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Introduction

Motivation:

Haines jumps (Furuberg-Maloy-Feder 1992& 1996)

Modelling of two-phase Porous Media Flow (Jäger, Schweiser, ... )

Model:

Squared container partially filled with water

Pores are formed by space between uniformly distributed gra ins

The interface is the union of single interfaces that meet two grains

Energy = Surface energy + potential energy

Existence of a large number of equilibria

Aims:

Description of minimizers

Evolution: Transitions between minimizers
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Setting

The medium:

Square container of size L× L

N grains of radius R > 0

Average distance d > 0

Uniformly distributed grains:

N = ν
L2

d2
, ν = ’density of grains’

The liquid phase:

v0 = volume fraction of water

v1 = volume fraction of water + grains:

v1L
2 ≈ v0L

2 + nπR2 , n = number of grains under the interface
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Setting

Sketch of the model:

L

v0L

v1L

dR
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The interface

Γ union of elemental components

Γ = ∪i∈J{γi}, γi curve joining two grains

Indexing follows orientation

An elemental component satisfies

σH = ρ gx2 − p

+ contact angle condition (Young’s law)

σ surface tension

H signed curvature

p = ρgv1L, hydrostatic pressure

g gravity
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Parameter regimes

Dimensionless setting: We take d = 1 with R and L dimensionless parameters

H = B(x2 − λ) λ = v1L , B =
ρgd2

σ
(Bond number)

Asymptotic Regimes:

Cases with B ≫ 1:

γi’s horizontal +O(1/
√
B) Boundary Layer

Cases with B ≪ 1:

γi’s can connect in many directions

Subregimes of case B ≫ 1: L → ∞ ⇒ N → ∞
For simplicity: R ≪ 1, max{1/

√
B,R} = 1/

√
B

Parameter relating (dimensionless) L and B:

θ :=
L√
B
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Gluing of solutions

Global capillary solutions satisfy

B
(x2(s)− λ)2

2
+ cosβ(s) = C

x′
1(s) = cosβ(s) , x′

2(s) = sinβ(s) , s = arc-length

Can be solved by elliptic integrals

(Myshkis 1987)

Complete curves are obtained by gluing of graphs

(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(a) C > 1 (b) 0 < C < 1
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Gluing of solutions

Global capillary solutions satisfy

B
(x2(s)− λ)2

2
+ cosβ(s) = C

x′
1(s) = cosβ(s) , x′

2(s) = sinβ(s) , s = arc-length

Can be solved by elliptic integrals

(Myshkis 1987)

Complete curves are obtained by gluing of graphs

(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(c) C = 1
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Gluing of solutions

Global capillary solutions satisfy

B
(x2(s)− λ)2

2
+ cosβ(s) = C

x′
1(s) = cosβ(s) , x′

2(s) = sinβ(s) , s = arc-length

Can be solved by elliptic integrals

(Myshkis 1987)

Complete curves are obtained by gluing of graphs

(details in Calle, C and Velázquez 2015, arXiv:1505.03676)

(d) C = 0 (e) −1 < C < 0
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Probabilistic Setting

Centers notation:

ξk = (ξ
(1)
k , ξ

(2)
k ) ∈ R

2 , k ∈ {1, . . . , νL2}

Centers uniformly and independently distributed:

Ων(L) = all configurations of νL2 centers in [0, L]2

Probability of finding m centers in V ⊂ [0, L]2:

P (V ) =

(

1

L2

∫

V

dξ

)m

Probability measure to Ων(L):

µν(dξ) =
1

L2N

νL2

∏

k=1

dξk

Interface solution depends on configuration:

Γ(ω, λ, θ) , ω ∈ Ων(L)
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Basic Tools

Estimates on Γ outside a strip:

Proposition For every L, ω ∈ Ων(L) and v0, there exists D0 > 0, such that if

Γ(ω, λ, θ) ∩
{

|x2 − v1L| ≥ D√
B

}

6= ∅ for D ≥ D0,

then there exists a constant K > 0 such that every pair of centers of grains

joined by Γ, ξi and ξl, and contained in
{

|x2 − v1L| ≥ D√
B

}

, satisfy

‖ξi − ξl‖ ≤ K

D
√
B

Stirling estimates:
(

n

m

)

≤ C(n)eW (n,m)
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The regime B ≫ 1 and 1 . L ≪
√
B or θ ≪ 1

Theorem For any 0 < ε < 1, there exists θε such that for all θ ≤ θε there exists

Ωε ⊂ Ων(L) with µν(Ωε) ≥ 1− ε and such that for any ω ∈ Ωε, the solutions

Γ(ω, λ, θ) satisfy

Γ(ω, λ, θ) ≡ {x2 − v1L = h(ω)}

with

|h(ω)| ≤ K̃√
B

Proof:

Let Ω0 = {ω ∈ Ων(L) : {ξk} ∩ {|x2 − v1L| < K̃√
B
} = ∅} (configurations with no

grains in the strip). Then

µν(Ω0) =

(

1− K̃

L
√
B

)νL2

→ 1 as θ → 0

If ω ∈ Ω0 such that Γ(ω, λ, θ) is in {|x2 − v1L| > K̃√
B
}, then #Γ ≥

√
BL ≪ L2,

contradiction.
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The regime B ≫ 1 and L = O(
√
B) or θ = O(1)

Consider

Uk = {ω ∈ Ων(L) : ∃Γ(ω, λ, θ) & k = #{ξj ∈ ω : Γ(ω, λ, θ) ∩BR(ξj) 6= ∅}}

(Configurations with interfaces that connect exactly k grains).

Theorem There exists N0 ≤ 2D0θν < νL2 and L sufficiently large such that, if

k ≤ N0,

µν(Uk) . e−2D0θν

N0
∑

i=k

1

i!
(2D0θν)

i .

Moreover, for all ε > 0, there exists a Lε > 0 such that for all L ≥ Lε there exists

Ωε ⊂ Ων(L) such that µν(Ωε) ≥ 1− ε, and that for all ω ∈ Ωε the solutions

Γ(ω, λ, θ) satisfy |C(Γ)− 1| ≤ ε.
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The regime B ≫ 1 and L = O(
√
B) or θ = O(1)

Idea of the Proof: Write

Uk = (Uk ∩ Ωs) ∪ (Uk ∩ Ωc
s ∩ UP≥N0

) ∪ (Uk ∩ Ωc
s ∩ UP<N0

) ,

where

Ωs ⊂ Ων(L) such that ∃Γ(ω, λ, θ) for ω ∈ Ωs such that

Γ(ω, λ, θ) ∩ {|x2 − v1L| > D0/
√
B} 6= ∅

UP≥N0
set of configurations such that #{ξj ∈ {|x2 − v1L| < D0/

√
B}} ≥ N0 with

N0 = 2νD0θ = O(1) (maximum number of expected centers)

We also need ωk the configurations with exactly k grains in {|x2 − v1L| < D0/
√
B}.
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The regime B ≫ 1 and L = O(
√
B) or θ = O(1)

Idea of the Proof: Write

Uk = (Uk ∩ Ωs) ∪ (Uk ∩ Ωc
s ∩ UP≥N0

) ∪ (Uk ∩ Ωc
s ∩ UP<N0

) ,

then

Counting argument: µν(Ωs) ∼ 1/L2 → 0 as L → ∞.

µ(ωk) =
(

νL2

k

) (

2D0θ

L2

)k (

1− 2D0θ

L2

)νL2−k
.

That gives:

µν(UP≥N0
) =

νL2

∑

j=N0

(

νL2

j

)

(

2D0θ

L2

)j (

1− 2D0θ

L2

)νL2−j

→ 0 as L → ∞

Hence:

µν(Uk) .

N0
∑

j=k

(

νL2

j

)

(

2D0θ

L2

)j (

1− 2D0θ

L2

)νL2−j
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The regime B ≫ 1 and L ≫
√
B

Theorem Let 0 < h = O(1) and Ωh ⊂ Ων(L) denote the set of all configurations

ω such that there exists a Γ(ω, λ, θ) satisfying max |ξ(2)j − v1L| ≥ h. Then,

µν(Ωh) → 0 as B → ∞

if
√
B ≪ L ≪

√
B logB.

Idea of the Proof:

Characterise Ωh: In particular Ωh ⊂ Uh(K,D0, θ, L) where Uh(K,D0, θ, L) have

configurations of grains with the right geometric propertie s to allow interfaces as in Ωh

Distinguish Ug ∈ Uh(K,D0, θ, L) with all such grains outside

{|x2 − v1L| < D0/
√
B} and those with grains in it
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The regime B ≫ 1 and L ≫
√
B (contd.)

Idea of the Proof (contd.)

1. First case: counting argument shows
∑

µν(U
g) → 0 as B → ∞ if L2 ≫ B.

2. Second case: geometric argument shows
∑

µν(U
g) → 0 as B → ∞ if

L ≪
√
B logB.

Second case main ingredients:

Identification of grains that could form the interface inter secting the strip

{|x2 − v1L| < D0/
√
B}.

Estimation on measure of the longest possible interface.

Technical lemma on iteration of measure properties.
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The regime L = O(1/B) as B → 0

Observation: In the limit B → 0 only LB = O(1) makes sense:

If L ≪ 1/B then H ∼ 0 (only horizontal solutions).

If L ≫ 1/B then H ∼ ∞ (no connections possible).

Setting: Given v0, restrict domain to:

(0, L)× ((v1 − ε0)L, (v1 + ε0)L) , 0 < ε0 < min{v1, 1− v1, LB}

Theorem Assume BL = O(1). Then, given a compatible curve Λ ∈ C1([0, 1]),

there exist ν0 > 0 and L0 > 0 such that for all ν ≥ ν0 and L ≥ L0 there exist

U ∈ Ων(L) and B ≪ ε ≪ 1, ε → 0 as L → ∞ such that

µν(U) ≥ δε with 0 < δε −→ 1− as L → ∞ ,

and that for any ω ∈ U , there exists Γ(ω, λ, θ) such that

Γ̃(ω, λ, θ) ⊆ T√
2ε(Λ) , Λ ⊆ T√

2ε(Γ̃(ω, λ, θ)) .
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The regime L = O(1/B) as B → 0 (contd.)

Sketch of the proof:

(f) Domain divided into squares Q of size

(εL)2
(g) A square Q divided into squares Sκ of

O(1) size
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The regime L = O(1/B) as B → 0 (contd.)

Sketch of the proof (contd.):

Solve a percolation problem in each Q:

A site Sκ is “open” if contains at least one grain, and “close” otherwi se:

P (Sκ closed ) = (1− |Sκ|/L2)νL
2 → e−ν as L → ∞

Site Percolation: ∃ν0 such that

P (Q closed ) → 0 as L → ∞ if ν ≥ ν0.

P (∩Q’s connected ) = 1− P (∪Q closed ) ≥ 1−∑P (Q closed ).
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THANK YOU!
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