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Question

Under what conditions a closed (n — 1)-dimensional embedded
submanifold A of R"*! spans a compact hypersurface of constant
(extrinsic) curvature?
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The geometric setting

» Let QO C S" be a bounded smooth domain.

» The radial graph of a positive function p € C?(Q) is the
hypersurface

L ={X(x)=p(x)x : x € Q) c R"1.

> Leteq,..., e, a l.o.f.f. on S". The components of the metric
and the second fundamental form of £ are given by

gi = p°5; + VipV;p

and

1

hj= ————175
= T e |

p25;j + ZV;ijp — pV,-jp) .
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Some previous results

Theorem (Serrim '69) Assume Q C S” and H < 0 satisfies

Haya(x) 2 Hc[)( ) x € 0Q).

n

Then there exists a unique solution of (P).

Remark. (Lépez '03) If ¢ = 1 then the above inequality can be

replaced by
Haoa(x) 2 —H  x€0Q.

Theorem (Guan - Spruck '93) Assume that Q does not contain any
hemisphere and there exists a strictly locally convex (s.l.c.) radial graph
Y with 90X = graph(¢). If

0< K< K(Z) = inf K(p),
peEX

then there exists a s.l.c. radial graph L of constant Gauss curvature K
with boundary 0X = graph(¢).
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Some previous results

Theorem (CNS-V '88) Let QO C R" be a bounded strictly convex
domain. Suppose that there exists an admissible (vertical) graph Z with
0L =00 If
0< R<R(Z) = inf R(p),
peL
then there exists an admissible graph X of constant scalar curvature R
with boundary 0X = 0Q).

Remark. (Trudinger - Ivochkina '94) The above result also holds for
mean convex domains and non constant boundary date.

Theorem (— '15) Assume that Q C S is a mean convex domain.
Then, for 0 < R < n(n— 1), there exists a radial graph £ of constant
scalar curvature R and boundary 0L = 0Q).
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Curvature Functions

Let " be an open, convex, symmetric cone I' C R” with vertex at the
origin and containing the positive cone

I'" ={k € R" : each component k; > 0.

We say that f : ' — (0, +00) is a curvature function if it satisfies

Symmetry:
Ellipticity:

Concavity:
Homogeneity:

Compatibility:

f(}\l ..... ?\n) = f()\c(l] ..... }\o-(n)), for all o;

f is a concave function;
f(tA) = tf(A), t >0

limsup f(A) =0;
A—orl



Technical assumptions

» For every constant C > 0 and every compact set E in I there is a
constant R = R(C, E) > 0 such that

f(A,-- . A+ R)>C, forallAeeE, (1)

> ForallAeTl, v ={AeTl :pu<f(A) <v}it holds

Z f < jX{)\ >0} + Z fk (2)

k#j



Main Theorem

Theorem

Let Q be a smooth bounded domain such that Q C ST and Haq 2 0,
and let \p be a smooth positive function defined on Q. Assume f satisfy
(1)-(2) and there exists a smooth admissible * radial graph %:

X(x) = p(x)x over Q that satisfies

Flkg X)) >¥(x) in Q,
p=d ondQ

and is locally strictly convex (up to the boundary) in a neighbourhood of
0Q). Then there exists a smooth radial graph = : X(x) = p(x)x satisfying

f(kz[X]) =w(x) in Q,
p=¢ on Q.

15 is admissible if ks ([X]) € T for all X € .



Existence

Consider the auxiliary functions

— 3
w(pe) = (P20) oulo) + 1= b)), te 0

and

— 3
O*(px) = s(x) + (1— ) ("(px)) b, se, 1]

defined in the solid cylinder A ={X € Rn+L . ﬁ € Q).



Existence

Consider the auxiliary functions

— 3
w(pe) = (P20) oulo) + 1= b)), te 0

and 3
@(px) = sl + 151 (22) Wi, sefo
defined in the solid cylinder A ={X € Rn+L . ﬁ € Q).
Remark.
> @'(px) =P(x)
> ‘Pl 0N

> 55 (P¥(px)) <0

T
> 25 (p®@%(px)) <0 if p < 7.
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Existence

Consider the auxiliary equations

H(V3v,Vv,v) =¥{(X) inQ

EgA
v=—Ind onoQ (EaA):
and
H(V?v,Vv,v) =®°(X) inQ
(EqB)s
v=—Ind ondQ
Remark.
» v =—Inpis a solution of (EgA)o
» v =—Inp is a strictly subsolution of (EqA); for each t > 0
> %(H ¥ <0
> (EqA)1 = (EqB)o.



A priori estimates

Theorem
Let v > v be an admissible solution of

f(ke[X]) =Y(X) inQ
v=¢ on 0Q.

5uppose (pY) 0. Then we have the estimate
[Vilczia) < €

where C depends on infq v, [|v||c2a)
neighbourhood of 0Q) and other known data.

(A,): the convexity ofZina
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Existence

It follows from the a priori estimates that
» There exists a unique solution v° of (EqB)o.

» If v° is a solution of (EgB)s and v° > v then
V¥ llcoa(a) < G-
Consider the open set

O={we Cé'“(Q):W>OinQ, V,w >0 on 9Q),

w + v is admissible and ||wl|con(q) < G +

‘!”C“v“(ﬁ)}-
and the map
Mslw] = H(V2(w +v), V(w4 v), w+v) — D (w+v), weo.

We have
» w® =0 — v is the unique solution of My[w] =0in O
» There is no solution of M;[w] =0 on 90

» The Fréchet derivative of My at w? is invertible.



Existence

Then, by the degree theory developed by Yan Yan Li2, we can see that
the degree of M; on O at 0 deg(Ms, O, 0) is well defined and independet
of s. Moreover,

deg(Mp, 0,0) =+1#0

and we conclude that
deg(Ms, ©,0) #£ 0 for all s € [0, 1].

Let w! be a solution of My[w] = 0. Then the function v! = w! + v is the
desired solution.

2Li, YY., Degree theory for second order nonlinear elliptic operators and its
applications. Comm. in PDE’s. 14(11)(1989).
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Height and Gradient Bounds

Let p be the solution of the minimal surface equation in Q that satisfies
p = on 0.
Then
p<p<p inQ
and
p=p=p onodQ.
This yelds the height and boundary gradient estimates.

Under the condition

d
afp(pY(pX)) <0,

the interior gradient estimate follows as in the paper
Caftarelli, L., Nirenberg L. and Spruck, J., The Dirichlet Problem for Nonlinear

Second-Order Elliptic Equations IV: Starshaped compact Weingarten
hypersurfaces (1985).

Remark. Once established the second derivative boundary estimates, the
interior ones follow as above.



The Barrier Method

Set
u=1/p and @ =1/0.
The mixed second derivative boundary estimates are obtained applying

the barrier method to the function V u. We will make use of the
following version of the Maximum Principle.

Theorem (Maximum Principle)

Let v,w € C%(Q) and u an admissible function on Q. Assume that
GUVUW
GUVUV
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VoA

where Cy is a constant and U C Q. If v< w onoU, thenv < w in U.



The Barrier Method

Set

u=1/p and @ =1/0.
The mixed second derivative boundary estimates are obtained applying
the barrier method to the function V u. We will make use of the
following version of the Maximum Principle.

Theorem (Maximum Principle)

Let v,w € C%(Q) and u an admissible function on Q. Assume that
GUVUW
GUVUV

G(1+|Vw|) inU
G(1+[Vv]) in U,

VoA

where Cy is a constant and U C Q. If v< w onoU, thenv < w in U.

Rmk:
u=1/p = GNV?u,Vuu)=Y
0G

ij =
G aVUu




Lemma (Fundamental Inequality)

For some positive constants K and M sufficiently large depending on
lullcra), IV llcria,) and other known data, the function

K

O = Vk(u— (P) — E Z (vl(u_ (p))z

I<n
satisfies

GIV;® < M(1+|VO|+ G784+ GIV,0V;®) in Qs.



Lemma (Fundamental Inequality)

For some positive constants K and M sufficiently large depending on
lullcra), IV llcria,) and other known data, the function

K

O = Vk(u— (P) — E Z (vl(u_ (p))z

I<n

satisfies
GIV;® < M(1+|VO|+ G784+ GIV,0V;®) in Qs.
We choose
w=1—e %% 4 py(u—u)

to get )
GUV,'J'W < G(1+|Vw)).
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Barrier Function

Lemma

There exist some uniform positive constants t, 0, ¢ sufficiently small and
N sufficiently large depending on infg u, [|ullc2(q). supa, Y. the
convexity of u in a neighbourhood of Q) and other known data, such
that the function

O©=u—u+td—Nd? d=dist(-,00)

satisfies ) )
GUV,'J'@ <—(1+1|VO|+ GU5U) m Qg
and
>0 onoQs.
We choose
vV = —Codist(', Xo)2 — do@
to get

GiViv = G(1+|Vv])

and v < w on 0Q);.
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Double Normal Estimate

Let k' the roots of det(hyp — tgxp) = 0. It follows from the previous
estimates that the principal curvatures k; behave like

Ka =Kh+o0(1), 1<a<n—1,

hnn 1
“ g (1+o(5,)).
gnn hnn
as |hpn| — 00. Let T’ be the projection of T on R"~!. Thus, there exists a

uniform positive constant Ny > 0 satisfying

K €T if Vpou=No. (%)

Lemma
Let Ny > 0 be the constant defined in (*) and suppose that V pou > Np.
Then there exists a uniform constant ¢y > 0 such that

d(x) = dist(-,0T") > ¢ on Q).

Therefore an upper bound for k, follows from the previous established
estimates and the assumption that f is of unbounded type.
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