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Aim

Classification of helicoidal flat surfaces in S3 in terms of
their first and second fundamental forms and by linear
solutions of the corresponding angle function.

Helicoidal surfaces are generalizations of rotational
surfaces

In R3, a helicoidal surface can be written as

X (u, v) = (u cos v ,u sin v , λ(u) + hv),

where h ∈ R and λ(u) is a smooth function.
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G the 1-parameter subgroup of the isometries φα,β(t) : S3 → S3:

G =

{
φα,β(t) =

(
eiαt 0
0 eiβt

)
: t ∈ R

}
.

Each φα,β(t) can be seen as the composition of a translation
and a rotation in S3,

φα,β(t) = ψα(t) ◦ ϕβ(t) :


1 0 0 0
0 1 0 0
0 0 cosβt − sinβt
0 0 sinβt cosβt

 ,


cosαt − sinαt 0 0
sinαt cosαt 0 0

0 0 1 0
0 0 0 1

 .

When β 6= 0, ϕβ(t) fixes the set l = {(z,0) ∈ S3}. So, {ϕβ(t)}
consists of rotations around l and {ψα(t)} are translations
along l .
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Definition

A helicoidal surface in S3 is a surface invariant under the action
φα,β : S1 × S3 → S3 of S1 on S3 given by

φα,β(t , (z,w)) = (eiαtz,eiβtw).

M is a helicoidal surface in S3 ⇔ M is invariant under all
elements of G.

When α = β, the orbits are all great circles, and they are
equidistant from each other (Clifford translations);
α = −β is also, up to a rotation in S3, a Clifford translation.
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Background...

Helicoidal surfaces in R3:

do Carmo, Dajczer, 1982:
Description of the space of all helicoidal surfaces in R3 that
have constant mean (Gaussian) curvature.
Baikoussis, Koufogiorgos, 1998:
Helicoidal surfaces with prescribed mean or Gaussian
curvature.
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Background...

Helicoidal surfaces in H3:

Galvéz, Martínez, Milán, 2000:
Flat surfaces in H3 admit a Weierstrass Representation
formula in terms of meromorphic data.
Kokubu, Umehara, Yamada, 2004:
Global properties of flat surfaces with admissible
singularities.
Martinéz, dos Santos, Tenenblat, 2013:
Complete classification of the helicoidal flat surfaces in
terms of meromorphic data as well as by means of linear
harmonic functions.
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Natural parametrization

S2
+ =

{
(x1, x2, x3,0) ∈ S3 : x3 > 0

}
,

γ : I ⊂ R→ S2
+ curve parametrized by arclength (profile):

γ(s) =
(

cosϕ(s) cos θ(s), cosϕ(s) sin θ(s), sinϕ(s),0
)
.

A helicoidal surface can be locally parametrized by

X (t , s) = φα,β(t) · γ(s), (1)

Then we have

Xt = φα,β(t) · (−αx2, αx1,0, βx3),
Xs = φα,β(t) · γ′(s),

and

N = φα,β(t)·
(
βx3(x ′2x3−x2x ′3, βx3(x1x ′3−x ′1x3), βx3(x ′1x2−x1x ′2),−αx ′3

)
.
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Flat surfaces in S3

If c is a regular curve in S2, then h−1(c) is a flat surface in
S3, where h : S3 → S2 is the Hopf fibration.

Proposition 1
A helicoidal surface, locally parametrized as before, is a flat
surface if and only if the following equation

β2ϕ′′ sin3 ϕ cosϕ− β2(ϕ′)2 sin4 ϕ+ α2(ϕ′)4 cos4 ϕ = 0 (2)

is satisfied.

Proof: Exercise.
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The Bianchi-Spivak representation

f : M → S3 flat isometric immersion,

Gauss equation⇒ Kext = −1

There exist Tschebycheff coordinates around every point. We
can choose local coordinates (u, v) such that

I = du2 + 2 cosωdudv + dv2,

II = 2 sinωdudv .
(3)

The angle function satisfies

0 < ω < π

ωuv = 0

The aim here is to characterize the flat surfaces when ω is
linear, i.e.,

ω(u, v) = ω1(u) + ω2(v) = λ1u + λ2v + λ3, λi ∈ R.
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

ca, cb : I ⊂ R→ S3 curves parametrized by arclength, with
curvatures κa and κb, and whose torsions are τa = 1 and
τb = −1.

Suppose that 0 ∈ I, ca(0) = cb(0) = (1,0,0,0) and
c′a(0) ∧ c′b(0) 6= 0. Then the map

X (u, v) = ca(u) · cb(v)

parameterize a flat surface in S3,
the fundamental forms are as before,
ω satisfies ω′1(u) = −κa(u) and ω′2(v) = κb(v).
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Given r > 1, consider the curve γr : R→ S3 (base curve) given
by

γr (u) =
1√

1 + r2

(
r cos

u
r
, r sin

u
r
, cos ru, sin ru

)
.

We have

κ =
r2 − 1

r
and τ2 = 1.

Consider now

ca(u) =
1√

1 + a2
(a,0,−1,0) · γa(u),

cb(v) =
1√

1 + b2
T (γb(v)) · (b,0,0,−1),

where

T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Theorem 1
The map X (u, v) = ca(u) · cb(v) is a parametrization of a flat
surface in S3, whose the fundamental forms are given by

I = du2 + 2 cos
((

1−a2

a

)
u +

(
b2−1

b

)
v + c

)
dudv + dv2,

II = 2 sin
((

1−a2

a

)
u +

(
b2−1

b

)
v + c

)
dudv .

Moreover, X is invariant under helicoidal motions.

Proof: X (u, v) can be written as

X (u, v) = ga · Y (u, v) · gb,

where
ga =

1√
1 + a2

(a,0,−1,0),

gb =
1√

1 + b2
(b,0,0,−1),

Y (u, v) = γa(u) · T (γb(v)).
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Y (u, v) is invariant by helicoidal motions if

φα,β(t) · Y (u, v) = Y
(
u(t), v(t)

)
,

where u(t) and v(t) are smooth functions.

A straightforward
computation shows that

u(t) = u + z(t) and v(t) = v + w(t),

where

z(t) =
a(b2 − 1)
a2b2 − 1

βt and w(t) =
b(1− a2)

a2b2 − 1
βt ,

with

α =
b2 − a2

a2b2 − 1
β.
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Constant angle surfaces

For the Hopf map h : S3 → S2, consider the orthogonal basis:

E1(z,w) = (iz, iw), E2(z,w) = (−iw , iz), E3(z,w) = (−w , z).

E1 is vertical (Hopf vector field) and E2, E3 are horizontal.

Definition

A constant angle surface in S3 is a surface whose its unit
normal vector field makes a constant angle with E1.

Proposition 2

Let M be a helicoidal surface in S3, parametrized as before.
Then, M is flat if and only if it is a constant angle surface.

Proof: It is an application of the preview characterization of flat
surfaces in S3 (Proposition 1).
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Theorem 2

Let M be a helicoidal flat surface in S3. Then M admits a local
parametrization such that the fundamental forms are given as
before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M given in (1).

Proposition 2⇒ M is a constant angle surface.

Remark:
Montaldo, Onnis, 2014:
Characterization of constant angle surfaces in the Berger
sphere: such surfaces are determined by a 1-parameter
family of isometries of the Berger sphere and by a
geodesic of a 2-torus in S3.
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Theorem 2

Let M be a helicoidal flat surface in S3. Then M admits a local
parametrization such that the fundamental forms are given as
before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M given in (1).

Proposition 2⇒ M is a constant angle surface.

Montaldo, Onnis, 2014:
Characterization of constant angle surfaces in the Berger
sphere: such surfaces are determined by a 1-parameter
family of isometries of the Berger sphere and by a
geodesic of a 2-torus in S3.

Given a number ε > 0, the Berger sphere S3
ε is defined as the

sphere S3 endowed with the metric

〈X ,Y 〉ε = 〈X ,Y 〉+ (ε2 − 1)〈X ,E1〉〈Y ,E1〉.
Fernando Manfio Helicoidal flat surfaces in S3



Using the Montaldo-Onnis characterization, there exists a local
parametrization F (u, v) of M given by

F (u, v) = A(v)b(u),

where

b(u) =
(√

c1 cos(α1u),
√

c1 sin(α1u),
√

c2 cos(α2u),
√

c2 sin(α2u)
)

is a geodesic curve in the torus S1(
√

c1)× S1(
√

c2),

with

c1,2 =
1
2
∓ε cos ν

2
√

B
, α1 =

2B
ε

c2, α2 =
2B
ε

c1, B = 1+(ε2−1) cos2 ν,

and A(v) = A(ξ, ξ1, ξ2, ξ3)(v) is a 1-parameter family of 4× 4
orthogonal matrices commuting with a complex structure of R4,
ξ is a constant and the functions ξi(v), 1 ≤ i ≤ 3, satisfy

cos2(ξ1(v))ξ′2(v)− sin2(ξ1(v))ξ′3(v) = 0. (4)
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Taking ε = 1, we can reparametrize the curve b such that the
new curve is a base curve γa:

writing s = 2
√

c1c2, we have

b(s) =
1√

1 + a2

(
a cos

s
a
,a sin

s
a
, cos(as), sin(as)

)
,

where a =
√

c1/c2.
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The matrix

A(v) = A(ξ, ξ1, ξ2, ξ3)(v) =


α(v)

J1α(v)
cos ξJ2α(v) + sin ξJ3α(v)
− cos ξJ3α(v) + sin ξJ2α(v)

 ,

where

α(v) = (cos ξ1 cos ξ2,− cos ξ1 sin ξ2, sin ξ1 cos ξ3,− sin ξ1 sin ξ3)

and J1, J2 and J3 are orthogonal matrices given explicitly, can
be written as

A(v) = A(ξ) · Ã(v),
where

A(ξ) =


1 0 0 0
0 1 0 0
0 0 sin ξ cos ξ
0 0 − cos ξ sin ξ

 and Ã(v) =


α(v)

J1α(v)
J3α(v)
J2α(v)

 .

A(v) · b(s) = A(ξ)X (v , s).
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X (v , s) can be written as

X (v , s) =
1√

1 + a2
(x1, x2, x3, x4),

with

x1 = a cos ξ1 cos
(s

a
+ ξ2

)
+ sin ξ1 cos(as + ξ3),

x2 = a cos ξ1 sin
(s

a
+ ξ2

)
+ sin ξ1 sin(as + ξ3),

x3 = −a sin ξ1 cos
(s

a
− ξ3

)
+ cos ξ1 cos(as − ξ2),

x4 = −a sin ξ1 sin
(s

a
− ξ3

)
+ cos ξ1 sin(as − ξ3).
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x1 = a cos ξ1 cos
(s

a
+ ξ2

)
+ sin ξ1 cos(as + ξ3),

x2 = a cos ξ1 sin
(s

a
+ ξ2

)
+ sin ξ1 sin(as + ξ3),

x3 = −a sin ξ1 cos
(s

a
− ξ3

)
+ cos ξ1 cos(as − ξ2),

x4 = −a sin ξ1 sin
(s

a
− ξ3

)
+ cos ξ1 sin(as − ξ3).

On the other hand,

φα,β(t) · X (v , s) =
1√

1 + a2
(z1, z2, z3, z4),

where

z1 = a cos ξ1 cos
(s

a
+ ξ2 + αt

)
+ sin ξ1 cos (as + ξ3 + αt) ,

z2 = a cos ξ1 sin
(s

a
+ ξ2 + αt

)
+ sin ξ1 sin (as + ξ3 + αt) ,

z3 = −a sin ξ1 cos
(s

a
− ξ3 + βt

)
+ cos ξ1 cos (as − ξ2 + βt) ,

z4 = −a sin ξ1 sin
(s

a
− ξ3 + βt

)
+ cos ξ1 sin (as − ξ2 + βt) .
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Sketch of the proof (second part):

As the surface is helicoidal, we have

φα,β(t) · X (v , s) = X (v(t), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:

the surface is helicoidal⇔ dξ1

dv
· dv

dt
= 0.

(i) v(t) constant⇒ a2 = 1, contradiction.

(ii) ξ1(v) constant. In this case, v(t) and s(t) are given by

s(t) = s +
a(b2 − 1)
a2b2 − 1

βt and v(t) = v +
b(1− a2)

a2b2 − 1
βt ,

that coincide with the expressions obtained in Theorem 1.
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Sketch of the proof (second part):

As the surface is helicoidal, we have

φα,β(t) · X (v , s) = X (v(t), s(t)),

for some smooth functions v(t) and s(t). Comparing the
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dv
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dt
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that coincide with the expressions obtained in Theorem 1.
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Figura: a=2 and b=3.
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Figura: a=2 and b=2.
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Figura: a=
√

2 and b=3.
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