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Volume Preserving Mean Curvature Flow

X̃ : Mn → X̃ (Mn) =: Ω̃ ⊂ Rn+1

∂X
∂t

= (h − H) ν, X (·, 0) = X̃, h =

∫
Mn H dµ∫

Mn dµ
(1)

Hν

� Together with boundary condition (if applicable)
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Graphs Over Hypersurfaces - ∂X
∂t = (h − H) ν, X (·, 0) = X̃

Considering the case where the initial hypersurface is a
normal graph over an embedded hypersurface

X̃ (p) = Xρ0 (p) = X0 (p) + ρ0 (p) ν0 (p) , p ∈ Mn, ρ0 : Mn → R

The flow is equivalent to an equation for the height function

∂ρ

∂t
= L(ρ)

(
h(ρ) − H(ρ)

)
, ρ (·, 0) = ρ0 (2)

L(ρ) =

√
1 + g̃ij

ρ∇iρ∇jρ, h (ρ) =

∫
Mn H(ρ) dµρ∫

Mn dµρ

� g̃ij
ρ is the inverse of

(
δk

i + ρhk
i

)
gkl

(
δl

j + ρh l
j

)
.
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Cylindrical Graphs - ∂ρ
∂t = L(ρ)

(
h(ρ) − H(ρ)

)
, ρ (·, 0) = ρ0

z
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Results for Cylinders - ∂ρ
∂t = L(ρ)

(
h(ρ) − H(ρ)

)
, ρ (·, 0) = ρ0

Theorem (H. 2014)

For all ρ0 ∈ U :=

{
f ∈ h1,β

∂
∂z

(
C n

R ,d

)
: f > −R

}
(2), together with the

boundary condition ∂ρ

∂z

∣∣∣∣
z=0,d

= 0, has a unique maximal
solution

ρ ∈ C
(
[0, δ),U

)
∩ C∞

(
(0, δ),C∞

(
C n

R ,d

))
.

Furthermore if R > d
√

n−1
π

, then for each k ∈ N there exists a
neighbourhood of zero Vk ⊂ U such that for all ρ0 ∈ Vk we have
δ = ∞ and ρ(t) converges exponentially fast, with respect to
the Ck topology, to a function whose graph is a cylinder.

� There exist non-axially symmetric hypersurfaces
converging to cylinders
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Axial Symmetry- ∂ρ
∂t = L(ρ)

(
h(ρ) − H(ρ)

)
, ρ (·, 0) = ρ0

� In the axially symmetric case we have:

H(ρ) :=
−

d2ρ

dz2(
1 +

(
dρ
dz

)2
)3/2 +

n − 1

ρ

√
1 +

(
dρ
dz

)2

� To remove the boundary conditions we consider an
equivalent equation on the circle of radius d

π
:

∂u
∂t

= G(u) := L(u)
(
h(u) − H(u)

)
, u (·, 0) = u0, (3)

with solutions in the space h2,α
e

(
S 1

d
π

)
, where:

h2,α
e

(
S 1

d
π

)
=

{
u ∈ h2,α

(
S 1

d
π

)
: u(−z) = u(z)

}
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Splitting the Space - ∂u
∂t = L(u)

(
h(u) − H(u)

)
, u (·, 0) = u0

� We split the function space into h2,α
e,0

(
S 1

d
π

)
:= P0

h2,α
e

(
S 1

d
π

),
P0[u] := u −

>
S 1

d
π

u dz, and the positive real line

� The parameter is based on the volume due to its
invariance under the flow

There exist U1 ⊂ h2,α
e,0

(
S 1

d
π

)
× R+ and U2 ⊂ h2,α

e

(
S 1

d
π

)
,

neighbourhoods of
(
0, π

√
n−1
d

)
and d

√
n−1
π

, respectively, and a
diffeomorphism ψ : U1 → U2 such that:

Vol
(
ψ(ū, η)

)
=

2dωn(n − 1)n

ηn
, and ψ(ū, η) = ū +

?
S 1

d
π

ψ(ū, η) dz.

� The converse is also true: if u ∈ U2 define ū = P0[u] and
η = (n − 1)

(
2dωn
Vol(u)

)1/n
then u = ψ(ū, η)
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π
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√
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Equivalence - ∂u
∂t = L(u)

(
h(u) − H(u)

)
, u (·, 0) = u0

∂ū
∂t

= Ḡ(ū, η) := P0

[
G

(
ψ

(
ū(t), η

))]
,

ū(·, 0) = ū0 (4)

� Solving this system is equivalent to solving (3) with
u0 = ψ(ū0, η), the solution is u = ψ(ū, η)

� A solution to (3) also gives a solution to (4), with η

determined by the volume of u0, i.e. ū = P0 [u]



Stability of
Unduloids under the
Volume Preserving

Mean Curvature
Flow

David Hartley

Introduction
Volume Preserving Mean
Curvature Flow

Graphs Over Hypersurfaces

Cylindrical Graphs

Results for Cylinders

Unduloids
Axially Symmetric Flow

Splitting the space

Equivalence

Stationary Solutions

Bifurcation Type

Stable Unduloids

Bifurcation Parameter Curves

Equivalence - ∂u
∂t = L(u)

(
h(u) − H(u)

)
, u (·, 0) = u0

∂ū
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Equivalence - ∂u
∂t = L(u)

(
h(u) − H(u)

)
, u (·, 0) = u0

∂ū
∂t

= Ḡ(ū, η) := P0

[
G

(
ψ

(
ū(t), η

))]
,

ū(·, 0) = ū0 (4)

� Solving this system is equivalent to solving (3) with
u0 = ψ(ū0, η), the solution is u = ψ(ū, η)

� A solution to (3) also gives a solution to (4), with η

determined by the volume of u0, i.e. ū = P0 [u]
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Stationary Solutions - ∂ū
∂t = Ḡ(ū, η), ū (·, 0) = ū0

There exists δ > 0 and a continuously differentiable curve of
stationary solutions (r̄s , ηs), |s| < δ, such that (r̄0, η0) =

(
0, π

√
n−1
d

)
and r̄s , 0 for s > 0. Further, there exists a neighbourhood of(
0, π

√
n−1
d

)
such that any non-trivial stationary solution in this

neighbourhood is on the curve.
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Stationary Solutions - ∂ū
∂t = Ḡ(ū, η), ū (·, 0) = ū0

h2,α
e

R

h2,α
e,0

d
√

n−1
π

U2

π
√

n−1
d

U1

ψ
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Bifurcation Type - ∂ū
∂t = Ḡ(ū, η), ū (·, 0) = ū0

� Further calculation gives dηs
ds |s=0 = 0,

d2ηs
ds2 |s=0 = C(n2 − 10n − 2)

� For n ≤ 10 subcritical bifurcation, for n ≥ 11 supercritical
bifurcation.

� If n ≥ 11 there exists ε > 0 such that Re
(
σ

(
D1Ḡ(r̄s , ηs)

))
⊂ R−

for 0 < |s| < ε.

For all 0 < |s| < ε there exists Vs ⊂ h2,α
e,0

(
S 1

d
π

)
, a neighbourhood

of r̄s, and ω > 0 such that if ū0 ∈ Vs then the solution to (4) with
η = ηs exists for all time and satisfies∥∥∥ū(·, t) − r̄s

∥∥∥
h2,α ≤ Ce−ωt ‖ū0 − r̄s‖h2,α .
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of r̄s, and ω > 0 such that if ū0 ∈ Vs then the solution to (4) with
η = ηs exists for all time and satisfies∥∥∥ū(·, t) − r̄s
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h2,α ≤ Ce−ωt ‖ū0 − r̄s‖h2,α .



Stability of
Unduloids under the
Volume Preserving

Mean Curvature
Flow

David Hartley

Introduction
Volume Preserving Mean
Curvature Flow

Graphs Over Hypersurfaces

Cylindrical Graphs

Results for Cylinders

Unduloids
Axially Symmetric Flow

Splitting the space

Equivalence

Stationary Solutions

Bifurcation Type

Stable Unduloids

Bifurcation Parameter Curves

Bifurcation Type - ∂ū
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Stable Unduloids - ∂ρ
∂t = L(ρ)

(
h(ρ) − H(ρ)

)
, ρ(0) = ρ0

� rs := ψ(r̄s , ηs)|[0,d], |s| < δ, is a continuously differentiable
family of profile curves that define CMC unduloids, with
r0 defining a cylinder of radius d

√
n−1
π

.
� For n ≤ 10 unduloids close to the cylinder are unstable

while for n ≥ 11 unduloids close to the cylinder are stable
under axially symmetric, volume preserving
perturbations.

Theorem (H. 2015)

When n ≥ 11, for all 0 < |s| < ε there exists Us ⊂ h2,α
d
dz

(
[0, d]

)
a

neighbourhood of rs and ω > 0 such that if ρ0 ∈ Us and
Vol (ρ0) = Vol (rs) then the solution to (2) exists for all time and
satisfies ∥∥∥ρ(·, t) − rs

∥∥∥
h2,α ≤ Ce−ωt

∥∥∥P0[uρ0 − urs ]
∥∥∥

h2,α .
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