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Three phase system e.g. liquid-solid-air.



We will assign an energy to each part of the boundary of the
drop.

I Σ −→ Area of Σ = A[Σ] = free surface energy .

I Ω −→ ωArea (Ω) = ωA[Ω], ω ∈ R wetting energy .

I C −→ βLength[C] = βL[C], β ∈ R, line tension .

Total energy = E = A[Σ] + ωA[Ω] + βL[C] .



Josiah Gibbs introduced the concept of line tension (≈ 1878) as
an excess energy assigned to the line common to the three
phases.

The definition is analogous to the definition of surface tension
with one important difference, line tension be either positive or
negative.

Line tension only significantly affects the shape of the drop at a
very small scale.



First variation

Admissible variations preserve volume and maintain ∂Σ on the
supporting surface S.

Xε = X + δX +O(ε2) , δX|∂Σ · N̄ ≡ 0 .

δE = −
∫

Σ
2Hψ dΣ +

∮
∂Σ

[
N̄ · N + βk̄g − ω

]dX
ds
× N̄ · δX ds ,

where

N̄=normal to S.

N = unit normal to Σ

ψ = δX · N

H = mean curvature of Σ

k̄g = geodesic curvature of ∂Σ in S.



Conditions for equilibrium

H ≡ constant on Σ

N̄ · N = −βk̄g + ω , on ∂Σ.



For axially symmetric surfaces in a half space, the boundary
condition reduces to

ν · (±E3) = ω +
β

r
,

on each energy component.

Drops embedded in a slab having free boundary on the planes
and with positive line tension are axially symmetric, so they are
either spherical caps (sessile drops) or parts of Delaunay
surfaces (Koiso-P 2012).

All sessile drops are in equilibrium for a one parameter family of
functionals.
Delaunay bridges are in equilibrium for a two parameter family
of energy functionals.



Drops with negative line tension are unstable. The sessile
drops with negative line tension minimize the total energy in
comparison to axially symmetric surfaces enclosing the same
volume. (Widom)

This means that destabilizing variations cannot be axially
symmetric. If these variations are resolved into Fourier series,
their wavelengths may fall below a scale at which the energy
model is valid.(Guzzardi)
Therefore drops with negative line tension might physically exist
(as Gibbs predicted) in spite of their mathematical instability.



Theorem
(Koiso-P. 2012) Let S ⊂ S2(R) be a sessile drop with β ≥ 0.

Then, S is stable if and only if

β ≤ 3VCV
πRr̄(VC − sgn(ν3)V )

=: B . (1)

.



E := A[Σ] + ω · A[Ω] + β · L

Θ ≈ 0 Θ ≈ π
A[Ω] >> L L >> A[Ω]

ν · (−E3) = ω +
β

r
≈ −1 ν · (−E3) = ω +

β

r
≈ 1

wetting transition drying transition



Spherically confined drop

H ≡ constant on Σ

X · N = −βk̄g + ω , on ∂Σ.



Partial examples, i.e. constant mean curvature surfaces having
a boundary arc on the sphere where the boundary condition
holds, can be produced using Bjorling’s Formula. Let
C : I → S2 be curve which is real analytic in its arc length
parametrization such that its geodesic curvature satisfies
| − βk̄g + ω| < 1 for constants ω, β. We also use k̄g to denote
the analytic extension of the geodesic curvature to a
neighborhood of I in the complex plane. Then

X(z = u + iv) := Re
(

C(z)− i
∫ z

z0

(ω − βk̄g)C(ζ)× C′(ζ)

+
√

1− (βk̄g − ω)2C(ζ) dζ
)
.



Theorem
Let X : (Σ, ∂Σ)→ (B3,S2) be a C2 immersed equilibrium drop
where Σ is the unit disc in R2. Then, if the surface is stable,
X (Σ) is a spherical cap or a flat disc.
We have not classified the the stable discs and caps. This is a
straightforward and somewhat tedious task owing Fourier
analysis. The result depends on the values of ω and τ .

We do not know if the interior or boundary regularity holds a
priori.



Nitsche considered the free boundary problem with neutral
wetting and line tension, (ω = β = 0), and gave a beautiful
complex analytic argument to show that the only equilibrium
disc type solutions, stable or otherwise, are spherical caps and
flat discs.

Ros and Souam extended this result to drops with wetting
energy but no line tension (ω 6= 0, β = 0).



Second variation Σ ⊂ B3

δ2E = −
∫

Σ
ψL[ψ] dΣ +

∮
∂Σ
ψB[ψ] ds . (2)

L = ∆ + (4H2 − 2K ) ,

B[ψ] = ∇ψ·n−
( 1

sinα
−cotαdN(n)·n)

)
ψ− β

sinα
(
(
ψ

sinα
)ss+

ψ

sinα
)
.

Here, X · n =: sinα = 0. Wherever sinα = 0, ψ/ sinα must be
replaced by −δX · n



The second variation formula naturally extends to

K := {ψ ∈ H1(Σ) | ψ̃ := ψ/ sinα ∈ H1(∂Σ)} .

as

δ2E =

∫
Σ
|∇ψ|2 − |dN|2ψ2 dΣ

+

∮
∂Σ
β[(ψ̃s)2 − ψ̃2]− ψ2[cscα− cot(α)II(n,n)] ds .

An equilibrium surface will be called stable if δ2E ≥ 0 holds for
all ψ ∈ K such that ∫

Σ
ψ dΣ = 0 .



Diagonalizing the second variation leads to a spectral problem
of the form

(L + λ)ψ = 0, on Σ ,B[ψ] = 0 on ∂Σ .

The second condition is a type of Wentzell boundary condition,
has been widely studied.



R3 −→ s0(3) , c −→ c× · ,

ψc := ∂ε(exp(ε[c× ·])X ))ε=0 · N = c× X · N

L[ψc] = 0 on Σ, B[ψc] ≡ 0 on ∂Σ .

On ∂Σ, there holds

ψc = c× X · N = −N× X · c = −(X · n)N× n · c
= −(X · n)X′ · c
= −(X · n/|Xθ|)Xθ · c



Lemma
If there exists an arc γ ⊂ ∂Σ on which ψc ≡ 0 holds for some
vector c 6= 0 holds, then ψc ≡ 0 holds and the surface is axially
symmetric.

If either Xθ · c ≡ 0 or X·n ≡ 0 holds on an arc in ∂Σ, then the
arc is circular and the boundary condition can be used to show
that ψc ≡ 0 ≡ ∂nψc which implies that ψc ≡ 0 on Σ and Σ is
axially symmetric.



We will show that if we assume the surface is not axially
symmetric, then there always exists a c ∈ (R3)∗ such that the
function ψc has, at least, four sign changes on ∂Σ.∮

∂Σ
Xθ · c dθ =

∮
∂Σ

(X · c)θ dθ = 0

Define: ∮
∂Σ

Xθeiθ dθ =: A + iB ∈ C3 .

Thus, there exists c ∈ R3, c 6= 0 with 0 = c · A = c · B. It then
follows that for this c the function Xθ · c can be represented as a
Fourier series of the form

Xθ · c =
∑
j≥2

(aj cos(jθ) + bj sin(jθ)) .

This function can be interpreted as the boundary values of the
real part of the complex analytic function

F (z) :=
∑
j≥2

(aj − ibj)z j = z2(analytic function) .





Define F to be the set of all functions f on Ū satisfying the
following conditions:

I f is piecewise C1 on Ū,
I f/X · n is piecewise C1 on ∂Σ

I f ≡ 0 on ∂U \ ∂Σ.
Note that ψcχU ∈ F . Also, since (X · N)2 + (X · n)2 ≡ 1 on ∂Σ,
F contains all functions vanishing identically on V which are of
the form v(1− (X · N)2) near ∂U ∩ ∂Σ, where v is smooth
function. In particular, this includes C∞c (U). Define

µ1 = inf
F

(∫
U
|∇f |2 − (4H2 − 2K )f 2 dΣ

−
∫
∂Σ∩∂U

( 1
sinα

− cotα dN(n) · n
)
f 2 ds

+β

∫
∂Σ∩∂U

f̂ 2
s − f̂ 2 ds

)/∫
U

f 2 dΣ .

By using the function ψc|U , we get that µ1 ≤ 0 holds.



If µ1 = 0, then

ψ∗ :=

{
ψc, p ∈ Ω1

0, p ∈ Σ \ Ω1
,

realizes the infimum µ1. Taking the first variation of the
functional, we get that ψ∗ is a weak solution of L = 0 in Σ. This
contradicts elliptic regularity and unique continuation property,
so µ1 < 0 must hold.
Let f ∈ F which makes the quotient negative and let

ψ2 :=

{
ψc, p ∈ Ω3

0, p ∈ U
.

There is a superposition φ := f + aψ2 with∫
Σ
φ dΣ = 0

making the quotient negative.



Let w solve ∆2w = 0 in Σ with w ≡ 0 on ∂Σ and
∂nw = −φ/X · n on ∂Σ. Define the variation

δX = ∇w + φN ,

then on ∂Σ

X · δX = X · n(
−φ

X · n
) + φ = 0 .



THANK YOU !


