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Question

Under what conditions a closed (n − 1)-dimensional embedded
submanifold Λ of Rn+1 spans a compact hypersurface of constant
(extrinsic) curvature?



The geometric setting

I Let Ω ⊂ Sn be a bounded smooth domain.

I The radial graph of a positive function ρ ∈ C 2(Ω̄) is the
hypersurface

Σ = {X (x) = ρ(x)x : x ∈ Ω̄} ⊂ Rn+1.

I Let e1, . . . , en a l.o.f.f. on Sn. The components of the metric
and the second fundamental form of Σ are given by

gij = ρ2δij +∇iρ∇jρ

and

hij =
1

(ρ2 + |∇ρ|2)1/2

(
ρ2δij + 2∇iρ∇jρ− ρ∇ijρ

)
.
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Some previous results

Theorem (Serrim ’69) Assume Ω̄ ⊂ Sn
+ and H 6 0 satisfies

H∂Ω(x) > −
n

n − 1
Hφ(x) x ∈ ∂Ω.

Then there exists a unique solution of (P).

Remark. (López ’03) If φ ≡ 1 then the above inequality can be
replaced by

H∂Ω(x) > −H x ∈ ∂Ω.

Theorem (Guan - Spruck ’93) Assume that Ω does not contain any
hemisphere and there exists a strictly locally convex (s.l.c.) radial graph
Σ̄ with ∂Σ̄ = graph(φ). If

0 < K < K (Σ̄) = inf
p∈Σ̄

K (p),

then there exists a s.l.c. radial graph Σ of constant Gauss curvature K
with boundary ∂Σ = graph(φ).
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Some previous results

Theorem (CNS-V ’88) Let Ω ⊂ Rn be a bounded strictly convex
domain. Suppose that there exists an admissible (vertical) graph Σ̄ with
∂Σ̄ = ∂Ω. If

0 < R < R(Σ̄) = inf
p∈Σ̄

R(p),

then there exists an admissible graph Σ of constant scalar curvature R
with boundary ∂Σ = ∂Ω.

Remark. (Trudinger - Ivochkina ’94) The above result also holds for
mean convex domains and non constant boundary date.

Theorem (— ’15) Assume that Ω̄ ⊂ Sn
+ is a mean convex domain.

Then, for 0 < R < n(n − 1), there exists a radial graph Σ of constant
scalar curvature R and boundary ∂Σ = ∂Ω.
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Curvature Functions

Let Γ be an open, convex, symmetric cone Γ ⊂ Rn with vertex at the
origin and containing the positive cone

Γ+ = {κ ∈ Rn : each componentκi > 0}.

We say that f : Γ −→ (0, +∞) is a curvature function if it satisfies

Symmetry: f (λ1, . . . , λn) = f (λσ(1), . . . , λσ(n)), for all σ;

Ellipticity: fi =
∂f

∂λi
> 0;

Concavity: f is a concave function;

Homogeneity: f (tλ) = tf (λ), t > 0;

Compatibility: lim sup
λ→∂Γ

f (λ) = 0;
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Technical assumptions

I For every constant C > 0 and every compact set E in Γ there is a
constant R = R(C , E ) > 0 such that

f (λ1, · · · , λn + R) > C , for all λ ∈ E , (1)

I For all λ ∈ Γµ,ν = {λ ∈ Γ : µ < f (λ) < ν} it holds

∑
fi (λ)λ

2
i 6 C0(λjχ{λj>0} +

∑
k 6=j

fk(λ)λ
2
k). (2)



Main Theorem

Theorem
Let Ω be a smooth bounded domain such that Ω̄ ⊂ Sn

+ and H∂Ω > 0,
and let ψ be a smooth positive function defined on Ω̄. Assume f satisfy
(1)-(2) and there exists a smooth admissible 1 radial graph Σ̄:
X̄ (x) = ρ̄(x)x over Ω̄ that satisfies

f (κΣ̄[X̄ ]) >ψ(x) in Ω,

ρ̄ =φ on ∂Ω

and is locally strictly convex (up to the boundary) in a neighbourhood of
∂Ω. Then there exists a smooth radial graph Σ : X (x) = ρ(x)x satisfying

f (κΣ[X ]) = ψ(x) in Ω,

ρ = φ on ∂Ω.

1Σ is admissible if κΣ([X ]) ∈ Γ for all X ∈ Σ.



Existence

Consider the auxiliary functions

Ψt(ρx) =

(
ρ(x)

ρ

)3 (
tψ(x) + (1 − t)ψ(x)

)
, t ∈ [0, 1]

and

Φs(ρx) = sψ(x) + (1 − s)

(
ρ(x)

ρ

)3

ψ(x), s ∈ [0, 1]

defined in the solid cylinder ∆ = {X ∈ Rn+1 : X
‖X‖ ∈ Ω}.

Remark.

I Φ1(ρx) = ψ(x)

I Ψ1 = Φ0

I ∂
∂ρ (ρΨt(ρx)) 6 0

I ∂
∂ρ (ρΦs(ρx)) 6 0 if ρ 6 ρ.
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Existence

Consider the auxiliary equations

H(∇2v ,∇v , v) = Ψt(X ) inΩ
v = − lnφ on∂Ω

(EqA)t (3)

and

H(∇2v ,∇v , v) = Φs(X ) inΩ
v = − lnφ on∂Ω

(EqB)s (4)

Remark.

I v = − ln ρ is a solution of (EqA)0

I v = − ln ρ is a strictly subsolution of (EqA)t for each t > 0

I ∂
∂v (H − Ψt) 6 0

I (EqA)1 = (EqB)0.
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A priori estimates

Theorem
Let v > v be an admissible solution of

f (κΣ[X ]) = Υ(X ) in Ω
v = ϕ on ∂Ω.

Suppose ∂
∂ρ (ρΥ) 6 0. Then we have the estimate

‖v‖C 2(Ω̄) 6 C

where C depends on infΩ v , ‖v‖C 2(Ω̄), ‖Υ‖C 2(∆L), the convexity of Σ̄ in a
neighbourhood of ∂Ω and other known data.



Existence

It follows from the a priori estimates that

I There exists a unique solution v 0 of (EqB)0.

I If v s is a solution of (EqB)s and v s > v then

‖v s‖C 4,α(Ω̄) < C1.

Consider the open set

O = {w ∈ C 4,α
0 (Ω̄) : w > 0 in Ω, ∇nw > 0 on ∂Ω,

w + v is admissible and ‖w‖C 4,α(Ω̄) 6 C1 + ‖v‖C 4,α(Ω̄)}.

and the map

Ms [w ] = H(∇2(w + v),∇(w + v), w + v) −Φs(w + v), w ∈ O.

We have

I w 0 = v 0 − v is the unique solution of M0[w ] = 0 in O

I There is no solution of Ms [w ] = 0 on ∂O

I The Fréchet derivative of M0 at w 0 is invertible.
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Existence

Then, by the degree theory developed by Yan Yan Li2, we can see that
the degree of Ms on O at 0 deg(Ms , O, 0) is well defined and independet
of s. Moreover,

deg(M0, O, 0) = ±1 6= 0

and we conclude that

deg(Ms , O, 0) 6= 0 for all s ∈ [0, 1].

Let w 1 be a solution of M1[w ] = 0. Then the function v 1 = w 1 + v is the
desired solution.

2Li, Y.Y., Degree theory for second order nonlinear elliptic operators and its
applications. Comm. in PDE’s. 14(11)(1989).



Height and Gradient Bounds

Let ρ be the solution of the minimal surface equation in Ω that satisfies
ρ = φ on ∂Ω.
Then

ρ 6 ρ 6 ρ̄ in Ω

and
ρ = ρ = ρ̄ on ∂Ω.

This yelds the height and boundary gradient estimates.

Under the condition
∂

∂ρ

(
ρΥ(ρx)

)
6 0,

the interior gradient estimate follows as in the paper
Caffarelli, L., Nirenberg L. and Spruck, J., The Dirichlet Problem for Nonlinear

Second-Order Elliptic Equations IV: Starshaped compact Weingarten

hypersurfaces (1985).

Remark. Once established the second derivative boundary estimates, the
interior ones follow as above.
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The Barrier Method

Set
u = 1/ρ and ϕ = 1/φ.

The mixed second derivative boundary estimates are obtained applying
the barrier method to the function ∇αu. We will make use of the
following version of the Maximum Principle.

Theorem (Maximum Principle)
Let v , w ∈ C 2(Ω̄) and u an admissible function on Ω. Assume that

G ij∇ijw 6 C0(1 + |∇w |) in U

G ij∇ijv > C0(1 + |∇v |) in U,

where C0 is a constant and U ⊂ Ω. If v 6 w on ∂U, then v 6 w in Ū.

——–
Rmk:
u = 1/ρ ⇒ G (∇2u,∇u, u) = Υ

G ij =
∂G

∂∇iju
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Lemma (Fundamental Inequality)
For some positive constants K and M sufficiently large depending on
‖u‖C 1(Ω̄), ‖Υ‖C 1(∆L) and other known data, the function

Φ = ∇k(u −ϕ) −
K

2

∑
l<n

(
∇l(u −ϕ)

)2

satisfies

G ij∇ijΦ 6 M(1 + |∇Φ| + G ijδij + G ij∇iΦ∇jΦ) in Ωδ.

We choose
w = 1 − e−a0Φ + b0(u − u)

to get
G ij∇ijw 6 C0(1 + |∇w |).
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Barrier Function

Lemma
There exist some uniform positive constants t, δ, ε sufficiently small and
N sufficiently large depending on infΩ̄ u, ‖u‖C 2(Ω̄), sup∆L

Υ, the
convexity of u in a neighbourhood of ∂Ω and other known data, such
that the function

Θ = u − u + td − Nd2, d = dist(·,∂Ω)

satisfies
G ij∇ijΘ 6 −(1 + |∇Θ| + G ijδij) in Ωδ

and
Θ > 0 on ∂Ωδ.

We choose
v = −c0dist(·, x0)

2 − d0Θ

to get
G ij∇ijv > C0(1 + |∇v |)

and v 6 w on ∂Ωδ.
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Double Normal Estimate

Let κ ′ the roots of det(hαβ − tgαβ) = 0. It follows from the previous
estimates that the principal curvatures κi behave like

κα = κ ′α + o(1), 1 6 α 6 n − 1,

κn =
hnn

gnn

(
1 + O

(
1

hnn

))
,

as |hnn|→∞. Let Γ ′ be the projection of Γ on Rn−1. Thus, there exists a
uniform positive constant N0 > 0 satisfying

κ ′ ∈ Γ ′ if ∇nnu > N0. (∗)

Lemma
Let N0 > 0 be the constant defined in (*) and suppose that ∇nnu > N0.
Then there exists a uniform constant c0 > 0 such that

d(x) = dist(·,∂Γ ′) > c0 on ∂Ω.

Therefore an upper bound for κn follows from the previous established
estimates and the assumption that f is of unbounded type.
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Then there exists a uniform constant c0 > 0 such that

d(x) = dist(·,∂Γ ′) > c0 on ∂Ω.

Therefore an upper bound for κn follows from the previous established
estimates and the assumption that f is of unbounded type.
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