)=\cos \theta e_{1}+\sin \theta e_{2}
$$

is \mathcal{M}_{τ}.

In the Frenet equation, we may let

$$
e_{1}=(\cos t, \sin t, 0,0), e_{2}=(0,0, \cos \tau t, \sin \tau t)
$$

Then

$$
X(t, \theta)=\cos \theta e_{1}+\sin \theta e_{2}
$$

is \mathcal{M}_{τ}.
If ii holds, then we may assume that $\kappa=\tau$.

In the Frenet equation, we may let

$$
e_{1}=(\cos t, \sin t, 0,0), e_{2}=(0,0, \cos \tau t, \sin \tau t)
$$

Then

$$
X(t, \theta)=\cos \theta e_{1}+\sin \theta e_{2}
$$

is \mathcal{M}_{τ}.
If ii holds, then we may assume that $\kappa=\tau$. Then $\eta=\beta$ from $\mathcal{H}=0$. For φ with $\varphi^{\prime}=\beta$, the new orthonormal frame fields

$$
\begin{aligned}
& \tilde{e}_{1}=\cos \phi e_{1}-\sin \phi e_{2}, \tilde{e}_{2}=\sin \phi e_{1}+\cos \phi e_{2} \\
& \tilde{e}_{3}=\cos \phi e_{3}-\sin \phi e_{4}, \tilde{e}_{4}=\sin \phi e_{3}+\cos \phi e_{4}
\end{aligned}
$$

satisfies

$$
\begin{gathered}
\tilde{e}_{1}^{\prime}=\kappa \tilde{e}_{3}, \tilde{e}_{2}^{\prime}=\kappa \tilde{e}_{4} \\
\tilde{e}_{3}^{\prime}=-\kappa \tilde{e}_{1}, \tilde{e}_{4}^{\prime}=-\kappa \tilde{e}_{2},
\end{gathered}
$$

and X is the Clifford torus.

Not-ruled minimal surfaces in \mathbb{S}^{3}

If X is not ruled, then we let

$$
\begin{gathered}
N=\cos \theta e_{1}+\sin \theta e_{2}+\gamma e_{3}+\delta e_{4} \\
\gamma=\frac{c_{4}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r\left(\alpha_{4}+r \tau \sin \theta\right)}{c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)} \\
\delta=\frac{c_{3}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r\left(\alpha_{3}+r \kappa \cos \theta\right)}{c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)}
\end{gathered}
$$

Not-ruled minimal surfaces in \mathbb{S}^{3}

If X is not ruled, then we let

$$
\begin{gathered}
N=\cos \theta e_{1}+\sin \theta e_{2}+\gamma e_{3}+\delta e_{4} \\
\gamma=\frac{c_{4}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r\left(\alpha_{4}+r \tau \sin \theta\right)}{c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)}, \\
\delta=\frac{c_{3}\left(r^{\prime}+\alpha_{1} \cos \theta+\alpha_{2} \sin \theta\right)-r\left(\alpha_{3}+r \kappa \cos \theta\right)}{c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)}
\end{gathered}
$$

$\tilde{\mathcal{H}}=\left[c_{3}\left(\alpha_{4}+r \tau \sin \theta\right)-c_{4}\left(\alpha_{3}+r \kappa \cos \theta\right)\right] \mathcal{H}$ is a trigonometric polynomial of degree 3 .

We have $\kappa=0$ and $\tau=0$ from the coefficients of the Fourier series expansion of $\tilde{\mathcal{H}}$.
Then the plane $\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is fixed. Hence we may let $\beta=0, \eta=0$.

Then $\alpha_{1}=\alpha_{2}=0, \alpha_{3}=c_{3}^{\prime}, \alpha_{4}=c_{4}^{\prime}$, and

$$
E=\alpha_{3}^{2}+\alpha_{4}^{2}+r^{\prime 2}, F=0, G=r^{2}
$$

Moreover $c(t)$ lies in the plane $\operatorname{span}\left\{e_{3}, e_{4}\right\}$.
$\Rightarrow X$ is rotationally symmetric.

Ruled cmc surfaces in \mathbb{S}^{3}

Theorem (P.) Ruled surface of cmc H in \mathbb{S}^{3} is given by

$$
X(t, \theta)=\cos \theta e_{1}+\sin \theta e_{2}
$$

where e_{1} and e_{2} are part of an orthonormal frame e_{1}, \ldots, e_{4} of \mathbb{R}^{4} satisfying

$$
\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 2 H \\
0 & -1 & -2 H & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)
$$

Sketch of proof

We may let $N=-\tau \sin \theta e_{3}+\kappa \cos \theta e_{4}$.
From

$$
\mathcal{H}=I G+n E-2 m F=2 H\left(E G-F^{2}\right)\|N\|,
$$

$$
\begin{aligned}
2 H(E G & \left.-F^{2}\right)\|N\|-\mathcal{H}=2 H\left(\kappa^{2} \cos ^{2} \theta+\tau^{2} \sin ^{2} \theta\right)^{\frac{3}{2}} \\
& -\left(\eta \kappa^{2} \cos ^{2} \theta+\eta \tau^{2} \sin ^{2} \theta+\left(-\kappa^{\prime} \tau+\kappa \tau^{\prime}\right) \cos \theta \sin \theta-\beta \kappa \tau\right)=0 .
\end{aligned}
$$

Then $\kappa^{2}=\tau^{2}>0$ and $\kappa^{2}(2 H|\kappa|-\eta+\beta)=0$.
From

$$
\begin{aligned}
\Delta X & =\frac{1}{\kappa}\left\{X_{t t}-\left(\frac{\beta}{\kappa}\right)_{t} X_{\theta}-2 \frac{\beta}{\kappa} X_{t \theta}+\frac{\kappa^{2}+\beta^{2}}{\kappa} X_{\theta \theta}\right\} \\
\nu & =N /\|N\|=-\sin \theta e_{3}+\cos \theta e_{4} .
\end{aligned}
$$

Then $(\Delta X-2 H \nu+2 X) \cdot e_{1}$ is

$$
-\beta^{2} \cos \theta-\kappa^{2} \cos \theta-\beta^{\prime} \sin \theta+\left(\frac{\beta}{\kappa}\right)^{\prime} \sin \theta+\frac{\beta^{2}}{\kappa} \cos \theta+\kappa \cos \theta=0 .
$$

Hence $\kappa=1$ and $\eta=2 H+\beta$.
For ϕ with $\phi^{\prime}=\beta$, let

$$
\begin{aligned}
& \tilde{e}_{1}=\cos \phi e_{1}-\sin \phi e_{2}, \tilde{e}_{2}=\sin \phi e_{1}+\cos \phi e_{2}, \\
& \tilde{e}_{3}=\cos \phi e_{3}-\sin \phi e_{4}, \tilde{e}_{4}=\sin \phi e_{3}+\cos \phi e_{4} .
\end{aligned}
$$

Then

$$
\left(\begin{array}{c}
\tilde{e}_{1} \\
\tilde{e}_{2} \\
\tilde{e}_{3} \\
\tilde{e}_{4}
\end{array}\right)^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 2 H \\
0 & -1 & -2 H & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{e}_{1} \\
\tilde{e}_{2} \\
\tilde{e}_{3} \\
\tilde{e}_{4}
\end{array}\right) .
$$

Thank you!

