Helicoidal flat surfaces in S³

Fernando Manfio

Universidade de São Paulo

Joint work with João Paulo dos Santos

Geometric aspects on capillary problems and related topics

• Classification of helicoidal flat surfaces in S³ in terms of their first and second fundamental forms and by linear solutions of the corresponding angle function.

Aim

- Classification of helicoidal flat surfaces in S³ in terms of their first and second fundamental forms and by linear solutions of the corresponding angle function.
- Helicoidal surfaces are generalizations of rotational surfaces

Aim

- Classification of helicoidal flat surfaces in S³ in terms of their first and second fundamental forms and by linear solutions of the corresponding angle function.
- Helicoidal surfaces are generalizations of rotational surfaces

In \mathbb{R}^3 , a helicoidal surface can be written as

 $X(u, v) = (u \cos v, u \sin v, \lambda(u) + hv),$

where $h \in \mathbb{R}$ and $\lambda(u)$ is a smooth function.

(日) (日) (日)

$$oldsymbol{G} = \left\{ \phi_{lpha,eta}(t) = \left(egin{array}{cc} oldsymbol{e}^{ilpha t} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{e}^{ieta t} \end{array}
ight) : t \in \mathbb{R}
ight\}.$$

$$oldsymbol{G} = \left\{ \phi_{lpha,eta}(t) = \left(egin{array}{cc} oldsymbol{e}^{ilpha t} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{e}^{ieta t} \end{array}
ight) : t \in \mathbb{R}
ight\}.$$

Each $\phi_{\alpha,\beta}(t)$ can be seen as the composition of a translation and a rotation in \mathbb{S}^3 ,

 $\phi_{\alpha,\beta}(t) = \psi_{\alpha}(t) \circ \varphi_{\beta}(t)$:

(日本)(日本)(日本)(日本)

$$oldsymbol{G} = \left\{ \phi_{lpha,eta}(t) = \left(egin{array}{cc} oldsymbol{e}^{ilpha t} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{e}^{ieta t} \end{array}
ight) : t \in \mathbb{R}
ight\}.$$

Each $\phi_{\alpha,\beta}(t)$ can be seen as the composition of a translation and a rotation in \mathbb{S}^3 ,

$$\phi_{lpha,eta}(t)=\psi_{lpha}(t)\circ arphi_{eta}(t)$$
 :

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ り � �

$$m{G} = \left\{ \phi_{lpha,eta}(t) = \left(egin{array}{cc} m{e}^{ilpha t} & m{0} \ m{0} & m{e}^{ieta t} \end{array}
ight) : t \in \mathbb{R}
ight\}.$$

Each $\phi_{\alpha,\beta}(t)$ can be seen as the composition of a translation and a rotation in \mathbb{S}^3 ,

$$\phi_{lpha,eta}(t)=\psi_{lpha}(t)\circ arphi_{eta}(t)$$
 :

1	´ 1	0	0	0 `	\	$ \cos \alpha t $	$-\sin lpha t$	0	0 \
l	0	1	0	0		$\sin \alpha t$	$\cos lpha t$	0	0
l	0	0	$\cos\beta t$	$-\sin\beta t$,	0	0	1	0
(0	0	sin $eta t$	$\cos\beta t$)	\ 0	0	0	1/

When $\beta \neq 0$, $\varphi_{\beta}(t)$ fixes the set $I = \{(z, 0) \in \mathbb{S}^3\}$.

▲□ ▼ ▲ 目 ▼ ▲ 目 → ● ● ●

$$m{G} = \left\{ \phi_{lpha,eta}(t) = \left(egin{array}{cc} m{e}^{ilpha t} & m{0} \ m{0} & m{e}^{ieta t} \end{array}
ight) : t \in \mathbb{R}
ight\}.$$

Each $\phi_{\alpha,\beta}(t)$ can be seen as the composition of a translation and a rotation in \mathbb{S}^3 ,

$$\phi_{lpha,eta}(t)=\psi_{lpha}(t)\circ arphi_{eta}(t)$$
 :

1	1	0	0	0	\	$\int \cos \alpha t$	$-\sin \alpha t$	0	0 \
	0	1	0	0		$\sin \alpha t$	$\cos lpha t$	0	0
	0	0	$\cos\beta t$	$-\sin\beta t$,	0	0	1	0
ĺ	0	0	sin $eta t$	$\cos\beta t$)	\ 0	0	0	1/

When $\beta \neq 0$, $\varphi_{\beta}(t)$ fixes the set $I = \{(z, 0) \in \mathbb{S}^3\}$. So, $\{\varphi_{\beta}(t)\}$ consists of rotations around I and $\{\psi_{\alpha}(t)\}$ are translations along I.

A *helicoidal* surface in \mathbb{S}^3 is a surface invariant under the action $\phi_{\alpha,\beta}: \mathbb{S}^1 \times \mathbb{S}^3 \to \mathbb{S}^3$ of \mathbb{S}^1 on \mathbb{S}^3 given by

 $\phi_{\alpha,\beta}(t,(z,w)) = (e^{i\alpha t}z,e^{i\beta t}w).$

▲□ → ▲ □ → ▲ □ → □ □

A *helicoidal* surface in \mathbb{S}^3 is a surface invariant under the action $\phi_{\alpha,\beta}: \mathbb{S}^1 \times \mathbb{S}^3 \to \mathbb{S}^3$ of \mathbb{S}^1 on \mathbb{S}^3 given by

$$\phi_{\alpha,\beta}(t,(z,w)) = (e^{i\alpha t}z, e^{i\beta t}w).$$

M is a helicoidal surface in $\mathbb{S}^3 \Leftrightarrow M$ is invariant under all elements of *G*.

★ ■ ► ★ ■ ► ■ ■

A *helicoidal* surface in \mathbb{S}^3 is a surface invariant under the action $\phi_{\alpha,\beta}: \mathbb{S}^1 \times \mathbb{S}^3 \to \mathbb{S}^3$ of \mathbb{S}^1 on \mathbb{S}^3 given by

$$\phi_{\alpha,\beta}(t,(z,w)) = (e^{i\alpha t}z,e^{i\beta t}w).$$

M is a helicoidal surface in $\mathbb{S}^3 \Leftrightarrow M$ is invariant under all elements of *G*.

 When α = β, the orbits are all great circles, and they are equidistant from each other (*Clifford translations*);

A *helicoidal* surface in \mathbb{S}^3 is a surface invariant under the action $\phi_{\alpha,\beta}: \mathbb{S}^1 \times \mathbb{S}^3 \to \mathbb{S}^3$ of \mathbb{S}^1 on \mathbb{S}^3 given by

$$\phi_{\alpha,\beta}(t,(z,w)) = (e^{i\alpha t}z,e^{i\beta t}w).$$

M is a helicoidal surface in $\mathbb{S}^3 \Leftrightarrow M$ is invariant under all elements of *G*.

- When α = β, the orbits are all great circles, and they are equidistant from each other (*Clifford translations*);
- $\alpha = -\beta$ is also, up to a rotation in \mathbb{S}^3 , a Clifford translation.

▲□ → ▲ □ → ▲ □ → □

æ

 do Carmo, Dajczer, 1982: Description of the space of all helicoidal surfaces in ℝ³ that have constant mean (Gaussian) curvature.

• do Carmo, Dajczer, 1982:

Description of the space of all helicoidal surfaces in \mathbb{R}^3 that have constant mean (Gaussian) curvature.

 Baikoussis, Koufogiorgos, 1998: Helicoidal surfaces with prescribed mean or Gaussian curvature.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

3

 Galvéz, Martínez, Milán, 2000: Flat surfaces in ℍ³ admit a Weierstrass Representation formula in terms of meromorphic data.

- Galvéz, Martínez, Milán, 2000: Flat surfaces in ℍ³ admit a Weierstrass Representation formula in terms of meromorphic data.
- Kokubu, Umehara, Yamada, 2004: Global properties of flat surfaces with admissible singularities.

- Galvéz, Martínez, Milán, 2000: Flat surfaces in ℍ³ admit a Weierstrass Representation formula in terms of meromorphic data.
- Kokubu, Umehara, Yamada, 2004: Global properties of flat surfaces with admissible singularities.
- Martinéz, dos Santos, Tenenblat, 2013: Complete classification of the helicoidal flat surfaces in terms of meromorphic data as well as by means of linear harmonic functions.

$$\mathbb{S}^2_+ = \{(x_1, x_2, x_3, 0) \in \mathbb{S}^3 : x_3 > 0\},\$$

Fernando Manfio Helicoidal flat surfaces in S³

▲□ → ▲ □ → ▲ □ → □

æ

$$\mathbb{S}^2_+ = \left\{ (x_1, x_2, x_3, 0) \in \mathbb{S}^3 : x_3 > 0 \right\},\$$

 $\gamma: \textit{I} \subset \mathbb{R} \to \mathbb{S}^2_+$ curve parametrized by arclength (profile):

 $\gamma(s) = \big(\cos\varphi(s)\cos\theta(s), \cos\varphi(s)\sin\theta(s), \sin\varphi(s), 0\big).$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ◆ � � �

$$\mathbb{S}^2_+ = \left\{ (x_1, x_2, x_3, 0) \in \mathbb{S}^3 : x_3 > 0 \right\},\$$

 $\gamma: I \subset \mathbb{R} \to \mathbb{S}^2_+$ curve parametrized by arclength (profile):

$$\gamma(s) = \big(\cos\varphi(s)\cos\theta(s), \cos\varphi(s)\sin\theta(s), \sin\varphi(s), 0\big).$$

A helicoidal surface can be locally parametrized by

$$X(t,s) = \phi_{\alpha,\beta}(t) \cdot \gamma(s), \tag{1}$$

日本・モン・モン

$$\mathbb{S}^2_+ = \big\{ (x_1, x_2, x_3, 0) \in \mathbb{S}^3 : x_3 > 0 \big\},$$

 $\gamma: \mathbf{I} \subset \mathbb{R} \to \mathbb{S}^2_+$ curve parametrized by arclength (profile):

$$\gamma(\boldsymbol{s}) = \big(\cos\varphi(\boldsymbol{s})\cos\theta(\boldsymbol{s}), \cos\varphi(\boldsymbol{s})\sin\theta(\boldsymbol{s}), \sin\varphi(\boldsymbol{s}), \boldsymbol{0}\big).$$

A helicoidal surface can be locally parametrized by

$$X(t, s) = \phi_{\alpha, \beta}(t) \cdot \gamma(s), \tag{1}$$

日本・モン・モン

Then we have

$$\begin{array}{lll} \boldsymbol{X}_t &=& \phi_{\alpha,\beta}(t) \cdot (-\alpha \boldsymbol{x}_2, \alpha \boldsymbol{x}_1, \boldsymbol{0}, \beta \boldsymbol{x}_3) \\ \boldsymbol{X}_s &=& \phi_{\alpha,\beta}(t) \cdot \gamma'(\boldsymbol{s}), \end{array}$$

$$\mathbb{S}^2_+ = \big\{ (x_1, x_2, x_3, 0) \in \mathbb{S}^3 : x_3 > 0 \big\},$$

 $\gamma: \mathbf{I} \subset \mathbb{R} \to \mathbb{S}^2_+$ curve parametrized by arclength (profile):

$$\gamma(s) = \big(\cos\varphi(s)\cos\theta(s), \cos\varphi(s)\sin\theta(s), \sin\varphi(s), 0\big).$$

A helicoidal surface can be locally parametrized by

$$X(t,s) = \phi_{\alpha,\beta}(t) \cdot \gamma(s), \tag{1}$$

□ > < 三 > < 三 > < 三 > < □

Then we have

$$\begin{array}{lll} X_t &=& \phi_{\alpha,\beta}(t) \cdot (-\alpha x_2, \alpha x_1, 0, \beta x_3), \\ X_s &=& \phi_{\alpha,\beta}(t) \cdot \gamma'(s), \end{array}$$

and

 $N = \phi_{\alpha,\beta}(t) \cdot \left(\beta x_3(x_2'x_3 - x_2x_3', \beta x_3(x_1x_3' - x_1'x_3), \beta x_3(x_1'x_2 - x_1x_2'), -\alpha x_3'\right).$

Flat surfaces in S³

Fernando Manfio Helicoidal flat surfaces in S³

< □ > < □ > < 亘 > < 亘 > < 亘 > ○ < ⊙

Flat surfaces in S³

• If *c* is a regular curve in \mathbb{S}^2 , then $h^{-1}(c)$ is a flat surface in \mathbb{S}^3 , where $h : \mathbb{S}^3 \to \mathbb{S}^2$ is the Hopf fibration.

• If *c* is a regular curve in \mathbb{S}^2 , then $h^{-1}(c)$ is a flat surface in \mathbb{S}^3 , where $h : \mathbb{S}^3 \to \mathbb{S}^2$ is the Hopf fibration.

Proposition 1

A helicoidal surface, locally parametrized as before, is a flat surface if and only if the following equation

$$\beta^2 \varphi'' \sin^3 \varphi \cos \varphi - \beta^2 (\varphi')^2 \sin^4 \varphi + \alpha^2 (\varphi')^4 \cos^4 \varphi = 0$$
 (2)

is satisfied.

• If *c* is a regular curve in \mathbb{S}^2 , then $h^{-1}(c)$ is a flat surface in \mathbb{S}^3 , where $h : \mathbb{S}^3 \to \mathbb{S}^2$ is the Hopf fibration.

Proposition 1

A helicoidal surface, locally parametrized as before, is a flat surface if and only if the following equation

$$\beta^2 \varphi'' \sin^3 \varphi \cos \varphi - \beta^2 (\varphi')^2 \sin^4 \varphi + \alpha^2 (\varphi')^4 \cos^4 \varphi = 0$$
 (2)

is satisfied.

Proof: Exercise.

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

< 2 > < 2 >

- 170

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

日本・モート・モー

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

There exist Tschebycheff coordinates around every point.

直 とう キャン・キャン

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

There exist Tschebycheff coordinates around every point. We can choose local coordinates (u, v) such that

 $I = du^{2} + 2\cos\omega du dv + dv^{2},$ $II = 2\sin\omega du dv.$ (3)

日本・キョン・キョン

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

There exist Tschebycheff coordinates around every point. We can choose local coordinates (u, v) such that

$$I = du^{2} + 2\cos\omega du dv + dv^{2},$$

$$II = 2\sin\omega du dv.$$
(3)

The angle function satisfies

• $0 < \omega < \pi$

日本・モート・モー

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

There exist Tschebycheff coordinates around every point. We can choose local coordinates (u, v) such that

$$I = du^{2} + 2\cos\omega du dv + dv^{2},$$

$$II = 2\sin\omega du dv.$$
(3)

The angle function satisfies

•
$$\omega_{uv} = 0$$

通 と く 回 と く 回 と

 $f: M \to \mathbb{S}^3$ flat isometric immersion,

Gauss equation $\Rightarrow K_{ext} = -1$

There exist Tschebycheff coordinates around every point. We can choose local coordinates (u, v) such that

$$I = du^{2} + 2\cos\omega du dv + dv^{2},$$

$$II = 2\sin\omega du dv.$$
(3)

The angle function satisfies

•
$$0 < \omega < \pi$$

•
$$\omega_{uv} = 0$$

The aim here is to characterize the flat surfaces when ω is linear, i.e.,

$$\omega(u, v) = \omega_1(u) + \omega_2(v) = \lambda_1 u + \lambda_2 v + \lambda_3, \quad \lambda_i \in \mathbb{R}.$$

日本・モート・モー
$c_a, c_b : I \subset \mathbb{R} \to \mathbb{S}^3$ curves parametrized by arclength, with curvatures κ_a and κ_b , and whose torsions are $\tau_a = 1$ and $\tau_b = -1$.

 $c_a, c_b : I \subset \mathbb{R} \to \mathbb{S}^3$ curves parametrized by arclength, with curvatures κ_a and κ_b , and whose torsions are $\tau_a = 1$ and $\tau_b = -1$. Suppose that $0 \in I$, $c_a(0) = c_b(0) = (1, 0, 0, 0)$ and $c'_a(0) \land c'_b(0) \neq 0$.

 $c_a, c_b : I \subset \mathbb{R} \to \mathbb{S}^3$ curves parametrized by arclength, with curvatures κ_a and κ_b , and whose torsions are $\tau_a = 1$ and $\tau_b = -1$. Suppose that $0 \in I$, $c_a(0) = c_b(0) = (1, 0, 0, 0)$ and $c'_a(0) \land c'_b(0) \neq 0$. Then the map

 $X(u,v)=c_a(u)\cdot c_b(v)$

• parameterize a flat surface in S³,

日本・モート・モート

 $c_a, c_b : I \subset \mathbb{R} \to \mathbb{S}^3$ curves parametrized by arclength, with curvatures κ_a and κ_b , and whose torsions are $\tau_a = 1$ and $\tau_b = -1$. Suppose that $0 \in I$, $c_a(0) = c_b(0) = (1, 0, 0, 0)$ and $c'_a(0) \land c'_b(0) \neq 0$. Then the map

$$X(u,v)=c_a(u)\cdot c_b(v)$$

- parameterize a flat surface in S³,
- the fundamental forms are as before,

 $c_a, c_b : I \subset \mathbb{R} \to \mathbb{S}^3$ curves parametrized by arclength, with curvatures κ_a and κ_b , and whose torsions are $\tau_a = 1$ and $\tau_b = -1$. Suppose that $0 \in I$, $c_a(0) = c_b(0) = (1, 0, 0, 0)$ and $c'_a(0) \land c'_b(0) \neq 0$. Then the map

$$X(u,v)=c_a(u)\cdot c_b(v)$$

- parameterize a flat surface in S³,
- the fundamental forms are as before,
- ω satisfies $\omega'_1(u) = -\kappa_a(u)$ and $\omega'_2(v) = \kappa_b(v)$.

・日・・日・・日・

Given r > 1, consider the curve $\gamma_r : \mathbb{R} \to \mathbb{S}^3$ (*base curve*) given by

$$\gamma_r(u) = \frac{1}{\sqrt{1+r^2}} \left(r \cos \frac{u}{r}, r \sin \frac{u}{r}, \cos r u, \sin r u \right).$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

Given r > 1, consider the curve $\gamma_r : \mathbb{R} \to \mathbb{S}^3$ (*base curve*) given by

$$\gamma_r(u) = \frac{1}{\sqrt{1+r^2}} \left(r \cos \frac{u}{r}, r \sin \frac{u}{r}, \cos r u, \sin r u \right).$$

We have

$$\kappa = \frac{r^2 - 1}{r}$$
 and $\tau^2 = 1$.

★ E ► ★ E ► E

- 17 ▶

Given r > 1, consider the curve $\gamma_r : \mathbb{R} \to \mathbb{S}^3$ (*base curve*) given by

$$\gamma_r(u) = \frac{1}{\sqrt{1+r^2}} \left(r \cos \frac{u}{r}, r \sin \frac{u}{r}, \cos r u, \sin r u \right).$$

We have

$$\kappa = \frac{r^2 - 1}{r}$$
 and $\tau^2 = 1$.

Consider now

$$c_{a}(u) = \frac{1}{\sqrt{1+a^{2}}}(a,0,-1,0) \cdot \gamma_{a}(u),$$

$$c_{b}(v) = \frac{1}{\sqrt{1+b^{2}}}T(\gamma_{b}(v)) \cdot (b,0,0,-1),$$

where

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

물 에 제 문 어

æ

The map $X(u, v) = c_a(u) \cdot c_b(v)$ is a parametrization of a flat surface in \mathbb{S}^3 , whose the fundamental forms are given by

$$I = du^{2} + 2\cos\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv + dv^{2},$$

$$II = 2\sin\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv.$$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

크

The map $X(u, v) = c_a(u) \cdot c_b(v)$ is a parametrization of a flat surface in \mathbb{S}^3 , whose the fundamental forms are given by

$$I = du^{2} + 2\cos\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv + dv^{2},$$

$$II = 2\sin\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv.$$

Moreover, X is invariant under helicoidal motions.

э

The map $X(u, v) = c_a(u) \cdot c_b(v)$ is a parametrization of a flat surface in \mathbb{S}^3 , whose the fundamental forms are given by

$$I = du^{2} + 2\cos\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv + dv^{2},$$

$$II = 2\sin\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv.$$

Moreover, X is invariant under helicoidal motions.

Proof: X(u, v) can be written as

$$X(u,v) = g_a \cdot Y(u,v) \cdot g_b,$$

The map $X(u, v) = c_a(u) \cdot c_b(v)$ is a parametrization of a flat surface in \mathbb{S}^3 , whose the fundamental forms are given by

$$I = du^{2} + 2\cos\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv + dv^{2},$$

$$II = 2\sin\left(\left(\frac{1-a^{2}}{a}\right)u + \left(\frac{b^{2}-1}{b}\right)v + c\right)dudv.$$

Moreover, X is invariant under helicoidal motions.

Proof: X(u, v) can be written as

$$X(u,v) = g_a \cdot Y(u,v) \cdot g_b,$$

where

$$g_{a} = \frac{1}{\sqrt{1+a^{2}}}(a,0,-1,0),$$

$$g_{b} = \frac{1}{\sqrt{1+b^{2}}}(b,0,0,-1),$$

$$Y(u,v) = \gamma_{a}(u) \cdot T(\gamma_{b}(v)).$$

э

Y(u, v) is invariant by helicoidal motions if

 $\phi_{\alpha,\beta}(t)\cdot Y(u,v)=Y(u(t),v(t)),$

where u(t) and v(t) are smooth functions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

∃ 990

Y(u, v) is invariant by helicoidal motions if

$$\phi_{\alpha,\beta}(t)\cdot Y(u,v)=Y(u(t),v(t)),$$

where u(t) and v(t) are smooth functions. A straightforward computation shows that

u(t) = u + z(t) and v(t) = v + w(t),

where

$$z(t) = \frac{a(b^2 - 1)}{a^2b^2 - 1}\beta t$$
 and $w(t) = \frac{b(1 - a^2)}{a^2b^2 - 1}\beta t$,

with

$$\alpha = \frac{b^2 - a^2}{a^2 b^2 - 1}\beta.$$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ◆ � � �

Fernando Manfio Helicoidal flat surfaces in S³

▲御 → ▲ 臣 → ▲ 臣 → □

æ

For the Hopf map $h : \mathbb{S}^3 \to \mathbb{S}^2$, consider the orthogonal basis:

 $E_1(z,w) = (iz,iw), \quad E_2(z,w) = (-i\overline{w},i\overline{z}), \quad E_3(z,w) = (-\overline{w},\overline{z}).$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q @

For the Hopf map $h : \mathbb{S}^3 \to \mathbb{S}^2$, consider the orthogonal basis:

 $E_1(z,w) = (iz,iw), \quad E_2(z,w) = (-i\overline{w},i\overline{z}), \quad E_3(z,w) = (-\overline{w},\overline{z}).$

 E_1 is vertical (*Hopf* vector field) and E_2 , E_3 are horizontal.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

For the Hopf map $h : \mathbb{S}^3 \to \mathbb{S}^2$, consider the orthogonal basis:

 $E_1(z,w) = (iz,iw), \quad E_2(z,w) = (-i\overline{w},i\overline{z}), \quad E_3(z,w) = (-\overline{w},\overline{z}).$

 E_1 is vertical (*Hopf* vector field) and E_2 , E_3 are horizontal.

Definition

A constant angle surface in \mathbb{S}^3 is a surface whose its unit normal vector field makes a constant angle with E_1 .

For the Hopf map $h : \mathbb{S}^3 \to \mathbb{S}^2$, consider the orthogonal basis:

 $E_1(z,w) = (iz,iw), \quad E_2(z,w) = (-i\overline{w},i\overline{z}), \quad E_3(z,w) = (-\overline{w},\overline{z}).$

 E_1 is vertical (*Hopf* vector field) and E_2 , E_3 are horizontal.

Definition

A constant angle surface in \mathbb{S}^3 is a surface whose its unit normal vector field makes a constant angle with E_1 .

Proposition 2

Let *M* be a helicoidal surface in \mathbb{S}^3 , parametrized as before. Then, *M* is flat if and only if it is a constant angle surface.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For the Hopf map $h : \mathbb{S}^3 \to \mathbb{S}^2$, consider the orthogonal basis:

 $E_1(z,w) = (iz,iw), \quad E_2(z,w) = (-i\overline{w},i\overline{z}), \quad E_3(z,w) = (-\overline{w},\overline{z}).$

 E_1 is vertical (*Hopf* vector field) and E_2 , E_3 are horizontal.

Definition

A constant angle surface in \mathbb{S}^3 is a surface whose its unit normal vector field makes a constant angle with E_1 .

Proposition 2

Let *M* be a helicoidal surface in \mathbb{S}^3 , parametrized as before. Then, *M* is flat if and only if it is a constant angle surface.

Proof: It is an application of the preview characterization of flat surfaces in \mathbb{S}^3 (Proposition 1).

▲御 ▶ ★ 国 ▶ ★ 国 ▶

Let *M* be a helicoidal flat surface in \mathbb{S}^3 . Then *M* admits a local parametrization such that the fundamental forms are given as before and ω is a linear function.

(3)

э

Let *M* be a helicoidal flat surface in \mathbb{S}^3 . Then *M* admits a local parametrization such that the fundamental forms are given as before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to the local parametrization X of M given in (1).

Let *M* be a helicoidal flat surface in \mathbb{S}^3 . Then *M* admits a local parametrization such that the fundamental forms are given as before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to the local parametrization X of M given in (1).

Proposition $2 \Rightarrow M$ is a constant angle surface.

Let *M* be a helicoidal flat surface in \mathbb{S}^3 . Then *M* admits a local parametrization such that the fundamental forms are given as before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to the local parametrization X of M given in (1).

Proposition $2 \Rightarrow M$ is a constant angle surface.

Remark:

• Montaldo, Onnis, 2014:

Characterization of constant angle surfaces in the Berger sphere: such surfaces are determined by a 1-parameter family of isometries of the Berger sphere and by a geodesic of a 2-torus in \mathbb{S}^3 .

Let *M* be a helicoidal flat surface in \mathbb{S}^3 . Then *M* admits a local parametrization such that the fundamental forms are given as before and ω is a linear function.

Proof: Consider the unit normal vector field N associated to the local parametrization X of M given in (1).

Proposition $2 \Rightarrow M$ is a constant angle surface.

• Montaldo, Onnis, 2014:

Characterization of constant angle surfaces in the Berger sphere: such surfaces are determined by a 1-parameter family of isometries of the Berger sphere and by a geodesic of a 2-torus in \mathbb{S}^3 .

Given a number $\epsilon > 0$, the Berger sphere \mathbb{S}^3_{ϵ} is defined as the sphere \mathbb{S}^3 endowed with the metric

$$\langle X, Y \rangle_{\epsilon} = \langle X, Y \rangle + (\epsilon^2 - 1) \langle X, E_1 \rangle \langle Y, E_1 \rangle, E_1 \rangle$$

Using the Montaldo-Onnis characterization, there exists a local parametrization F(u, v) of *M* given by

F(u,v)=A(v)b(u),

where

 $b(u) = (\sqrt{c_1} \cos(\alpha_1 u), \sqrt{c_1} \sin(\alpha_1 u), \sqrt{c_2} \cos(\alpha_2 u), \sqrt{c_2} \sin(\alpha_2 u))$ is a geodesic curve in the torus $\mathbb{S}^1(\sqrt{c_1}) \times \mathbb{S}^1(\sqrt{c_2})$,

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ◆ � � �

Using the Montaldo-Onnis characterization, there exists a local parametrization F(u, v) of *M* given by

$$F(u,v)=A(v)b(u),$$

where

 $b(u) = (\sqrt{c_1} \cos(\alpha_1 u), \sqrt{c_1} \sin(\alpha_1 u), \sqrt{c_2} \cos(\alpha_2 u), \sqrt{c_2} \sin(\alpha_2 u))$ is a geodesic curve in the torus $\mathbb{S}^1(\sqrt{c_1}) \times \mathbb{S}^1(\sqrt{c_2})$, with

$$c_{1,2} = \frac{1}{2} \mp \frac{\epsilon \cos \nu}{2\sqrt{B}}, \ \alpha_1 = \frac{2B}{\epsilon} c_2, \ \alpha_2 = \frac{2B}{\epsilon} c_1, \ B = 1 + (\epsilon^2 - 1) \cos^2 \nu,$$

▲□ ▼ ▲ 目 ▼ ▲ 目 → ● ● ●

Using the Montaldo-Onnis characterization, there exists a local parametrization F(u, v) of *M* given by

$$F(u,v)=A(v)b(u),$$

where

 $b(u) = (\sqrt{c_1} \cos(\alpha_1 u), \sqrt{c_1} \sin(\alpha_1 u), \sqrt{c_2} \cos(\alpha_2 u), \sqrt{c_2} \sin(\alpha_2 u))$ is a geodesic curve in the torus $\mathbb{S}^1(\sqrt{c_1}) \times \mathbb{S}^1(\sqrt{c_2})$, with

$$c_{1,2} = \frac{1}{2} \mp \frac{\epsilon \cos \nu}{2\sqrt{B}}, \ \alpha_1 = \frac{2B}{\epsilon} c_2, \ \alpha_2 = \frac{2B}{\epsilon} c_1, \ B = 1 + (\epsilon^2 - 1) \cos^2 \nu,$$

and $A(v) = A(\xi, \xi_1, \xi_2, \xi_3)(v)$ is a 1-parameter family of 4×4 orthogonal matrices commuting with a complex structure of \mathbb{R}^4 , ξ is a constant and the functions $\xi_i(v)$, $1 \le i \le 3$, satisfy

$$\cos^{2}(\xi_{1}(\nu))\xi_{2}'(\nu) - \sin^{2}(\xi_{1}(\nu))\xi_{3}'(\nu) = 0.$$
(4)

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ◆ の Q @

Taking $\epsilon = 1$, we can reparametrize the curve *b* such that the new curve is a base curve γ_a :

< 2> < 2>

크

< - 12 →

Taking $\epsilon = 1$, we can reparametrize the curve *b* such that the new curve is a base curve γ_a : writing $s = 2\sqrt{c_1c_2}$, we have

$$b(s) = \frac{1}{\sqrt{1+a^2}} \left(a \cos \frac{s}{a}, a \sin \frac{s}{a}, \cos(as), \sin(as) \right),$$

where $a = \sqrt{c_1/c_2}$.

(4) (3) (4) (3)

크

The matrix

$$A(v) = A(\xi, \xi_1, \xi_2, \xi_3)(v) = \begin{pmatrix} \alpha(v) \\ J_1 \alpha(v) \\ \cos \xi J_2 \alpha(v) + \sin \xi J_3 \alpha(v) \\ -\cos \xi J_3 \alpha(v) + \sin \xi J_2 \alpha(v) \end{pmatrix},$$

where

 $\alpha(\nu) = (\cos \xi_1 \cos \xi_2, -\cos \xi_1 \sin \xi_2, \sin \xi_1 \cos \xi_3, -\sin \xi_1 \sin \xi_3)$ and J_1 , J_2 and J_3 are orthogonal matrices given explicitly, can be written as

$$A(\mathbf{v}) = A(\xi) \cdot \tilde{A}(\mathbf{v}),$$

where

$$A(\xi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sin \xi & \cos \xi \\ 0 & 0 & -\cos \xi & \sin \xi \end{pmatrix} \text{ and } \tilde{A}(v) = \begin{pmatrix} \alpha(v) \\ J_1 \alpha(v) \\ J_3 \alpha(v) \\ J_2 \alpha(v) \end{pmatrix}$$

레이 시험이 시험이 드림

The matrix

$$A(\mathbf{v}) = A(\xi, \xi_1, \xi_2, \xi_3)(\mathbf{v}) = \begin{pmatrix} \alpha(\mathbf{v}) \\ J_1 \alpha(\mathbf{v}) \\ \cos \xi J_2 \alpha(\mathbf{v}) + \sin \xi J_3 \alpha(\mathbf{v}) \\ -\cos \xi J_3 \alpha(\mathbf{v}) + \sin \xi J_2 \alpha(\mathbf{v}) \end{pmatrix},$$

where

 $\alpha(\nu) = (\cos \xi_1 \cos \xi_2, -\cos \xi_1 \sin \xi_2, \sin \xi_1 \cos \xi_3, -\sin \xi_1 \sin \xi_3)$ and J_1 , J_2 and J_3 are orthogonal matrices given explicitly, can be written as

$$A(v) = A(\xi) \cdot \tilde{A}(v),$$

where

$$A(\xi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sin \xi & \cos \xi \\ 0 & 0 & -\cos \xi & \sin \xi \end{pmatrix} \text{ and } \tilde{A}(v) = \begin{pmatrix} \alpha(v) \\ J_1 \alpha(v) \\ J_3 \alpha(v) \\ J_2 \alpha(v) \end{pmatrix}$$

$$A(\mathbf{v}) \cdot b(\mathbf{s}) = A(\xi)X(\mathbf{v},\mathbf{s}).$$

< 注 → < 注 → …

르

X(v, s) can be written as

$$X(v,s) = \frac{1}{\sqrt{1+a^2}}(x_1, x_2, x_3, x_4),$$

with

$$\begin{aligned} x_1 &= a\cos\xi_1\cos\left(\frac{s}{a} + \xi_2\right) + \sin\xi_1\cos(as + \xi_3), \\ x_2 &= a\cos\xi_1\sin\left(\frac{s}{a} + \xi_2\right) + \sin\xi_1\sin(as + \xi_3), \\ x_3 &= -a\sin\xi_1\cos\left(\frac{s}{a} - \xi_3\right) + \cos\xi_1\cos(as - \xi_2), \\ x_4 &= -a\sin\xi_1\sin\left(\frac{s}{a} - \xi_3\right) + \cos\xi_1\sin(as - \xi_3). \end{aligned}$$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

$$\begin{aligned} x_1 &= a\cos\xi_1\cos\left(\frac{s}{a} + \xi_2\right) + \sin\xi_1\cos(as + \xi_3), \\ x_2 &= a\cos\xi_1\sin\left(\frac{s}{a} + \xi_2\right) + \sin\xi_1\sin(as + \xi_3), \\ x_3 &= -a\sin\xi_1\cos\left(\frac{s}{a} - \xi_3\right) + \cos\xi_1\cos(as - \xi_2), \\ x_4 &= -a\sin\xi_1\sin\left(\frac{s}{a} - \xi_3\right) + \cos\xi_1\sin(as - \xi_3). \end{aligned}$$

On the other hand,

$$\phi_{\alpha,\beta}(t) \cdot X(v,s) = \frac{1}{\sqrt{1+a^2}}(z_1, z_2, z_3, z_4),$$

where

$$z_{1} = a\cos\xi_{1}\cos\left(\frac{s}{a} + \xi_{2} + \alpha t\right) + \sin\xi_{1}\cos\left(as + \xi_{3} + \alpha t\right),$$

$$z_{2} = a\cos\xi_{1}\sin\left(\frac{s}{a} + \xi_{2} + \alpha t\right) + \sin\xi_{1}\sin\left(as + \xi_{3} + \alpha t\right),$$

$$z_{3} = -a\sin\xi_{1}\cos\left(\frac{s}{a} - \xi_{3} + \beta t\right) + \cos\xi_{1}\cos\left(as - \xi_{2} + \beta t\right),$$

$$z_{4} = -a\sin\xi_{1}\sin\left(\frac{s}{a} - \xi_{3} + \beta t\right) + \cos\xi_{1}\sin\left(as - \xi_{2} + \beta t\right).$$

Sketch of the proof (second part):

Fernando Manfio Helicoidal flat surfaces in S³

< 同 → < 回 → < 回 → .

크

Sketch of the proof (second part):

As the surface is helicoidal, we have

 $\phi_{\alpha,\beta}(t) \cdot X(\boldsymbol{v},\boldsymbol{s}) = X(\boldsymbol{v}(t),\boldsymbol{s}(t)),$

for some smooth functions v(t) and s(t).

・白・・ヨ・・ モー・

3
As the surface is helicoidal, we have

$$\phi_{\alpha,\beta}(t)\cdot X(v,s)=X(v(t),s(t)),$$

for some smooth functions v(t) and s(t). Comparing the expressions in the preview systems, we have:

the surface is helicoidal
$$\Leftrightarrow \frac{d\xi_1}{dv} \cdot \frac{dv}{dt} = 0.$$

直 ト イヨト イヨト

As the surface is helicoidal, we have

$$\phi_{\alpha,\beta}(t)\cdot X(v,s) = X(v(t),s(t)),$$

for some smooth functions v(t) and s(t). Comparing the expressions in the preview systems, we have:

the surface is helicoidal
$$\Leftrightarrow \frac{d\xi_1}{dv} \cdot \frac{dv}{dt} = 0.$$

(i) v(t) constant

通 と く ヨ と く ヨ と

As the surface is helicoidal, we have

$$\phi_{\alpha,\beta}(t)\cdot X(v,s) = X(v(t),s(t)),$$

for some smooth functions v(t) and s(t). Comparing the expressions in the preview systems, we have:

the surface is helicoidal
$$\Leftrightarrow \frac{d\xi_1}{dv} \cdot \frac{dv}{dt} = 0.$$

(i) v(t) constant $\Rightarrow a^2 = 1$, contradiction.

As the surface is helicoidal, we have

$$\phi_{\alpha,\beta}(t)\cdot X(v,s)=X(v(t),s(t)),$$

for some smooth functions v(t) and s(t). Comparing the expressions in the preview systems, we have:

the surface is helicoidal
$$\Leftrightarrow \frac{d\xi_1}{dv} \cdot \frac{dv}{dt} = 0.$$

(i) v(t) constant $\Rightarrow a^2 = 1$, contradiction.

(ii) $\xi_1(v)$ constant.

□ ▶ ▲ □ ▶ ▲ □ ▶ .

As the surface is helicoidal, we have

$$\phi_{\alpha,\beta}(t)\cdot X(v,s)=X(v(t),s(t)),$$

for some smooth functions v(t) and s(t). Comparing the expressions in the preview systems, we have:

the surface is helicoidal
$$\Leftrightarrow \frac{d\xi_1}{dv} \cdot \frac{dv}{dt} = 0.$$

(i) v(t) constant $\Rightarrow a^2 = 1$, contradiction.

(ii) $\xi_1(v)$ constant. In this case, v(t) and s(t) are given by

$$s(t) = s + \frac{a(b^2 - 1)}{a^2b^2 - 1}\beta t$$
 and $v(t) = v + \frac{b(1 - a^2)}{a^2b^2 - 1}\beta t$,

that coincide with the expressions obtained in Theorem 1.

Figura: a=2 and b=3.

Fernando Manfio Helicoidal flat surfaces in S³

4 同

| ◆ 臣 → | ◆ 臣 → |

æ

Figura: a=2 and b=2.

Fernando Manfio Helicoidal flat surfaces in S³

▲御▶ ▲理▶ ▲理▶

3

Figura: $a=\sqrt{2}$ and b=3.

Fernando Manfio Helicoidal flat surfaces in S³

문에 비원이

æ