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Aim

@ Classification of helicoidal flat surfaces in S® in terms of
their first and second fundamental forms and by linear
solutions of the corresponding angle function.
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@ Classification of helicoidal flat surfaces in S® in terms of
their first and second fundamental forms and by linear
solutions of the corresponding angle function.

@ Helicoidal surfaces are generalizations of rotational
surfaces
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Aim

@ Classification of helicoidal flat surfaces in S® in terms of
their first and second fundamental forms and by linear
solutions of the corresponding angle function.

@ Helicoidal surfaces are generalizations of rotational
surfaces

In R3, a helicoidal surface can be written as
X(u,v) = (ucosv,usinv,\(u) + hv)

)

where h € R and A\(u) is a smooth function.
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G the 1-parameter subgroup of the isometries ¢, 5(t) : S® — S:

‘ eial‘ 0
G= {(pa’g(t)_ ( 0 et ) :teR}.
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G the 1-parameter subgroup of the isometries ¢, (1) : S® — S8:

iact 0
G= {¢a,5(t) = < eo oift ) ‘te R}.

Each ¢, 5(t) can be seen as the composition of a translation
and a rotation in S,

Qba.ﬁ(t) = 1/’&(0 © @ﬁ(t) :
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G the 1-parameter subgroup of the isometries ¢, (1) : S® — S8:

ioct
G={¢a,5(t)=<eo e?ﬁt>:t€R}‘

Each ¢, s(t) can be seen as the composition of a translation
and a rotation in S8,

Pa.5(t) = Ya(t) 0 (1) :

10 0 0 cosaf —sinat 0 O
0 1 0 0 sinat cosat 0 O
0 0 cospt —singt |’ 0 0 10
0 0 sinpt cospt 0 0 0 1
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G the 1-parameter subgroup of the isometries ¢, (1) : S® — S8:

ot
G:{qﬁa’ﬁ(t):(eo e?ﬁt):tER}'

Each ¢, s(t) can be seen as the composition of a translation
and a rotation in S8,

Pa.5(t) = Ya(t) 0 (1) :

10 0 0 cosat —sinat 0 0
0o 1 0 0 sinat cosat 0 O
0 0 cospt —singt |’ 0 0 10
0 0 singt cospt 0 0 0 1

When 3 # 0, p5(t) fixes the set | = {(z,0) € S3}.
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G the 1-parameter subgroup of the isometries ¢, (1) : S® — S8:

it
G:{qﬁa’ﬁ(t):(eo e?ﬁt):tER}'

Each ¢, s(t) can be seen as the composition of a translation
and a rotation in S8,

Pa.5(t) = Ya(t) 0 (1) :

10 0 0 cosat —sinat 0 O
0 1 0 0 sinat cosat 0 O
0 0 cospt —singt |’ 0 0 10
0 0 singt cospt 0 0 0 1

When 3 # 0, p5(t) fixes the set | = {(z,0) € S®}. So, {¢s(1)}
consists of rotations around / and {v,(t)} are translations
along /.
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Definition

A helicoidal surface in S2 is a surface invariant under the action
bap:S' xS — S2 of S! on SB given by

bap(t, (z,w)) = (€2, &7w).
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Definition

A helicoidal surface in S® is a surface invariant under the action
bap:S' xS — S% of S' on S® given by

bap(t, (z,w)) = (€2, &Pw).

M is a helicoidal surface in S® < M is invariant under all
elements of G.
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Definition

A helicoidal surface in S® is a surface invariant under the action
bap:S' xS — S% of S' on S® given by

bap(t, (z,w)) = (€2, &Pw).

M is a helicoidal surface in S® < M is invariant under all
elements of G.

@ When a = g, the orbits are all great circles, and they are
equidistant from each other (Clifford translations);
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Definition

A helicoidal surface in S® is a surface invariant under the action
bap:S' xS — S% of S' on S® given by

bap(t, (z,w)) = (€2, &Pw).

M is a helicoidal surface in S® < M is invariant under all
elements of G.

@ When « = 3, the orbits are all great circles, and they are
equidistant from each other (Clifford translations);

@ o = —f is also, up to a rotation in S3, a Clifford translation.
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Background...

Helicoidal surfaces in R3:
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Background...

Helicoidal surfaces in R3:

@ do Carmo, Dajczer, 1982:
Description of the space of all helicoidal surfaces in R3 that
have constant mean (Gaussian) curvature.
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Background...

Helicoidal surfaces in R3:

@ do Carmo, Dajczer, 1982:
Description of the space of all helicoidal surfaces in R® that
have constant mean (Gaussian) curvature.

@ Baikoussis, Koufogiorgos, 1998:
Helicoidal surfaces with prescribed mean or Gaussian
curvature.
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Background...

Helicoidal surfaces in HS:
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Background...

Helicoidal surfaces in H?:

@ Galvéz, Martinez, Milan, 2000:
Flat surfaces in H® admit a Weierstrass Representation
formula in terms of meromorphic data.
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Background...

Helicoidal surfaces in H?:

@ Galvéz, Martinez, Milan, 2000:
Flat surfaces in H® admit a Weierstrass Representation
formula in terms of meromorphic data.

@ Kokubu, Umehara, Yamada, 2004:
Global properties of flat surfaces with admissible
singularities.
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Background...

Helicoidal surfaces in H?:

@ Galvéz, Martinez, Milan, 2000:
Flat surfaces in H® admit a Weierstrass Representation
formula in terms of meromorphic data.

@ Kokubu, Umehara, Yamada, 2004:
Global properties of flat surfaces with admissible
singularities.

@ Martinéz, dos Santos, Tenenblat, 2013:
Complete classification of the helicoidal flat surfaces in
terms of meromorphic data as well as by means of linear
harmonic functions.
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Natural parametrization

Si = {(X1,X2,X3,0) eS8 X3 > 0},
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Natural parametrization

Si = {(X1,X2,X3,0) S S8 - X3 > 0},
vy:ICR— Sﬁ curve parametrized by arclength (profile):

v(s) = (cos ¢(s) cos d(s), cos ¢(s) sinb(s),sin(s),0).
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Natural parametrization

Si = {(X1,X2,X3,0) S S8 - X3 > 0},
v:ICR— Si curve parametrized by arclength (profile):
7(s) = (cos ¢(s) cos b(s),cos ¢(s) sinb(s),sin ¢(s),0).

A helicoidal surface can be locally parametrized by

X(t, S) = @aﬂ(t) . ‘/’(S), (1)
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Natural parametrization

Si = {(X1,X2,X3,0) S S8 - X3 > 0},
v:ICR— Si curve parametrized by arclength (profile):
7(s) = (cos ¢(s) cos b(s),cos ¢(s) sinb(s),sin ¢(s),0).

A helicoidal surface can be locally parametrized by

X(tv S) :QZ)a,B(t)"Y(S)v (1)
Then we have

Xf - @(Y,S(t) : (70[)(270[)(1707%3)(3)7
Xs = dap(t) (),
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Natural parametrization

Si = {(X1,X2,X3,0) S S8 - X3 > 0},
v:ICR— Si curve parametrized by arclength (profile):
7(s) = (cos ¢(s) cos b(s),cos ¢(s) sinb(s),sin ¢(s),0).

A helicoidal surface can be locally parametrized by

X(tv S) :QZ)a,B(t)"Y(S)v (1)
Then we have

Xf — ¢O¢,B(t) : (_O[X27O[X17076X3)7
XS = ¢o¢,,3(t)'7,(s)7

and

N = ¢q p(t)-(BXa(XpX3—XaX3, BX3(X1X3—X{ X3), BX3(X{ Xo— X1 X3), —uX3).
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Flat surfaces in S®
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Flat surfaces in S®

@ If cis aregular curve in S?, then h='(c) is a flat surface in
S8, where h : S® — S? is the Hopf fibration.
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Flat surfaces in S®

e If cis a regular curve in S?, then h~'(c) is a flat surface in
S3, where h: S® — S? is the Hopf fibration.

Proposition 1

A helicoidal surface, locally parametrized as before, is a flat
surface if and only if the following equation

24" sin® pcos o — B2(¢')? sin* ¢ + a?(¢')*cost o =0 (2)

is satisfied.
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Flat surfaces in S®

e If cis a regular curve in S?, then h~'(c) is a flat surface in
S3, where h: S® — S? is the Hopf fibration.

Proposition 1
A helicoidal surface, locally parametrized as before, is a flat
surface if and only if the following equation

B2 sin® pcos o — B2(¢')?sin* o + aP(¢') cost o =0 (2)

is satisfied.

Proof: Exercise.
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,

Gauss equation = Kgyt = —1
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,
Gauss equation = Kgyt = —1

There exist Tschebycheff coordinates around every point.
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,

Gauss equation = Kgyt = —1

There exist Tschebycheff coordinates around every point. We
can choose local coordinates (u, v) such that

| = du? + 2 cos wdudv + dv?, @)
Il = 2sinwduadv.
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,
Gauss equation = Kgyt = —1

There exist Tschebycheff coordinates around every point. We
can choose local coordinates (u, v) such that

| = du? + 2 cos wdudv + dv?,

. 3)
Il = 2 sinwdudy.

The angle function satisfies
e 0<w«<m
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,
Gauss equation = Kgyt = —1

There exist Tschebycheff coordinates around every point. We

can choose local coordinates (u, v) such that
| = du? + 2 cos wdudv + dv?, @)
Il = 2sinwdudyv.

The angle function satisfies

e 0<w<m
OOJUVZO
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The Bianchi-Spivak representation

f: M — S8 flat isometric immersion,
Gauss equation = Kgyt = —1

There exist Tschebycheff coordinates around every point. We
can choose local coordinates (u, v) such that
| = du? + 2 cos wdudv + dv?,

. 3)
Il = 2 sinwdudy.

The angle function satisfies

e0<w<m

o wuv = 0
The aim here is to characterize the flat surfaces when w is
linear, i.e.,

wu,v) =wi(U) +wa(v) = MU+ AoV + A3, A R
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

Ca, Cp : | C R — S8 curves parametrized by arclength, with
curvatures x4 and xp, and whose torsions are 7, = 1 and
Thp— —1-
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

Ca, Cp : | € R — S8 curves parametrized by arclength, with
curvatures x5 and xp, and whose torsions are 7; = 1 and

Tp = —1. Suppose that 0 € /, ¢4(0) = ¢,(0) = (1,0,0,0) and
c,(0) A ¢, (0) # 0.
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

Ca, Cp : | € R — S8 curves parametrized by arclength, with
curvatures x5 and xp, and whose torsions are 7; = 1 and

7p = —1. Suppose that 0 € /, ¢5(0) = ¢,(0) = (1,0,0,0) and
¢4(0) A ¢;,(0) # 0. Then the map

X(u,v) = ca(u) - cp(v)

@ parameterize a flat surface in S°,
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

Ca, Cp : | € R — S3 curves parametrized by arclength, with
curvatures x5 and xp, and whose torsions are 7; = 1 and

7p = —1. Suppose that 0 € /, ¢5(0) = ¢,(0) = (1,0,0,0) and
¢4(0) A ¢, (0) # 0. Then the map

X(u,v) = ca(u) - cp(v)

@ parameterize a flat surface in S2,
@ the fundamental forms are as before,
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The Bianchi-Spivak representation

Theorem (Bianchi-Spivak)

Ca, Cp : | € R — S3 curves parametrized by arclength, with
curvatures x5 and xp, and whose torsions are 7; = 1 and

7p = —1. Suppose that 0 € /, ¢5(0) = ¢,(0) = (1,0,0,0) and
¢4(0) A ¢, (0) # 0. Then the map

X(u,v) = ca(u) - cp(v)

@ parameterize a flat surface in S2,
@ the fundamental forms are as before,
@ w satisfies w(u) = —ka(u) and wy(v) = Kp(V).
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Given r > 1, consider the curve ~, : R — S° (base curve) given
by

u . u .
reos —,rsin -, cos ru,sin ru) .

1
= e
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Given r > 1, consider the curve 4, : R — S® (base curve) given

by
(u) = S (rcosH rsin 2, cos ru, sin ru)
ny - m r7 r7 ) .
We have
rZ—1 5
= and 7°=1.
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Given r > 1, consider the curve 4, : R — S® (base curve) given
by

u . u .
reos —,rsin -, cos ru,sin ru) )

1
vr(U) = \/ﬁ (

We have
re— 5
K= and 7°=1.
Consider now
1
Ca(u) = \/1—‘!‘732(&707_170).73(11)7
1
Cb(v) - mT(“/b(V))(b0,0—‘])*
where
1 000
0100
To= 0 0 0 1
0 01O
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Theorem 1

The map X(u, v) = ca(u) - cp(Vv) is a parametrization of a flat
surface in S®, whose the fundamental forms are given by

/ 1‘;2 u+ % v+c)dudv+dv27

I = 23in((%)u+ Lb”)v+c dudv.

du? + 2 cos
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Theorem 1

The map X(u, v) = ca(u) - cp(v) is a parametrization of a flat
surface in S%, whose the fundamental forms are given by

/
I = 23in(<1—;“2)u: Lb“)v+c dudv.

du? +2cos (12 ) u+ (251 v+c>dudv+dv2,

Moreover, X is invariant under helicoidal motions.
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Theorem 1

The map X(u, v) = ca(u) - cp(v) is a parametrization of a flat
surface in S%, whose the fundamental forms are given by

/ du2+200s<< — u+<b2 v+c>dudv+dv2
I = 23in(<1 a2)u+ )v+c dudv.

Moreover, X is invariant under helicoidal motions.

Proof: X(u, v) can be written as

X(Uv V) =0a- Y(U, V) - Ob,

Fernando Manfio Helicoidal flat surfaces in 3



Theorem 1

The map X(u, v) = ca(u) - cp(v) is a parametrization of a flat
surface in S%, whose the fundamental forms are given by

/ du2+200s<< — u+<b2 v+c>dudv+dv2
I = 23in(<1 a2)u+ )v+c dudv.

Moreover, X is invariant under helicoidal motions.

Proof: X(u, v) can be written as
X(u,v) =9ga- Y(U,V)- gp,

where ’
= a,0,—-1,0),
9 @( )
gb - 2(b70707_1)7

1+b
a(u) - T(7b(v))-
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Y(u,v) =

-2



Y(u, v) is invariant by helicoidal motions if

Pa,6(t) - Y(u,v) = Y (u(t), v(t)),

where u(t) and v(t) are smooth functions.
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Y (u, v) is invariant by helicoidal motions if
Pa,a(t) - Y(u, v) = Y(u(t), v(1)),

where u(t) and v(t) are smooth functions. A straightforward
computation shows that

u(t)y=u+2z(t) and v(t)=v+ w(t),

where
a(b? — 1) b(1 — &)
with .
b — a
“T @1 B.
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Constant angle surfaces
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Constant angle surfaces

For the Hopf map h: S® — S?, consider the orthogonal basis:

Ei(z,w) = (iz,iw), Ex(z,w)=(—iw,iz), Ez(z,w)=(—Ww,2).

’
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Constant angle surfaces

For the Hopf map h: S® — S?, consider the orthogonal basis:
E1 (27 W) = (iZ, IW)7 E2(27 W) = (_IW7 I?), E3(Z, W) = (_Wa E)

E; is vertical (Hopf vector field) and E,, E3 are horizontal.
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Constant angle surfaces

For the Hopf map h: S® — S?, consider the orthogonal basis:
E1 (27 W) = (iZ, IW)7 E2(27 W) = (_IW7 I?), E3(Z, W) = (_Wa E)

E; is vertical (Hopf vector field) and E,, E3 are horizontal.

Definition

A constant angle surface in S is a surface whose its unit
normal vector field makes a constant angle with E;.
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Constant angle surfaces

For the Hopf map h: S® — S?, consider the orthogonal basis:
E1 (27 W) = (iZ, IW)7 E2(27 W) = (_IW7 I?), E3(Z, W) = (_Wa E)

E; is vertical (Hopf vector field) and E,, E3 are horizontal.

A constant angle surface in S is a surface whose its unit
normal vector field makes a constant angle with E;.

Proposition 2

Let M be a helicoidal surface in S, parametrized as before.
Then, M is flat if and only if it is a constant angle surface.
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Constant angle surfaces

For the Hopf map h: S® — S?, consider the orthogonal basis:
E1 (27 W) = (iZ, IW)7 E2(27 W) = (_IW7 I?), E3(Z, W) = (_Wa E)

E; is vertical (Hopf vector field) and E,, E3 are horizontal.

A constant angle surface in S is a surface whose its unit
normal vector field makes a constant angle with E;.

Proposition 2

Let M be a helicoidal surface in S, parametrized as before.
Then, M is flat if and only if it is a constant angle surface.

V.

Proof: It is an application of the preview characterization of flat
surfaces in S® (Proposition 1).
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Let M be a helicoidal flat surface in S3. Then M admits a local
parametrization such that the fundamental forms are given as
before and w is a linear function.
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Let M be a helicoidal flat surface in S®. Then M admits a local
parametrization such that the fundamental forms are given as
before and w is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M givenin (1).
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Let M be a helicoidal flat surface in S®. Then M admits a local
parametrization such that the fundamental forms are given as
before and w is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M givenin (1).

Proposition 2 = M is a constant angle surface.
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Let M be a helicoidal flat surface in S®. Then M admits a local
parametrization such that the fundamental forms are given as
before and w is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M givenin (1).

Proposition 2 = M is a constant angle surface.

Remark:

@ Montaldo, Onnis, 2014:
Characterization of constant angle surfaces in the Berger
sphere: such surfaces are determined by a 1-parameter
family of isometries of the Berger sphere and by a
geodesic of a 2-torus in S3.
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Let M be a helicoidal flat surface in S3. Then M admits a local
parametrization such that the fundamental forms are given as
before and w is a linear function.

Proof: Consider the unit normal vector field N associated to
the local parametrization X of M givenin (1).

Proposition 2 = M is a constant angle surface.

@ Montaldo, Onnis, 2014:
Characterization of constant angle surfaces in the Berger
sphere: such surfaces are determined by a 1-parameter
family of isometries of the Berger sphere and by a
geodesic of a 2-torus in S8.

Given a number ¢ > 0, the Berger sphere S2 is defined as the
sphere S® endowed with the metric

(X, Y)e = (X, ¥) + (@~ )X, E)Y, Ey).
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Using the Montaldo-Onnis characterization, there exists a local
parametrization F(u, v) of M given by

F(u,v) = A(v)b(u),
where
b(u) = (v/c1 cos(aqu), v/c1 sin(aqu), /s cos(azl), /Cz sin(azu))

is a geodesic curve in the torus S'(\/¢) x S'(\/¢2),
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Using the Montaldo-Onnis characterization, there exists a local
parametrization F(u, v) of M given by

F(u,v) = A(v)b(u),
where
b(u) = (y/c1 cos(aq ),/ sin(aqu), v/C2 cos(apl), /Cz sin(azu))

is a geodesic curve in the torus S'(y/¢7) x S'(y/Cz2), with

1 2B 2B
ceosv Yy = —0Cp, o = —Cq, B= 1—|—(62—1)COS2 v,
€ €

C1,2=§¥ 2\/§=c
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Using the Montaldo-Onnis characterization, there exists a local
parametrization F(u, v) of M given by

F(u,v) = A(v)b(u),
where
b(u) = (y/c1 cos(aq ),/ sin(aqu), v/C2 cos(apl), /Cz sin(azu))
is a geodesic curve in the torus S'(y/¢7) x S'(y/Cz2), with

1 ecosv 2B 2B
=sF—F—= = — = "¢y, B=1+(?—1 2
Gz =5F >/B Qi — 02, 02 = ——0i, +(e“—1) cos“ v,

and A(v) = A(,&1,&2,&3)(v) is a 1-parameter family of 4 x 4
orthogonal matrices commuting with a complex structure of R%,
¢ is a constant and the functions &;(v), 1 < i < 3, satisfy

cos?(&1(V))3(v) — sin(& (V))& (v) = 0. (@)
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Taking ¢ = 1, we can reparametrize the curve b such that the
new curve is a base curve v;:
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Taking ¢ = 1, we can reparametrize the curve b such that the
new curve is a base curve ~5: writing s = 2,/¢1 ¢, we have

1 s .S .
b(s) = —— (acos 2 asin g,cos(as),sm(as)) ,

V14 &2
where a= y/cy/Co.
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The matrix
a(v)
Jia(v)
cos {dra(V) + sinédsa(V)
—co0s &Jza(V) + sinEdoa(V)

A(v) = A(§, 61,62, 83) (V) =

where
a(v) = (cos &y cosp, — COS &y Sinép, sin &y cos &3, — SiN &y SiN&3)

and Ji, J» and J3 are orthogonal matrices given explicitly, can
be written as

where
10 0 0 a(v
1 0 1 0 0 2oy | Jia(v)
A9 = 0 0 siné¢ cos¢ and  A(v) = Jza(Vv)
0 0 —cos¢ sing Joa(Vv)
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The matrix
a(v)
Jia(v)
cos (V) + sinEdza( V) ’
— CoS EJza(V) + sin&daa(V)

A(v) = A(§,&1,62,83) (V) =

where
a(v) = (cos &y cosp, — COS &y Sinép, sinéy cos &3, — SiN &y SiN&3)

and Ji, J» and J3 are orthogonal matrices given explicitly, can
be written as

where
10 0 0 a(v
101 0 0 < | dia(v)
A9 = 0 0 siné cos¢ and  A(v) = Jza(v)
0 0 —cos¢ sing Joa(V)

A(v) - b(s) = A)X(v.s).



X(v, s) can be written as

1
X(Va S) - W(XMXZ?XS’)ML
with
Xy = acos&qcos (§ +£2) + sin&q cos(as + &3),
Xo = acosé&sin (5 + ég) + sin&q sin(as + &3),
X3 = —asin&; cos <§ - fg) + cos & cos(as — o),
X4 = —asin& sin (5 — 53) + cos & sin(as — &3).
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S .
Xy = acosé&qcos (f + 52) + sin&q cos(as + &3),

Xo = acosésin (5 +£2> +sin&; sin(as + &),
X3 = —asin&; cos <§ - 53) + cos & cos(as — o),
X4 = —asin& sin (5 —53) + cos ¢ sin(as — &3).

On the other hand,

¢aﬁ(t) (V S) \/7(21722723724)5

where

S
Z{ = acos&jcos <7+€2+at> +sin&y cos(as + &3 + at),
Zo = acosésin (5 +£g+at> +sin&ysin(as + & + at),
zZ3 = —asing&qcos <§ — &+ [3t> + cos &y cos(as — & + ft),
z4 = —asing&; sin (5 —53+[>’t) + cos¢gsin(as — & + ().
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Sketch of the proof (second part):
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Sketch of the proof (second part):

As the surface is helicoidal, we have

(/Sa,ﬂ(t) ) X(Vs S) = X(V(t)v S(t))a

for some smooth functions v(t) and s(t).
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Sketch of the proof (second part):

As the surface is helicoidal, we have

ba,s(t) - X(v, 8) = X(v(1), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:

. L dE1 av
h f hel l& ——.—=0.
the surface is helicoidal dv ot 0

Fernando Manfio Helicoidal flat surfaces in 3



Sketch of the proof (second part):

As the surface is helicoidal, we have

ba,s(t) - X(v, 8) = X(v(1), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:

. L {1 dV
th f hel l& —— - —
e surface is helicoidal < dv dl’

(i) v(t) constant
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Sketch of the proof (second part):

As the surface is helicoidal, we have

ba,s(t) - X(v, 8) = X(v(1), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:

. L {1 dV
th f hel l& —— - —
e surface is helicoidal < dv dl’

(i) v(t) constant = a* = 1, contradiction.
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Sketch of the proof (second part):

As the surface is helicoidal, we have

ba,s(t) - X(v, 8) = X(v(1), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:

. L {1 dV
th f hel l& —— - —
e surface is helicoidal < dv dl’

(i) v(t) constant = a* = 1, contradiction.

(i) £&1(v) constant.
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Sketch of the proof (second part):

As the surface is helicoidal, we have

ba,s(t) - X(v, 8) = X(v(1), s(t)),

for some smooth functions v(t) and s(t). Comparing the
expressions in the preview systems, we have:
d§; adv

th face is helicoidal & —— - —
& surtace is helicoidal « - - - =

(i) v(t) constant = a* = 1, contradiction.

(i) £41(v) constant. In this case, v(t) and s(t) are given by

a(b? —1)

b(1 — &)
a’b? — 1

s(t)y=s+ 202 — 1

pt and v(t)=v+ Bt,

that coincide with the expressions obtained in Theorem 1.

Fernando Manfio Helicoidal flat surfaces in 3



Figura: a=2 and b=3.
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Figura: a=2 and b=2.
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Figura: a=v/2 and b=3.
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