Interfaces determined by capillarity and gravity in a two-dimensional porous medium

by
M. Calle*\& C. M. Cuesta** \& J.L.L. Velázquez***
*Carlos III University of Madrid
University of the Basque Country (UPV/EHU) *University of Bonn

Introduction

Motivation:

- Haines jumps (Furuberg-Maloy-Feder 1992\& 1996)
- Modelling of two-phase Porous Media Flow (Jäger, Schweiser, ...)

Model:

- Squared container partially filled with water

P Pores are formed by space between uniformly distributed grains
The interface is the union of single interfaces that meet two grains

- Energy = Surface energy + potential energy
- Existence of a large number of equilibria

Aims:

- Description of minimizers

Evolution: Transitions between minimizers

Setting

The medium:
S Square container of size $L \times L$
? N grains of radius $R>0$

- Average distance $d>0$
- Uniformly distributed grains:

$$
N=\nu \frac{L^{2}}{d^{2}}, \quad \nu=\text { 'density of grains' }
$$

The liquid phase:
$\int v_{0}=$ volume fraction of water

- $v_{1}=$ volume fraction of water + grains:
$v_{1} L^{2} \approx v_{0} L^{2}+n \pi R^{2}, \quad n=$ number of grains under the interface

Setting

Sketch of the model:

The interface

Γ union of elemental components

$$
\Gamma=\cup_{i \in J}\left\{\gamma_{i}\right\}, \quad \gamma_{i} \text { curve joining two grains }
$$

Indexing follows orientation

An elemental component satisfies

$$
\sigma H=\rho g x_{2}-p
$$

+ contact angle condition (Young's law)
σ surface tension
H signed curvature
$p=\rho g v_{1} L$, hydrostatic pressure
g gravity

Parameter regimes

Dimensionless setting: We take $d=1$ with R and L dimensionless parameters

$$
H=B\left(x_{2}-\lambda\right) \quad \lambda=v_{1} L, \quad B=\frac{\rho g d^{2}}{\sigma} \quad(\text { Bond number })
$$

Asymptotic Regimes:

- Cases with $B \gg 1$:

$$
\gamma_{i} \text { 's horizontal }+O(1 / \sqrt{B}) \text { Boundary Layer }
$$

- Cases with $B \ll 1$:
γ_{i} 's can connect in many directions
Subregimes of case $B \gg 1: L \rightarrow \infty \Rightarrow N \rightarrow \infty$
For simplicity: $R \ll 1, \max \{1 / \sqrt{B}, R\}=1 / \sqrt{B}$
Parameter relating (dimensionless) L and B :

$$
\theta:=\frac{L}{\sqrt{B}}
$$

Gluing of solutions

Global capillary solutions satisfy

$$
\begin{aligned}
& B \frac{\left(x_{2}(s)-\lambda\right)^{2}}{2}+\cos \beta(s)=C \\
& x_{1}^{\prime}(s)=\cos \beta(s), \quad x_{2}^{\prime}(s)=\sin \beta(s), \quad s=\text { arc-length }
\end{aligned}
$$

Can be solved by elliptic integrals
(Myshkis 1987)
Complete curves are obtained by gluing of graphs
(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(a) $C>1$

(b) $0<C<1$

Gluing of solutions

Global capillary solutions satisfy

$$
\begin{aligned}
& B \frac{\left(x_{2}(s)-\lambda\right)^{2}}{2}+\cos \beta(s)=C \\
& x_{1}^{\prime}(s)=\cos \beta(s), \quad x_{2}^{\prime}(s)=\sin \beta(s), \quad s=\text { arc-length }
\end{aligned}
$$

Can be solved by elliptic integrals
(Myshkis 1987)
Complete curves are obtained by gluing of graphs
(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(c) $C=1$

Gluing of solutions

Global capillary solutions satisfy

$$
\begin{aligned}
& B \frac{\left(x_{2}(s)-\lambda\right)^{2}}{2}+\cos \beta(s)=C \\
& x_{1}^{\prime}(s)=\cos \beta(s), \quad x_{2}^{\prime}(s)=\sin \beta(s), \quad s=\text { arc-length }
\end{aligned}
$$

Can be solved by elliptic integrals
(Myshkis 1987)
Complete curves are obtained by gluing of graphs
(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(d) $C=0$

(e) $-1<C<0$

Probabilistic Setting

Centers notation:

$$
\xi_{k}=\left(\xi_{k}^{(1)}, \xi_{k}^{(2)}\right) \in \mathbb{R}^{2}, \quad k \in\left\{1, \ldots, \nu L^{2}\right\}
$$

Centers uniformly and independently distributed:

$$
\Omega_{\nu}(L)=\text { all configurations of } \nu L^{2} \text { centers in }[0, L]^{2}
$$

Probability of finding m centers in $V \subset[0, L]^{2}$:

$$
P(V)=\left(\frac{1}{L^{2}} \int_{V} d \xi\right)^{m}
$$

Probability measure to $\Omega_{\nu}(L)$:

$$
\mu_{\nu}(d \xi)=\frac{1}{L^{2 N}} \prod_{k=1}^{\nu L^{2}} d \xi_{k}
$$

Interface solution depends on configuration:

$$
\Gamma(\omega, \lambda, \theta), \omega \in \Omega_{\nu}(L)
$$

Basic Tools

- Estimates on Γ outside a strip:

Proposition For every $L, \omega \in \Omega_{\nu}(L)$ and v_{0}, there exists $D_{0}>0$, such that if

$$
\Gamma(\omega, \lambda, \theta) \cap\left\{\left|x_{2}-v_{1} L\right| \geq \frac{D}{\sqrt{B}}\right\} \neq \varnothing \text { for } D \geq D_{0}
$$

then there exists a constant $K>0$ such that every pair of centers of grains joined by Γ, ξ_{i} and ξ_{l}, and contained in $\left\{\left|x_{2}-v_{1} L\right| \geq \frac{D}{\sqrt{B}}\right\}$, satisfy

$$
\left\|\xi_{i}-\xi_{l}\right\| \leq \frac{K}{D \sqrt{B}}
$$

- Stirling estimates:

$$
\binom{n}{m} \leq C(n) e^{W(n, m)}
$$

The regime $B \gg 1$ and $1 \lesssim L \ll \sqrt{B}$ or $\theta \ll 1$

Theorem For any $0<\varepsilon<1$, there exists θ_{ε} such that for all $\theta \leq \theta_{\varepsilon}$ there exists $\Omega_{\varepsilon} \subset \Omega_{\nu}(L)$ with $\mu_{\nu}\left(\Omega_{\varepsilon}\right) \geq 1-\varepsilon$ and such that for any $\omega \in \Omega_{\varepsilon}$, the solutions $\Gamma(\omega, \lambda, \theta)$ satisfy

$$
\Gamma(\omega, \lambda, \theta) \equiv\left\{x_{2}-v_{1} L=h(\omega)\right\}
$$

with

$$
|h(\omega)| \leq \frac{\tilde{K}}{\sqrt{B}}
$$

Proof:

- Let $\Omega_{0}=\left\{\omega \in \Omega_{\nu}(L):\left\{\xi_{k}\right\} \cap\left\{\left|x_{2}-v_{1} L\right|<\frac{\tilde{K}}{\sqrt{B}}\right\}=\emptyset\right\}$ (configurations with no grains in the strip). Then

$$
\mu_{\nu}\left(\Omega_{0}\right)=\left(1-\frac{\tilde{K}}{L \sqrt{B}}\right)^{\nu L^{2}} \rightarrow 1 \text { as } \theta \rightarrow 0
$$

- If $\omega \in \Omega_{0}$ such that $\Gamma(\omega, \lambda, \theta)$ is in $\left\{\left|x_{2}-v_{1} L\right|>\frac{\tilde{K}}{\sqrt{B}}\right\}$, then $\# \Gamma \geq \sqrt{B} L \ll L^{2}$, contradiction.

The regime $B \gg 1$ and $L=O(\sqrt{B})$ or $\theta=O(1)$

Consider

$$
U_{k}=\left\{\omega \in \Omega_{\nu}(L): \exists \Gamma(\omega, \lambda, \theta) \& k=\#\left\{\xi_{j} \in \omega: \Gamma(\omega, \lambda, \theta) \cap B_{R}\left(\xi_{j}\right) \neq \emptyset\right\}\right\}
$$

(Configurations with interfaces that connect exactly k grains).
Theorem There exists $N_{0} \leq 2 D_{0} \theta \nu<\nu L^{2}$ and L sufficiently large such that, if $k \leq N_{0}$,

$$
\mu_{\nu}\left(U_{k}\right) \lesssim e^{-2 D_{0} \theta \nu} \sum_{i=k}^{N_{0}} \frac{1}{i!}\left(2 D_{0} \theta \nu\right)^{i}
$$

Moreover, for all $\varepsilon>0$, there exists a $L_{\varepsilon}>0$ such that for all $L \geq L_{\varepsilon}$ there exists $\Omega_{\varepsilon} \subset \Omega_{\nu}(L)$ such that $\mu_{\nu}\left(\Omega_{\varepsilon}\right) \geq 1-\varepsilon$, and that for all $\omega \in \Omega_{\varepsilon}$ the solutions $\Gamma(\omega, \lambda, \theta)$ satisfy $|C(\Gamma)-1| \leq \varepsilon$.

The regime $B \gg 1$ and $L=O(\sqrt{B})$ or $\theta=O(1)$

Idea of the Proof: Write

$$
U_{k}=\left(U_{k} \cap \Omega_{s}\right) \cup\left(U_{k} \cap \Omega_{s}^{c} \cap U_{P \geq N_{0}}\right) \cup\left(U_{k} \cap \Omega_{s}^{c} \cap U_{P<N_{0}}\right),
$$

where

- $\Omega_{s} \subset \Omega_{\nu}(L)$ such that $\exists \Gamma(\omega, \lambda, \theta)$ for $\omega \in \Omega_{s}$ such that

$$
\Gamma(\omega, \lambda, \theta) \cap\left\{\left|x_{2}-v_{1} L\right|>D_{0} / \sqrt{B}\right\} \neq \emptyset
$$

- $U_{P \geq N_{0}}$ set of configurations such that $\#\left\{\xi_{j} \in\left\{\left|x_{2}-v_{1} L\right|<D_{0} / \sqrt{B}\right\}\right\} \geq N_{0}$ with $N_{0}=2 \nu D_{0} \theta=O(1)$ (maximum number of expected centers)
- We also need ω_{k} the configurations with exactly k grains in $\left\{\left|x_{2}-v_{1} L\right|<D_{0} / \sqrt{B}\right\}$.

The regime $B \gg 1$ and $L=O(\sqrt{B})$ or $\theta=O(1)$

Idea of the Proof: Write

$$
U_{k}=\left(U_{k} \cap \Omega_{s}\right) \cup\left(U_{k} \cap \Omega_{s}^{c} \cap U_{P \geq N_{0}}\right) \cup\left(U_{k} \cap \Omega_{s}^{c} \cap U_{P<N_{0}}\right),
$$

then

- Counting argument: $\mu_{\nu}\left(\Omega_{s}\right) \sim 1 / L^{2} \rightarrow 0$ as $L \rightarrow \infty$.
- $\mu\left(\omega_{k}\right)=\binom{\nu L^{2}}{k}\left(\frac{2 D_{0} \theta}{L^{2}}\right)^{k}\left(1-\frac{2 D_{0} \theta}{L^{2}}\right)^{\nu L^{2}-k}$.
- That gives:

$$
\mu_{\nu}\left(U_{P \geq N_{0}}\right)=\sum_{j=N_{0}}^{\nu L^{2}}\binom{\nu L^{2}}{j}\left(\frac{2 D_{0} \theta}{L^{2}}\right)^{j}\left(1-\frac{2 D_{0} \theta}{L^{2}}\right)^{\nu L^{2}-j} \rightarrow 0 \quad \text { as } \quad L \rightarrow \infty
$$

Hence:

$$
\mu_{\nu}\left(U_{k}\right) \lesssim \sum_{j=k}^{N_{0}}\binom{\nu L^{2}}{j}\left(\frac{2 D_{0} \theta}{L^{2}}\right)^{j}\left(1-\frac{2 D_{0} \theta}{L^{2}}\right)^{\nu L^{2}-j}
$$

The regime $B \gg 1$ and $L \gg \sqrt{B}$

Theorem Let $0<h=O(1)$ and $\Omega_{h} \subset \Omega_{\nu}(L)$ denote the set of all configurations ω such that there exists a $\Gamma(\omega, \lambda, \theta)$ satisfying $\max \left|\xi_{j}^{(2)}-v_{1} L\right| \geq h$. Then,

$$
\mu_{\nu}\left(\Omega_{h}\right) \rightarrow 0 \quad \text { as } B \rightarrow \infty
$$

if $\sqrt{B} \ll L \ll \sqrt{B} \log B$.

Idea of the Proof:

- Characterise Ω_{h} : In particular $\Omega_{h} \subset U_{h}\left(K, D_{0}, \theta, L\right)$ where $U_{h}\left(K, D_{0}, \theta, L\right)$ have configurations of grains with the right geometric properties to allow interfaces as in Ω_{h}
- Distinguish $U^{g} \in U_{h}\left(K, D_{0}, \theta, L\right)$ with all such grains outside $\left\{\left|x_{2}-v_{1} L\right|<D_{0} / \sqrt{B}\right\}$ and those with grains in it

The regime $B \gg 1$ and $L \gg \sqrt{B}$ (contd.)

Idea of the Proof (contd.)

1. First case: counting argument shows $\sum \mu_{\nu}\left(U^{g}\right) \rightarrow 0$ as $B \rightarrow \infty$ if $L^{2} \gg B$.
2. Second case: geometric argument shows $\sum \mu_{\nu}\left(U^{g}\right) \rightarrow 0$ as $B \rightarrow \infty$ if $L \ll \sqrt{B} \log B$.

Second case main ingredients:

- Identification of grains that could form the interface intersecting the strip $\left\{\left|x_{2}-v_{1} L\right|<D_{0} / \sqrt{B}\right\}$.
- Estimation on measure of the longest possible interface.
- Technical lemma on iteration of measure properties.

The regime $L=O(1 / B)$ as $B \rightarrow 0$

Observation: In the limit $B \rightarrow 0$ only $L B=O(1)$ makes sense:

- If $L \ll 1 / B$ then $H \sim 0$ (only horizontal solutions).
- If $L \gg 1 / B$ then $H \sim \infty$ (no connections possible).

Setting: Given v_{0}, restrict domain to:

$$
(0, L) \times\left(\left(v_{1}-\varepsilon_{0}\right) L,\left(v_{1}+\varepsilon_{0}\right) L\right), \quad 0<\varepsilon_{0}<\min \left\{v_{1}, 1-v_{1}, L B\right\}
$$

Theorem Assume $B L=O(1)$. Then, given a compatible curve $\Lambda \in C^{1}([0,1])$, there exist $\nu_{0}>0$ and $L_{0}>0$ such that for all $\nu \geq \nu_{0}$ and $L \geq L_{0}$ there exist $\mathcal{U} \in \Omega_{\nu}(L)$ and $B \ll \varepsilon \ll 1, \varepsilon \rightarrow 0$ as $L \rightarrow \infty$ such that

$$
\mu_{\nu}(\mathcal{U}) \geq \delta_{\varepsilon} \text { with } 0<\delta_{\varepsilon} \longrightarrow 1^{-} \text {as } L \rightarrow \infty
$$

and that for any $\omega \in \mathcal{U}$, there exists $\Gamma(\omega, \lambda, \theta)$ such that

$$
\tilde{\Gamma}(\omega, \lambda, \theta) \subseteq T_{\sqrt{2} \varepsilon}(\Lambda), \Lambda \subseteq T_{\sqrt{2} \varepsilon}(\tilde{\Gamma}(\omega, \lambda, \theta))
$$

The regime $L=O(1 / B)$ as $B \rightarrow 0$ (contd.)

Sketch of the proof:

(f) Domain divided into squares Q of size $(\varepsilon L)^{2}$

-	\square	\square	\square	\square	$\underline{\square}$	\square	\square
\square							
\square		\square	\square	\square	\square	\square	
		\square	\square	\square	-	-	
\square	\square	\square	\square	\square		\square	
		-	-				
	\square	\square	\square	\square	\square		

(g) A square Q divided into squares S_{κ} of $O(1)$ size

The regime $L=O(1 / B)$ as $B \rightarrow 0$ (contd.)

Sketch of the proof (contd.):
Solve a percolation problem in each Q :

- A site S_{κ} is "open" if contains at least one grain, and "close" otherwise:

$$
P\left(S_{\kappa} \text { closed }\right)=\left(1-\left|S_{\kappa}\right| / L^{2}\right)^{\nu L^{2}} \rightarrow e^{-\nu} \quad \text { as } \quad L \rightarrow \infty
$$

- Site Percolation: $\exists \nu_{0}$ such that

$$
P(Q \text { closed }) \rightarrow 0 \quad \text { as } \quad L \rightarrow \infty \quad \text { if } \quad \nu \geq \nu_{0}
$$

- $P(\cap Q$'s connected $)=1-P(\cup Q$ closed $) \geq 1-\sum P(Q$ closed $)$.

THANK YOU!

