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I Among all domains of fixed volume in Rn+1, which one has

least boundary area?

isoperimetric problem⇒ the ball

I Which one has critical boundary area?

More general domains enclosed by immersed

hypersurfaces Σ:

Oriented volume: V (Σ) = 1
n+1

∫
Σ〈X , ν〉dS.

I |Σ| is critical among all hypersurfaces enclosing fixed

oriented volume. ⇔ Σ has constant mean curvature. 2



I Hopf conjecture: CMC immersion⇒ round sphere

counterexample: Wente torus

I CMC + extra condition⇒ sphere ?

Alexandrov: embedded + CMC (Σn ⊂ Rn+1)

Hopf: immersed CMC sphere (Σ2 ⊂ R3)

Barbosa-do Carmo: stable CMC (Σn ⊂ Rn+1)

I Σ is stable if the second variation of |Σ| is nonnegative for

all volume preserving perturbations.
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I Modified situation: Σ ⊂ Rn+1 → Σ ⊂ wedge W ,

∂Σ ⊂ Π1 ∪ Π2

I E(Σ) := |Σ| − |D1| cos θ1 − |D2| cos θ2: total energy

V̂ (Σ) := 1
n+1

∫
Σ∪D1∪D2

〈X , ν〉dS

I Finn: A critical point of E(Σ) among all hypersurfaces

Σ ⊂W with V̂ (Σ) = const is a capillary surface with

constant contact angles θ1, θ2.
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I McCuan: @ embedded annular capillary surface in W if

θ1 + θ2 ≤ π + α.

Park: embedded annular capillary surface in W ⇒ round.

McCuan: inversion

Park: Bonnet transform X + 1
H ν: CMC surface→ CMC

surface

I Generalize Alexandrov, Hopf, Barbosa-do Carmo for

capillary hypersurfaces in a wedge:

Is there an embedded capillary surface of genus ≥ 1 in W?

McCuan: No, if θi ≤ π/2.

Is there an immersed capillary nonspherical surface in W?

Yes, if g = 0. Wente, Bobenko, Heil

I What if Σ is stable?
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Theorem

Σn ⊂ Rn+1: immersed stable capillary hypersurface in a wedge

W, θi ≥ π/2, disjoint from the edge of W.

∂Σ: embedded for n = 2 or convex for n ≥ 3.

Then Σ is part of a round sphere.

I McCuan and Park’s theorems⇒ Σ with θi < π/2 is less

likely to exist.

I Σ with least total energy can intersect the edge of W and

can be nonspherical.
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I (CK) Σn ⊂ Rn+1: immersed stable capillary

hypersurface in a half-space, θ ≥ π/2.

∂Σ: embedded for n = 2 or convex for n ≥ 3.

⇒ Σ is a spherical cap.

I Wente (1980): An embedded capillary hypersurface in a

half-space ⊂ Rn+1 is a spherical cap.

I Nitsche: An immersed disk type capillary surface in a

half-space ⊂ R3 is a spherical cap.

I Marinov (2012): A stable capillary surface in a half-space

⊂ R3 with embedded boundary is a spherical cap.

I Ainouz-Souam (2015): An immersed stable capillary

hypersurface Σ in a half-space ⊂ Rn+1 with θ ≤ π/2 and

with embedded boundary is a spherical cap.
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I Barbosa-do Carmo used variation field (1 + H〈X , ν〉)ν.

Wente: variations by parallel surfaces and homotheties.

⇒ explicit computations of volume, area as polynomials.

I Proof. Σ1
t parallel hypersurface of Σ with distance t .

Σ : X , Σ1
t : X + tν

I Σ: constant contact angle⇒ ∂Σ1
t ⊂ hyperplanes // Πi .
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I |Σ1
t |: Weyl’s tube formula

Sr ⊂ R3: sphere of radius r ⇒ |Sr | = 4πr2,

|Sr+t | = 4π(r + t)2 = 4πr2 + 8πrt + 4πt2.

I |Σ1
t | = |Σ|+

(∫
Σ nHdS

)
t +

(∫
Σ

∑
i<j kikjdS

)
t2 + · · ·

+
(∫

Σ k1k2 · · · kndS
)

tn.

I ∃ a such that Σ2
t := Σ1

t + ta has boundary ∂Σ2
t ⊂ Π1 ∪ Π2.

V̂ (Σ2
t ) = V̂ (Σ1

t )

I d
dt V̂ (Σ2

t ) = |Σ2
t | − cos θ1|Dt

1| − cos θ2|Dt
2|

= E(Σ2
t )
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I Σ: constant contact angle⇒ ∂Dt
i are parallel surfaces of

∂Di .

∴ |Dt
i | = |Di |+

∫ t
0 |∂Dt

i | sin θidt

= |Di |+ |∂Di |t sin θi + 1
2

∫
∂Di

(n − 1)H̄dS · t2 sin θi + · · ·

I d
dt V̂ (Σ2

t ) = |Σ2
t | − cos θ1|Dt

1| − cos θ2|Dt
2|

= {|Σ| −
∑

i cos θi |Di |}+ {nH|Σ| −
∑

i cos θi sin θi |∂Di |} t

+
{∫

Σ

∑
i<j kikj dS − 1

2
∑

i cos θi sin2 θi
∫
∂Di

(n − 1)H̄dS
}

t2+

· · ·

= E(Σ2
t ) := e0 + e1t + e2t2 + · · ·+ entn.

I V̂ (Σ2
t ) := v0 + v1t + · · ·+ vn+1tn+1.

∴ d
dt V̂ (Σ2

t ) = E(Σ2
t )⇒ v1 = e0, 2v2 = e1.
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I V̂ (Σ2
t ) = V̂ (Σ1

t ) > V̂ (Σ).

Introduce Σ3
t := s(t)Σ2

t , contraction centered at O such

that V̂ (Σ3
t ) = V̂ (Σ) = v0.

∴ ∂Σ3
t ⊂ Π1 ∪ Π2.

I

{
V̂ (Σ3

t ) = s(t)n+1(v0 + v1t + · · ·+ vn+1tn+1) = v0.

E(Σ3
t ) = s(t)n(e0 + e1t + e2t2 + · · ·+ entn).

I s(t)n = 1− n
n+1

v1
v0

t +

{
n(2n+1)
2(n+1)2

(
v1
v0

)2
− n

n+1

(
v2
v0

)}
t2 + · · ·

I ∴ E(Σ3
t ) = e0 +

{
e1 − n

n−1
v1
v0

e0

}
t +{

e2 − n
n+1

v1
v0

e1 + n(2n+1)
2(n+1)2

(
v1
v0

)2
e0 − n

n+1

(
v2
v0

)
e0

}
t2 + · · ·

I
(

d
dt V̂ (Σ2

t ) = E(Σ2
t )⇒ v1 = e0, 2v2 = e1

)
.

E ′(0) = 0⇒ v0 = n
n+1

e2
0

e1
.

E ′′(0) = 1
ne0
{2ne0e2 − (n − 1)e2

1} ≥ 0.
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I ne0E ′′(0) = 2n(|Σ| −
∑

i cos θi |Di |)×(∫
Σ

∑
i<j kikjdS − 1

2
∑

i cos θi sin2 θi ·
∫
∂Di

(n − 1)H̄dS
)

−(n − 1)(nH|Σ| −
∑

i cos θi sin θi |∂Di |)2.
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I Balancing formula

∆ΣX = nHν: Integrate over Σ.

{ ∫
Σ νdS → −

∫
Di
νdS → |Di |∫

Σ ∆ΣXdS =
∫
∂Σ η =

∫
∂Di

η> +
∫
∂Di

η⊥ → |∂Di |

I ∴ nH|Di | = sin θi |∂Di |
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I ne0E ′′(0) = (|Σ| −
∑

i cos θi |Di |)× {−
∫

Σ

∑
i<j(ki − kj)

2dS

−(n − 1)
∑

i cos θi sin2 θi

(
n
∫
∂Di

H̄dS − |∂Di |2
|Di |

)
}

E ′′(0) ≤ 0.

But stability⇒ E ′′(0) ≥ 0.

∴ E ′′(0) = 0, umbilic everywhere.

I n
∫
∂Di

H̄dS − |∂Di |2
|Di | ≤ 0 ??
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I Minkowski inequality

Minkowski sum of A,B ⊂ Rn :

A + B = {a + b : a ∈ A,b ∈ B}

I D: convex body in Rn, B: unit ball in Rn.

Steiner formula: |D + tB| =
∑n

j=0

(
n
j

)
Wj(D)t j ,

Wj(D) : j th quermassintegral of D.

I d
dt |D + tB| = |∂(D + tB)|

∴ W0(D) = |D|,

nW1(D) = |∂D|,

nW2(D) =

∫
∂D

HdS,

n(n − 1)(n − 2)W3(D) = 2
∫
∂D

∑
i<j

kikjdS.
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I Alexandrov-Fenchel inequality:

Wi(D)2 ≥Wi−1(D) ·Wi+1(D).

∴ W1(D)2 ≥W0(D) ·W2(D): n
∫
∂D HdS ≤ |∂D|2

|D| : Minkowski

W2(D)2 ≥W1(D) ·W3(D):∫
∂D
∑

i<j kikjdS ≤ (n−1)(n−2)
2n2

|∂D|3
|D|2 .

I D ⊂ R2 :
∫
∂D kds = 2π.

∴ Minkowski⇒ 4π|D| ≤ |∂D|2.

(Theorem) Di ⊂ Πi ⊂ R3: embedded, not necessarily

convex

D ⊂ R3 :
∫
∂D k1k2dS = 4π.

∴ Minkowski⇒ 36π|D|2 ≤ |∂D|3.

I n
∫
∂D HdS ≤ |∂D|2

|D| ⇔ n |∂Dt |′
|∂Dt | ≤ (n − 1) |Dt |′

|Dt | ⇔
(
|∂Dt |n
|Dt |n−1

)′
≤ 0.

⇒ Dt becomes rounder as t increases.
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Capillary surfaces in a slab

I Examples: cylinder, unduloid, nodoid, catenoid

I Wente (1980): An embedded capillary hypersurface in a

slab ⊂ Rn+1 is rotationally invariant. (∴ spherical,

Delaunay)

I Ros (2007): A stable capillary surface in a slab ⊂ R3 with

θ = π/2 is a cylinder.

I Ainouz-Souam (2015): An immersed stable capillary

surface of genus 0 in a slab ⊂ R3 with contact angles θ1, θ2

is a Delaunay surface.

17



I Among embedded rotationally symmetric capillary

hypersurfaces in a slab ⊂ Rn+1 with θ = π/2 only the

circular cylinders are stable for 2 ≤ n ≤ 7;

Some unduloids are also stable for n ≥ 9.

(n = 2: Athanassenas, Vogel, n ≥ 3: Pedrosa-Ritoré)

I Ainouz-Souam (2015): If Σ ⊂ Rn+1 is an immersed stable

capillary hypersurface in a slab with θ = π/2 and with

embedded boundary, then Σ is rotationally symmetric.
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Capillary surfaces in a ball

I Nitsche: A capillary disk in a ball ⊂ R3 is a spherical cap.

I Ros-Souam: (i) A stable capillary surface of genus 0 in a

ball ⊂ R3 is a spherical cap.

(ii) A stable minimal surface with constant contact angle in

a ball ⊂ R3 is a flat disk or a surface of genus 1 with at

most 3 boundary components.

I Ros-Vergasta: A stable minimal hypersurface in a ball

B ⊂ Rn,⊥ ∂B, is totally geodesic.
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Problems

I If Σ is a minimal annulus in a ball B ⊂ R3 and orthogonal

to ∂B, is Σ the catenoidal waist?

Fraser-Schoen (2013): For all n ≥ 3, ∃ minimal surface of

genus 0, #(ends) = n, and with free boundary in B.

Kapouleas-Li (2015): ∃ minimal surface of sufficiently large

genus with free boundary in B (3 boundary components).

Zolotareva et al. (2015): ∃ minimal surface of genus 1,

sufficiently large number of ends, and with free boundary

in B.

I Show that a minimal surface with connected free boundary

in B is flat.
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I Let Σ ⊂ R3 be a capillary surface in a solid cylinder C.

Show that if the boundaries of Σ are not null homotopic in

the surface cylinder ∂C then Σ is part of the Delaunay

surface. Do we need to assume that Σ is stable?

I Let Σ ⊂ R3 be a capillary surface outside C whose

boundaries are not null homotopic on ∂C. Prove that Σ is

also part of the Delaunay surface with (or without) the

stability assumption.
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I Let Σ be a CMC surface in a half space H ⊂ R3 making a

constant contact angle 6= π/2 with the plane ∂H. Can one

extend Σ across ∂H analytically? In case Σ is minimal, an

affirmative answer is obtained in [C]. The Schwarz

reflection principle and the Weierstrass representation

formula are used in the proof of [C].

[C] J. Choe, On the analytic reflection of a minimal

surface, Pacific J. Math. 157 (1993), 29-35.

I Let Σ1,Σ2 be compact minimal surfaces in S3. Suppose

they intersect at a constant angle 6= π/2. Is it true that they

are both great spheres or both Clifford tori?
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