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1 Introduction

Object: orientable connected embedded triply-periodic minimal

surfaces (TPMS’s) in R3. (= cpt. minimal surfaces in flat T3.)

【The most well-known examples of TPMS’s】
Schwarz P surface (19c) Schwarz D surface (19c)

Schwarz P-surface with Lines  

The P-surface can be constructed by solving the Plateau problem for a 4-gon with corners at
the vertices of a regular octahedron. The resulting surface is then extended by 180º rotations
about the straight boundary lines.

See also:

D-surface
H-surface
CLP-surface
P-surface with handle
Mathematica Notebook

Schwarz P-surface with lines http://www.indiana.edu/~minimal/archive/Triply/genus...

1 / 1 14/04/25 20:47

D-Surface  

Discovered in 1865 by H.A. Schwarz. A piece of it solves the Plateau problem on a partial
wireframe of the cube. Schwarz gave an explicit Weierstrass representation for this surface.

See also:

P-surface
D-animation
D-surface with lines
Mathematica Notebook

D-Surface http://www.indiana.edu/~minimal/archive/Triply/genus3/D/web/index.html

1 / 1 14/06/01 13:12

(http://www.indiana.edu/ minimal/archive/Triply/genus3.html)

Alan Schoen’s Gyroid(1970) one period of D surface
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TPMS(R3) := {orientable connected embedded triply-periodic

minimal surfaces (TPMS’s) in R3}
✓

CMS(T3) := {orientable connected embedded compact minimal

surfaces in flat T3}. (g := genus of the considered surface)

g = 0: ⇣/ (⌥� Gauss-Bonnet Th.)

g = 1: Totally geodesic subtorus T2 ⌥� planes in R3

g = 2: ⇣/ (⌥� Gauss-Bonnet + Gauss map is anti-holo. to S2)

g ⌃ 3: There are many examples.

⌅ Classification is di⇥cult.

⌅ We study local structures of TPMS(R3).

Remark: TPMS’s also interest physicists and chemists because

they appear in various natural phenomenon: Self-assembly of

diblock copolymers in soft matter physics, …
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Main results (roughly):

(A) For each “generic” M0 � TPMS(R3), ⇣⌃ : neighborhood of

M0 s.t. ⌃ ⌘TPMS(R3) is 5-dimensional space (up to homothety

and congruence in R3). “5-dimension” corresponds to the space

of all lattices in R3.

Examples of “generic” TPMS’s:

Strictly stable TPMS. = The second variation of area is posi-

tive for all nontrivial “volume-preserving” variations. Ex: Schwarz

P surface, Schwarz D surface, Alan Schoen’s Gyroid.Schwarz P-surface with Lines  

The P-surface can be constructed by solving the Plateau problem for a 4-gon with corners at
the vertices of a regular octahedron. The resulting surface is then extended by 180º rotations
about the straight boundary lines.

See also:

D-surface
H-surface
CLP-surface
P-surface with handle
Mathematica Notebook

Schwarz P-surface with lines http://www.indiana.edu/~minimal/archive/Triply/genus...

1 / 1 14/04/25 20:47

D-Surface  

Discovered in 1865 by H.A. Schwarz. A piece of it solves the Plateau problem on a partial
wireframe of the cube. Schwarz gave an explicit Weierstrass representation for this surface.

See also:

P-surface
D-animation
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1 / 1 14/06/01 13:12

(B)’ There are singularities in TPMS(R3).
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2 Definitions and main theorems

⌅: 2-dim. oriented compact conn. C⇤ manifold with g(⌅) ⌃ 3,

X : ⌅� T3
� := R3/⇥, minimal immersion into T3

� = (T3, g�),

J [�] := ��� 2K�, K is the Gauss curvature of X.

J is the Jacobi operator of X. H : mean curvature of surface.

For a variation X⇥ = X + ⇥(� n + ⇧) + O(⇥2) of X, J [�] = 2 �H.

Consider eigenvalue problem: (⇤) J [�] = �⌅�, � � C2,�(⌅)� {0}.
Denote by ⌅1 < ⌅2 ⇧ · · · ⇧ ⌅n ⇧ · · · the eigenvalues of (⇤).

Index of X : Ind(X) := #{j | ⌅j < 0}
= dim{variation vector fields which diminishes area},

Nullity of X : Nul(X) := #{j | ⌅j = 0}.
Remark. Ind(X) ⌃ 1. (⌥ X⇥ = X + ⇥ n : parallel surfaces.)

Nul(X) ⌃ 3. (⌥ X⇥ = X + ⇥ ei, where {e1, e2, e3} is a basis in R3.)
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Notations:

Denote by T (T3) the set of all flat metrics in T3 (modulo

isometry), and by [ ] the isometry class.

Let ⇥0 be a lattice in R3. Let X0 : ⌅ � T3
�0

be a minimal

embedding. For any [⇥] close to [⇥0], and � � C2,�(⌅) close to 0,

we define an embedding X⇤,� : ⌅� T3 as

X⇤,�(p) = expg�
X0(p) (�(p) ·  ng�

X0(p)), p � ⌅,

where expg� is the exponential map, and  ng�
X0

is the unit normal

vector field along X0 in (T3, g�). All minimal embeddings near

X0 can be represented in this form.
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Recall X⇤,�(p) = expg�
X0(p) (�(p) ·  ng�

X0(p)), p � ⌅.

Theorem A (Rigidity. Meeks(1990)[6] for special cases. Ejiri[1],

K-P-S[5]). Let X0 : ⌅ � T3
�0

be a compact minimal embedding

with g(⌅) ⌃ 3 and Nul(X0) = 3. Then,

⇣V : a neighborhood of [⇥0]

in T (T3) = {flat metrics on T3}/{isometries} = {lattices in R3},
⇣⇧ : V � C2,�(⌅), ⇥ �� ��, C2 mapping, such that

(i) ��0 = 0,

(ii) X� := X⇤�,� is a minimal surface in (T3, g�),

(iii) ⇣⌃: a neighborhood of X0 s.t. ✏⇥ � V , ✏Y : ⌅ � (T3, g�):

minimal embedding in ⌃, Y is congruent to X�.

That is, in a neighborhood of X0, there is a 1-1 correspondence

between TPMS’s and lattices in R3. Hence the space of TPMS’s

is (locally) 5-dimensional (up to congruence and homothety).
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Remark on Theorem A (Meeks’90 for special cases. Ejiri, KPS):

If X0 is a compact minimal embedding with genus ⌃ 3 and nullity

= 3, then, in a neighborhood of X0, there is a 1-1 correspondence

between TPMS’s and lattices in R3.

One of the theorems by Meeks(’90) implies: Let X0 be a

TPMS that is represented as two-sheeted covers of S2 branched

over four pairs of antipodal points. Then, X0 is embedded and

the space of TPMS’s includes a 5-dimensional family of embed-

ded TPMS’s (up to congruence and homothety).

Explicit representations: Set M :=
↵
(w, ⇤) � C2

��� ⇤2 = ⇤4
j=1(w �

aj)(w + aj
�1)

�
. Then, XR(w) := Re

 ⌥ w

w0

⇥
1�w2, i(1+w2), 2w

⇤
⇤�1dw

⌦
,

and XI(w) := Im
 
· · ·

⌦
, (w �M) give embedded TPMS’s.

D and P surfaces admit such representations. Gyroid doesn’t.
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Theorem B (Bifurcation. K-P-S[5]). Let {Xs | � � < s < �},
(� > 0) be a continuous family of TPMS’s. Assume that each Xs

is a minimal surface in (T3, g�(s)). We also assume

(a) ✏s �= 0, Nul(Xs) = 3. (i.e. there is no non-trivial nullity.)

(b) ✏s > 0, Ind(Xs)� Ind(X�s) is odd．(i.e. at s = 0, the index

jumps with an odd integer.)

Then, s = 0 is a bifurcation instant for the family {Xs}:
i.e. in any neighborhood of X0, there exists a sequence sn �
(��, �)� {0} such that

⇣Yn : minimal embedding in (T3, g�(sn)) such that

sn �� 0 and {Yn} �� X0 in C0-topology, (as n ��↵).

Yn is not congruent to Xsn (✏n).
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3 Idea of the proofs of the main theorems

Let {e1, e2, e3} be the canonical basis in R3, and ⌃� : R3 � R3/⇥

be the projection. For ⇥ and i = 1, 2, 3, set K�
i = (⌃�)⇥(ei). Then,

{K�
i }i forms a basis of all killing vector fields in (T3, g�). For

� � C2,�(⌅) close to 0, define a map f⇤,�
i : ⌅� R as

f⇤,�
i = g�(K�

i , ng�
X�,�

).

For an embedding X : ⌅ � T3, denote by H�(X) the mean cur-

vature of X in g�. For U0 : a nbd of 0 in C2,�(⌅), V0: a nbd of [⇥0]

in T (T3), consider a map �H : U0 ⇥R3 ⇥ V0 �� C0,�(⌅),

�H(�, a1, a2, a3, [⇥]) := H�(X⇤,�) +
3⌃

i=1

aif
⇤,�
i .

Then, �H�1(0) =
↵
(�, 0, 0, 0, [⇥]) : X⇤,� is g��minimal

�
.
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�H�1(0) =
↵
(�, 0, 0, 0, [⇥]) : X⇤,� is g��minimal

�
.

The above representation is based on an idea of N. Kapouleas

(1987, 1990), which was then also employed by R. Mazzeo, F.

Pacard and D. Pollack (2001), R. Mazzeo and F. Pacard (2001),

B. White (1987), J. Pérez and A. Ros (1996).
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Recall

�H(�, a1, a2, a3, [⇥]) := H�(X⇤,�) +
3⌃

i=1

aif
⇤,�
i .

For [⇥] � T (T3), set

�H� : U0 ⇥R3 �� C0,�(⌅), �H�(�, a1, a2, a3) := �H(�, a1, a2, a3, [⇥]).

Assume �H�(�, 0, 0, 0) = 0. Consider

T⇤,� := d�H�(�, 0, 0, 0) : C2,�(⌅)⇥R3 �� C0,�(⌅).

Then, ✏(⌥, b1, b2, b3) � C2,�(⌅)⇥R3,

T⇤,�(⌥, b1, b2, b3) = Jx�,�(⌥) +
3⌃

i=1

bif
⇤,�
i ,

where Jx�,� is the Jacobi operator of X⇤,�. T⇤,� is Fredholm with

index 3.

T⇤,� is surjective.  ⌦ X⇤,� is g�-minimal with nullity 3.

We apply the bifurcation theory (e.g. Kato[3], [4]) to �H�.． �
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4 Applications to explicit examples

(Most of pictures below were drawn by Prof. Shoichi Fujimori.)

Examples of 1-parameter families of TPMS’s:

【H-family】 【tCLP-family】 【tD-family】

【rPD-family (Karcher’s TT surfaces)】 【tP-family】
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【Representation of rPD-family】(Use Weierstrass formula.)

Ma :=

⌅

(w, ⇤) � C2
��� ⇤2 = w(w3 � a3)

⇥
w3 + a�3

⇤⇧

, a > 0：Riemann

surface. Xa(w) := Re
⌥ w

w0

⇥
1� w2, i(1 + w2), 2w

⇤
⇤�1dw, w �Ma.

a = 1/
◆

2, b = 14:P

Schwarz P-surface with Lines  

The P-surface can be constructed by solving the Plateau problem for a 4-gon with corners at
the vertices of a regular octahedron. The resulting surface is then extended by 180º rotations
about the straight boundary lines.

See also:

D-surface
H-surface
CLP-surface
P-surface with handle
Mathematica Notebook

Schwarz P-surface with lines http://www.indiana.edu/~minimal/archive/Triply/genus...

1 / 1 14/04/25 20:47

a =
◆

2, b = 14:D

D-Surface  

Discovered in 1865 by H.A. Schwarz. A piece of it solves the Plateau problem on a partial
wireframe of the cube. Schwarz gave an explicit Weierstrass representation for this surface.

See also:

P-surface
D-animation
D-surface with lines
Mathematica Notebook

D-Surface http://www.indiana.edu/~minimal/archive/Triply/genus3/D/web/index.html

1 / 1 14/06/01 13:12

【Representations of tP-family and tD-family】
Nb :=

↵
(w, ⇤) � C2 | ⇤2 = w8+bw4+1

�
, b � (2, +↵)：Riemann surface.

For w � Nb,

tP-family: �b(w) = Re
⌥ w

w0

(1�w2, i(1+w2), 2w)⇤�1dw,

tD-family: ⌥b(w) = Re
⌥ w

w0

i(1�w2, i(1+w2), 2w)⇤�1dw.
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We can apply our main theorems to explicit examples. There

is a method to compute the nullities and the indices of TPMS’s

given by Ejiri-Shoda[2], which includes computation of eigenval-

ues of 18 ⇥ 18 symmetric matrices whose elements are elliptic

integrals! So we need help of numerical computation.

Also, we can find eigenfunctions belonging to zero eigenvalue

by using a method given by Montiel-Ros (1991[7]), Ejiri-Kotani

(1993).

Example 4.1 (Application with numerical computation) It seems

there are one bifurcation instant for the H-family, and two bi-

furcation instants for each of the rPD, tP, and tD families.

This means that there is possibility that we found the exis-

tence of new TPMS’s which are close to known examples.
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5 Future subjects

(1) Try to verify the “results” about the concrete examples ob-

tained by using numerical computations.

(2) Find explicit representations of the “new” surfaces.

(3) Study the geometry of the surfaces in the bifurcating branches:

eg. symmetry-breaking property.

Ex. Bifurcation from the rPD-family: Variation vector field

should be the zero eigenfunction. ��

(4) Study the stability/instability of minimal surfaces in the bi-

furcating branches.
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