On the existence of radial graphs with constant scalar curvature

Flávio França Cruz, URCA - Brazil

Supported by FUNCAP

Geometric aspects on capillary problems and related topics Granada, Spain

- Cruz, F., Radial Graphs of Constant Curvature and Prescribed Boundary. arXiv: 1508.06881 (2015).

Question

Under what conditions a closed ($n-1$)-dimensional embedded submanifold Λ of \mathbb{R}^{n+1} spans a compact hypersurface of constant (extrinsic) curvature?

The geometric setting

The geometric setting

- Let $\Omega \subset \mathbb{S}^{n}$ be a bounded smooth domain.

The geometric setting

- Let $\Omega \subset \mathbb{S}^{n}$ be a bounded smooth domain.
- The radial graph of a positive function $\rho \in C^{2}(\bar{\Omega})$ is the hypersurface

$$
\Sigma=\{X(x)=\rho(x) x: x \in \bar{\Omega}\} \subset \mathbb{R}^{n+1} .
$$

The geometric setting

- Let $\Omega \subset \mathbb{S}^{n}$ be a bounded smooth domain.
- The radial graph of a positive function $\rho \in C^{2}(\bar{\Omega})$ is the hypersurface

$$
\Sigma=\{X(x)=\rho(x) x: x \in \bar{\Omega}\} \subset \mathbb{R}^{n+1}
$$

- Let e_{1}, \ldots, e_{n} a l.o.f.f. on \mathbb{S}^{n}. The components of the metric and the second fundamental form of Σ are given by

$$
g_{i j}=\rho^{2} \delta_{i j}+\nabla_{i} \rho \nabla_{j} \rho
$$

and

$$
h_{i j}=\frac{1}{\left(\rho^{2}+|\nabla \rho|^{2}\right)^{1 / 2}}\left(\rho^{2} \delta_{i j}+2 \nabla_{i} \rho \nabla_{j} \rho-\rho \nabla_{i j} \rho\right) .
$$

Some previous results

Theorem (Serrim '69) Assume $\bar{\Omega} \subset \mathbb{S}_{+}^{n}$ and $H \leqslant 0$ satisfies

$$
H_{\partial \Omega}(x) \geqslant-\frac{n}{n-1} H \phi(x) \quad x \in \partial \Omega .
$$

Then there exists a unique solution of (P).

Some previous results

Theorem (Serrim '69) Assume $\bar{\Omega} \subset \mathbb{S}_{+}^{n}$ and $H \leqslant 0$ satisfies

$$
H_{\partial \Omega}(x) \geqslant-\frac{n}{n-1} H \phi(x) \quad x \in \partial \Omega
$$

Then there exists a unique solution of (P).
Remark. (López '03) If $\phi \equiv 1$ then the above inequality can be replaced by

$$
H_{\partial \Omega}(x) \geqslant-H \quad x \in \partial \Omega .
$$

Some previous results

Theorem (Serrim '69) Assume $\bar{\Omega} \subset \mathbb{S}_{+}^{n}$ and $H \leqslant 0$ satisfies

$$
H_{\partial \Omega}(x) \geqslant-\frac{n}{n-1} H \phi(x) \quad x \in \partial \Omega
$$

Then there exists a unique solution of (P).
Remark. (López '03) If $\phi \equiv 1$ then the above inequality can be replaced by

$$
H_{\partial \Omega}(x) \geqslant-H \quad x \in \partial \Omega .
$$

Theorem (Guan - Spruck '93) Assume that Ω does not contain any hemisphere and there exists a strictly locally convex (s.l.c.) radial graph $\bar{\Sigma}$ with $\partial \bar{\Sigma}=\operatorname{graph}(\phi)$. If

$$
0<K<K(\bar{\Sigma})=\inf _{p \in \bar{\Sigma}} K(p),
$$

then there exists a s.l.c. radial graph Σ of constant Gauss curvature K with boundary $\partial \Sigma=\operatorname{graph}(\phi)$.

Some previous results

Theorem (CNS-V '88) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded strictly convex domain. Suppose that there exists an admissible (vertical) graph $\bar{\Sigma}$ with $\partial \bar{\Sigma}=\partial \Omega$. If

$$
0<R<R(\bar{\Sigma})=\inf _{p \in \bar{\Sigma}} R(p),
$$

then there exists an admissible graph Σ of constant scalar curvature R with boundary $\partial \Sigma=\partial \Omega$.

Some previous results

Theorem (CNS-V '88) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded strictly convex domain. Suppose that there exists an admissible (vertical) graph $\bar{\Sigma}$ with $\partial \bar{\Sigma}=\partial \Omega$. If

$$
0<R<R(\bar{\Sigma})=\inf _{p \in \bar{\Sigma}} R(p),
$$

then there exists an admissible graph Σ of constant scalar curvature R with boundary $\partial \Sigma=\partial \Omega$.

Remark. (Trudinger - Ivochkina '94) The above result also holds for mean convex domains and non constant boundary date.

Some previous results

Theorem (CNS-V '88) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded strictly convex domain. Suppose that there exists an admissible (vertical) graph $\bar{\Sigma}$ with $\partial \bar{\Sigma}=\partial \Omega$. If

$$
0<R<R(\bar{\Sigma})=\inf _{p \in \bar{\Sigma}} R(p),
$$

then there exists an admissible graph Σ of constant scalar curvature R with boundary $\partial \Sigma=\partial \Omega$.

Remark. (Trudinger - Ivochkina '94) The above result also holds for mean convex domains and non constant boundary date.

Theorem (- '15) Assume that $\bar{\Omega} \subset \mathbb{S}_{+}^{n}$ is a mean convex domain. Then, for $0<R<n(n-1)$, there exists a radial graph Σ of constant scalar curvature R and boundary $\partial \Sigma=\partial \Omega$.

Curvature Functions

Curvature Functions

Let Γ be an open, convex, symmetric cone $\Gamma \subset \mathbb{R}^{n}$ with vertex at the origin and containing the positive cone

$$
\Gamma^{+}=\left\{\kappa \in \mathbb{R}^{n}: \text { each component } \kappa_{i}>0\right\} .
$$

Curvature Functions

Let Γ be an open, convex, symmetric cone $\Gamma \subset \mathbb{R}^{n}$ with vertex at the origin and containing the positive cone

$$
\Gamma^{+}=\left\{\kappa \in \mathbb{R}^{n}: \text { each component } \kappa_{i}>0\right\} .
$$

We say that $f: \Gamma \longrightarrow(0,+\infty)$ is a curvature function if it satisfies

Symmetry: $\quad f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=f\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n)}\right)$, for all σ;
Ellipticity: $\quad f_{i}=\frac{\partial f}{\partial \lambda_{i}}>0 ;$
Concavity: f is a concave function;
Homogeneity: $\quad f(t \lambda)=t f(\lambda), t>0$;
Compatibility: $\quad \lim \sup f(\lambda)=0$;

$$
\lambda \rightarrow \partial \Gamma
$$

Technical assumptions

- For every constant $C>0$ and every compact set E in Γ there is a constant $R=R(C, E)>0$ such that

$$
\begin{equation*}
f\left(\lambda_{1}, \cdots, \lambda_{n}+R\right) \geqslant C, \quad \text { for all } \lambda \in E \tag{1}
\end{equation*}
$$

- For all $\lambda \in \Gamma_{\mu, \nu}=\{\lambda \in \Gamma: \mu<f(\lambda)<\nu\}$ it holds

$$
\begin{equation*}
\sum f_{i}(\lambda) \lambda_{i}^{2} \leqslant C_{0}\left(\lambda_{j} x_{\left\{\lambda_{j}>0\right\}}+\sum_{k \neq j} f_{k}(\lambda) \lambda_{k}^{2}\right) . \tag{2}
\end{equation*}
$$

Main Theorem

Theorem

Let Ω be a smooth bounded domain such that $\bar{\Omega} \subset \mathbb{S}_{+}^{n}$ and $H_{\partial \Omega} \geqslant 0$, and let ψ be a smooth positive function defined on $\bar{\Omega}$. Assume f satisfy (1)-(2) and there exists a smooth admissible ${ }^{1}$ radial graph $\bar{\Sigma}$: $\bar{X}(x)=\bar{\rho}(x) x$ over $\bar{\Omega}$ that satisfies

$$
\begin{aligned}
f\left(\mathrm{k}_{\bar{\Sigma}}[\bar{X}]\right) & >\psi(x) \quad \text { in } \Omega, \\
\bar{\rho} & =\phi \quad \text { on } \partial \Omega
\end{aligned}
$$

and is locally strictly convex (up to the boundary) in a neighbourhood of $\partial \Omega$. Then there exists a smooth radial graph $\Sigma: X(x)=\rho(x) x$ satisfying

$$
\begin{aligned}
f\left(\kappa_{\Sigma}[X]\right) & =\psi(x) \quad \text { in } \Omega, \\
\rho & =\phi \quad \text { on } \partial \Omega .
\end{aligned}
$$

${ }^{1} \Sigma$ is admissible if $\kappa_{\Sigma}([X]) \in \Gamma$ for all $X \in \Sigma$.

Existence

Consider the auxiliary functions

$$
\Psi^{t}(\rho x)=\left(\frac{\bar{\rho}(x)}{\rho}\right)^{3}(t \psi(x)+(1-t) \underline{\psi}(x)), \quad t \in[0,1]
$$

and

$$
\Phi^{s}(\rho x)=s \psi(x)+(1-s)\left(\frac{\bar{\rho}(x)}{\rho}\right)^{3} \psi(x), \quad s \in[0,1]
$$

defined in the solid cylinder $\Delta=\left\{X \in \mathbb{R}^{n+1}: \frac{X}{\|X\|} \in \bar{\Omega}\right\}$.

Existence

Consider the auxiliary functions

$$
\Psi^{t}(\rho x)=\left(\frac{\bar{\rho}(x)}{\rho}\right)^{3}(t \psi(x)+(1-t) \underline{\psi}(x)), \quad t \in[0,1]
$$

and

$$
\Phi^{s}(\rho x)=s \psi(x)+(1-s)\left(\frac{\bar{\rho}(x)}{\rho}\right)^{3} \psi(x), \quad s \in[0,1]
$$

defined in the solid cylinder $\Delta=\left\{X \in \mathbb{R}^{n+1}: \frac{X}{\|X\|} \in \bar{\Omega}\right\}$.

Remark.

- $\Phi^{1}(\rho x)=\psi(x)$
- $\Psi^{1}=\Phi^{0}$
- $\frac{\partial}{\partial \rho}\left(\rho \Psi^{t}(\rho x)\right) \leqslant 0$
- $\frac{\partial}{\partial \rho}\left(\rho \Phi^{s}(\rho x)\right) \leqslant 0$ if $\rho \leqslant \bar{\rho}$.

Existence

Consider the auxiliary equations

$$
\begin{array}{rlrl}
H\left(\nabla^{2} v, \nabla v, v\right) & =\Psi^{t}(X) & & \text { in } \Omega \\
v & & (E q A)_{t}
\end{array}
$$

$$
\begin{align*}
H\left(\nabla^{2} v, \nabla v, v\right) & =\Phi^{s}(X) & & \text { in } \Omega \\
v & =-\ln \phi & & \text { on } \partial \Omega \tag{4}
\end{align*}
$$

$(E q B)_{s}$

Existence

Consider the auxiliary equations

$$
\begin{array}{rlrl}
H\left(\nabla^{2} v, \nabla v, v\right) & =\Psi^{t}(X) & & \text { in } \Omega \\
v & =-\ln \phi & & \text { on } \partial \Omega \\
(E q A)_{t} \tag{3}
\end{array}
$$

and

$$
\begin{align*}
H\left(\nabla^{2} v, \nabla v, v\right) & =\Phi^{s}(X) & & \text { in } \Omega \tag{4}\\
v & =-\ln \phi & & \text { on } \partial \Omega \tag{EqB}
\end{align*}
$$

Remark.

- $\underline{v}=-\ln \bar{\rho}$ is a solution of $(E q A)_{0}$
- $\underline{v}=-\ln \bar{\rho}$ is a strictly subsolution of $(E q A)_{t}$ for each $t>0$
- $\frac{\partial}{\partial v}\left(H-\Psi^{t}\right) \leqslant 0$
- $(E q A)_{1}=(E q B)_{0}$.

A priori estimates

Theorem
Let $v \geqslant \underline{v}$ be an admissible solution of

$$
\begin{aligned}
f\left(\kappa_{\Sigma}[X]\right) & =\Upsilon(X) \quad \text { in } \Omega \\
v & =\varphi \quad \text { on } \partial \Omega
\end{aligned}
$$

Suppose $\frac{\partial}{\partial \rho}(\rho \curlyvee) \leqslant 0$. Then we have the estimate

$$
\|v\|_{C^{2}(\bar{\Omega})} \leqslant C
$$

where C depends on $\inf _{\Omega} \underline{v},\|\underline{v}\|_{C^{2}(\bar{\Omega})},\|\Upsilon\|_{C^{2}\left(\Delta_{L}\right)}$, the convexity of $\bar{\Sigma}$ in a neighbourhood of $\partial \Omega$ and other known data.

Existence

It follows from the a priori estimates that

- There exists a unique solution v^{0} of $(E q B)_{0}$.
- If v^{s} is a solution of $(E q B)_{s}$ and $v^{s} \geqslant \underline{v}$ then

$$
\left\|v^{5}\right\|_{C^{4, \alpha}(\bar{\Omega})}<C_{1}
$$

Existence

It follows from the a priori estimates that

- There exists a unique solution v^{0} of $(E q B)_{0}$.
- If v^{s} is a solution of $(E q B)_{s}$ and $v^{s} \geqslant \underline{v}$ then

$$
\left\|v^{5}\right\|_{C^{4, \alpha}(\bar{\Omega})}<C_{1} .
$$

Consider the open set

$$
\begin{aligned}
\mathcal{O}= & \left\{w \in C_{0}^{4, \alpha}(\bar{\Omega}): w>0 \text { in } \Omega, \nabla_{n} w>0 \text { on } \partial \Omega\right. \\
& \left.w+\underline{v} \text { is admissible and }\|w\|_{C^{4, \alpha}(\bar{\Omega})} \leqslant C_{1}+\|\underline{v}\|_{C^{4, \alpha}(\bar{\Omega})}\right\}
\end{aligned}
$$

and the map

$$
M_{s}[w]=H\left(\nabla^{2}(w+\underline{v}), \nabla(w+\underline{v}), w+\underline{v}\right)-\Phi^{s}(w+\underline{v}), \quad w \in \mathcal{O} .
$$

Existence

It follows from the a priori estimates that

- There exists a unique solution v^{0} of $(E q B)_{0}$.
- If v^{s} is a solution of $(E q B)_{s}$ and $v^{s} \geqslant \underline{v}$ then

$$
\left\|v^{5}\right\|_{C^{4, \alpha}(\bar{\Omega})}<C_{1} .
$$

Consider the open set

$$
\begin{aligned}
\mathcal{O}= & \left\{w \in C_{0}^{4, \alpha}(\bar{\Omega}): w>0 \text { in } \Omega, \nabla_{n} w>0 \text { on } \partial \Omega\right. \\
& \left.w+\underline{v} \text { is admissible and }\|w\|_{C^{4, \alpha}(\bar{\Omega})} \leqslant C_{1}+\|\underline{v}\|_{C^{4, \alpha}(\bar{\Omega})}\right\} .
\end{aligned}
$$

and the map

$$
M_{s}[w]=H\left(\nabla^{2}(w+\underline{v}), \nabla(w+\underline{v}), w+\underline{v}\right)-\Phi^{s}(w+\underline{v}), \quad w \in \mathcal{O}
$$

We have

- $w^{0}=v^{0}-\underline{v}$ is the unique solution of $M_{0}[w]=0$ in \mathcal{O}
- There is no solution of $M_{s}[w]=0$ on $\partial \cup$
- The Fréchet derivative of M_{0} at w^{0} is invertible.

Existence

Then, by the degree theory developed by Yan Yan Li^{2}, we can see that the degree of M_{s} on \mathcal{O} at $0 \operatorname{deg}\left(M_{s}, \mathcal{O}, 0\right)$ is well defined and independet of s. Moreover,

$$
\operatorname{deg}\left(M_{0}, \mathcal{O}, 0\right)= \pm 1 \neq 0
$$

and we conclude that

$$
\operatorname{deg}\left(M_{s}, \mathcal{O}, 0\right) \neq 0 \text { for all } s \in[0,1] .
$$

Let w^{1} be a solution of $M_{1}[w]=0$. Then the function $v^{1}=w^{1}+\underline{v}$ is the desired solution.

[^0]
Height and Gradient Bounds

Let $\underline{\rho}$ be the solution of the minimal surface equation in Ω that satisfies $\rho=\bar{\phi}$ on $\partial \Omega$.
Then

$$
\underline{\rho} \leqslant \rho \leqslant \bar{\rho} \quad \text { in } \Omega
$$

and

$$
\underline{\rho}=\rho=\bar{\rho} \quad \text { on } \partial \Omega .
$$

This yelds the height and boundary gradient estimates.

Height and Gradient Bounds

Let $\underline{\rho}$ be the solution of the minimal surface equation in Ω that satisfies $\rho=\bar{\phi}$ on $\partial \Omega$.
Then

$$
\underline{\rho} \leqslant \rho \leqslant \bar{\rho} \quad \text { in } \Omega
$$

and

$$
\underline{\rho}=\rho=\bar{\rho} \quad \text { on } \partial \Omega .
$$

This yelds the height and boundary gradient estimates.
Under the condition

$$
\frac{\partial}{\partial \rho}(\rho \curlyvee(\rho x)) \leqslant 0
$$

the interior gradient estimate follows as in the paper Caffarelli, L., Nirenberg L. and Spruck, J., The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations IV: Starshaped compact Weingarten hypersurfaces (1985).

Height and Gradient Bounds

Let $\underline{\rho}$ be the solution of the minimal surface equation in Ω that satisfies $\rho=\bar{\phi}$ on $\partial \Omega$.
Then

$$
\underline{\rho} \leqslant \rho \leqslant \bar{\rho} \quad \text { in } \Omega
$$

and

$$
\underline{\rho}=\rho=\bar{\rho} \quad \text { on } \partial \Omega .
$$

This yelds the height and boundary gradient estimates.
Under the condition

$$
\frac{\partial}{\partial \rho}(\rho \curlyvee(\rho x)) \leqslant 0
$$

the interior gradient estimate follows as in the paper Caffarelli, L., Nirenberg L. and Spruck, J., The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations IV: Starshaped compact Weingarten hypersurfaces (1985).

Remark. Once established the second derivative boundary estimates, the interior ones follow as above.

The Barrier Method

Set

$$
u=1 / \rho \text { and } \varphi=1 / \phi .
$$

The mixed second derivative boundary estimates are obtained applying the barrier method to the function $\nabla_{\alpha} u$. We will make use of the following version of the Maximum Principle.

Theorem (Maximum Principle)
Let $v, w \in C^{2}(\bar{\Omega})$ and u an admissible function on Ω. Assume that

$$
\begin{aligned}
G^{i j} \nabla_{i j} w \leqslant C_{0}(1+|\nabla w|) \quad \text { in } U \\
G^{i j} \nabla_{i j} v \geqslant C_{0}(1+|\nabla v|) \quad \text { in } U,
\end{aligned}
$$

where C_{0} is a constant and $U \subset \Omega$. If $v \leqslant w$ on ∂U, then $v \leqslant w$ in \bar{U}.

The Barrier Method

Set

$$
u=1 / \rho \text { and } \varphi=1 / \phi .
$$

The mixed second derivative boundary estimates are obtained applying the barrier method to the function $\nabla_{\alpha} u$. We will make use of the following version of the Maximum Principle.

Theorem (Maximum Principle)
Let $v, w \in C^{2}(\bar{\Omega})$ and u an admissible function on Ω. Assume that

$$
\begin{aligned}
G^{i j} \nabla_{i j} w \leqslant C_{0}(1+|\nabla w|) \quad \text { in } U \\
G^{i j} \nabla_{i j} v \geqslant C_{0}(1+|\nabla v|) \quad \text { in } U,
\end{aligned}
$$

where C_{0} is a constant and $U \subset \Omega$. If $v \leqslant w$ on ∂U, then $v \leqslant w$ in \bar{U}.

Rmk:
$u=1 / \rho \quad \Rightarrow \quad G\left(\nabla^{2} u, \nabla u, u\right)=\Upsilon$

$$
G^{i j}=\frac{\partial G}{\partial \nabla_{i j} u}
$$

Lemma (Fundamental Inequality)

For some positive constants K and M sufficiently large depending on $\|u\|_{C^{1}(\bar{\Omega})},\|\Upsilon\|_{C^{1}\left(\Delta_{L}\right)}$ and other known data, the function

$$
\Phi=\nabla_{k}(u-\varphi)-\frac{K}{2} \sum_{l<n}\left(\nabla_{l}(u-\varphi)\right)^{2}
$$

satisfies

$$
G^{i j} \nabla_{i j} \Phi \leqslant M\left(1+|\nabla \Phi|+G^{i j} \delta_{i j}+G^{i j} \nabla_{i} \Phi \nabla_{j} \Phi\right) \quad \text { in } \quad \Omega_{\delta}
$$

Lemma (Fundamental Inequality)

For some positive constants K and M sufficiently large depending on $\|u\|_{C^{1}(\bar{\Omega})},\|\Upsilon\|_{C^{1}\left(\Delta_{L}\right)}$ and other known data, the function

$$
\Phi=\nabla_{k}(u-\varphi)-\frac{K}{2} \sum_{l<n}\left(\nabla_{l}(u-\varphi)\right)^{2}
$$

satisfies

$$
G^{i j} \nabla_{i j} \Phi \leqslant M\left(1+|\nabla \Phi|+G^{i j} \delta_{i j}+G^{i j} \nabla_{i} \Phi \nabla_{j} \Phi\right) \quad \text { in } \quad \Omega_{\delta} .
$$

We choose

$$
w=1-e^{-a_{0} \Phi}+b_{0}(u-\underline{u})
$$

to get

$$
G^{i j} \nabla_{i j} w \leqslant C_{0}(1+|\nabla w|) .
$$

Barrier Function

Lemma

There exist some uniform positive constants t, δ, ε sufficiently small and N sufficiently large depending on $\inf _{\bar{\Omega}} \underline{\underline{u}},\|\underline{u}\|_{C^{2}(\bar{\Omega})}$, $\sup _{\Delta_{L}} \Upsilon$, the convexity of \underline{u} in a neighbourhood of $\partial \Omega$ and other known data, such that the function

$$
\Theta=u-\underline{u}+t d-N d^{2}, \quad d=\operatorname{dist}(\cdot, \partial \Omega)
$$

satisfies

$$
G^{i j} \nabla_{i j} \Theta \leqslant-\left(1+|\nabla \Theta|+G^{i j} \delta_{i j}\right) \quad \text { in } \Omega_{\delta}
$$

and

$$
\Theta \geqslant 0 \quad \text { on } \partial \Omega_{\delta} .
$$

Barrier Function

Lemma

There exist some uniform positive constants t, δ, ε sufficiently small and N sufficiently large depending on $\inf _{\bar{\Omega}} \underline{u},\|\underline{u}\|_{C^{2}(\bar{\Omega})}$, $\sup _{\Delta_{L}} \Upsilon$, the convexity of \underline{u} in a neighbourhood of $\partial \Omega$ and other known data, such that the function

$$
\Theta=u-\underline{u}+t d-N d^{2}, \quad d=\operatorname{dist}(\cdot, \partial \Omega)
$$

satisfies

$$
G^{i j} \nabla_{i j} \Theta \leqslant-\left(1+|\nabla \Theta|+G^{i j} \delta_{i j}\right) \quad \text { in } \Omega_{\delta}
$$

and

$$
\Theta \geqslant 0 \quad \text { on } \partial \Omega_{\delta} .
$$

We choose

$$
v=-c_{0} \operatorname{dist}\left(\cdot, x_{0}\right)^{2}-d_{0} \Theta
$$

to get

$$
G^{i j} \nabla_{i j} v \geqslant C_{0}(1+|\nabla v|)
$$

and $v \leqslant w$ on $\partial \Omega_{\delta}$.

Double Normal Estimate

Double Normal Estimate

Let κ^{\prime} the roots of $\operatorname{det}\left(h_{\alpha \beta}-\operatorname{tg}_{\alpha \beta}\right)=0$. It follows from the previous estimates that the principal curvatures κ_{i} behave like

$$
\begin{aligned}
\mathrm{\kappa}_{\alpha} & =\mathrm{\kappa}_{\alpha}^{\prime}+o(1), \quad 1 \leqslant \alpha \leqslant n-1 \\
\mathrm{\kappa}_{n} & =\frac{h_{n n}}{g_{n n}}\left(1+O\left(\frac{1}{h_{n n}}\right)\right)
\end{aligned}
$$

as $\left|h_{n n}\right| \rightarrow \infty$.

Double Normal Estimate

Let κ^{\prime} the roots of $\operatorname{det}\left(h_{\alpha \beta}-\operatorname{tg}_{\alpha \beta}\right)=0$. It follows from the previous estimates that the principal curvatures κ_{i} behave like

$$
\begin{aligned}
\mathrm{\kappa}_{\alpha} & =\mathrm{\kappa}_{\alpha}^{\prime}+o(1), \quad 1 \leqslant \alpha \leqslant n-1 \\
\mathrm{\kappa}_{n} & =\frac{h_{n n}}{g_{n n}}\left(1+O\left(\frac{1}{h_{n n}}\right)\right)
\end{aligned}
$$

as $\left|h_{n n}\right| \rightarrow \infty$. Let Γ^{\prime} be the projection of Γ on \mathbb{R}^{n-1}. Thus, there exists a uniform positive constant $N_{0}>0$ satisfying

$$
\kappa^{\prime} \in \Gamma^{\prime} \quad \text { if } \quad \nabla_{n n} u \geqslant N_{0} . \quad(*)
$$

Double Normal Estimate

Let κ^{\prime} the roots of $\operatorname{det}\left(h_{\alpha \beta}-\operatorname{tg}_{\alpha \beta}\right)=0$. It follows from the previous estimates that the principal curvatures κ_{i} behave like

$$
\begin{aligned}
\mathrm{\kappa}_{\alpha} & =\mathrm{\kappa}_{\alpha}^{\prime}+o(1), \quad 1 \leqslant \alpha \leqslant n-1 \\
\mathrm{\kappa}_{n} & =\frac{h_{n n}}{g_{n n}}\left(1+O\left(\frac{1}{h_{n n}}\right)\right)
\end{aligned}
$$

as $\left|h_{n n}\right| \rightarrow \infty$. Let Γ^{\prime} be the projection of Γ on \mathbb{R}^{n-1}. Thus, there exists a uniform positive constant $N_{0}>0$ satisfying

$$
\kappa^{\prime} \in \Gamma^{\prime} \quad \text { if } \quad \nabla_{n n} u \geqslant N_{0} . \quad(*)
$$

Lemma

Let $N_{0}>0$ be the constant defined in (*) and suppose that $\nabla_{n n} u \geqslant N_{0}$. Then there exists a uniform constant $c_{0}>0$ such that

$$
d(x)=\operatorname{dist}\left(\cdot, \partial \Gamma^{\prime}\right) \geqslant c_{0} \quad \text { on } \partial \Omega
$$

Therefore an upper bound for κ_{n} follows from the previous established estimates and the assumption that f is of unbounded type.

References

國 Caffarelli，L．，Nirenberg L．and Spruck，J．，The Dirichlet Problem for Nonlinear Second－Order Elliptic Equations IV：Starshaped compact Weingarten hypersurfaces，Current Topics in P．D．E．，Tokyo， 1986.
Caffarelli，L．，Nirenberg，L．and Spruck，J．，Nonlinear Second－Order Elliptic Equations V．The Dirichlet Problem for Weingarten Hypersurfaces． Comm．Pure Applied Math．，41（1988），47－70．
Guan，B．and Spruck，J．，Boundary Value Problem on S^{n} for Surfaces of Constant Gauss Curvature．Ann．of Math．，138（1993），601－624．
R Lopez，R．，Constant Mean Curvature Surfaces with Boundary， Springer－Verlag，New York－Heidelberg－Berlin， 2010.
䍰 Serrin，J．，The Problem of Dirichlet for Quasilinear Elliptic Differential Equations with Many Variables．Philos．Trans．Roy．Soc．London Ser．A．， 264（1969），413－496．
B
Su，C．，Starshaped Locally Convex Hypersurfaces with Prescribed Curvature and Boundary．arXiv： 1310.4730 （2013）．
國 Trudinger，N．，On the Dirichlet Problem for Hessian Equations．Acta Math．，175（1995），151－164．

Thank you!

[^0]: ${ }^{2}$ Li, Y.Y., Degree theory for second order nonlinear elliptic operators and its applications. Comm. in PDE's. 14(11)(1989).

