STABLE CAPILLARY HYPERSURFACES IN A WEDGE

Jaigyoung Choe

KIAS

(Joint with Miyuki Koiso)

Among all domains of fixed volume in Rⁿ⁺¹, which one has least boundary area?

isoperimetric problem \Rightarrow the ball

 Which one has critical boundary area?
 More general domains enclosed by immersed hypersurfaces Σ:

Oriented volume: $V(\Sigma) = \frac{1}{n+1} \int_{\Sigma} \langle X, \nu \rangle dS.$

 |Σ| is critical among all hypersurfaces enclosing fixed oriented volume. ⇔ Σ has constant mean curvature.

- ► Hopf conjecture: CMC immersion ⇒ round sphere counterexample: Wente torus
- CMC + extra condition \Rightarrow sphere ? Alexandrov: embedded + CMC ($\Sigma^n \subset \mathbb{R}^{n+1}$) Hopf: immersed CMC sphere ($\Sigma^2 \subset \mathbb{R}^3$) Barbosa-do Carmo: stable CMC ($\Sigma^n \subset \mathbb{R}^{n+1}$)
- Σ is stable if the second variation of |Σ| is nonnegative for all volume preserving perturbations.

► Modified situation: $\Sigma \subset \mathbb{R}^{n+1} \to \Sigma \subset$ wedge W, $\partial \Sigma \subset \Pi_1 \cup \Pi_2$

- $E(\Sigma) := |\Sigma| |D_1| \cos \theta_1 |D_2| \cos \theta_2$: total energy $\widehat{V}(\Sigma) := \frac{1}{n+1} \int_{\Sigma \cup D_1 \cup D_2} \langle X, \nu \rangle dS$
- Finn: A critical point of E(Σ) among all hypersurfaces
 Σ ⊂ W with V(Σ) = const is a capillary surface with constant contact angles θ₁, θ₂.

► McCuan: \nexists embedded annular capillary surface in *W* if

 $\theta_1 + \theta_2 \le \pi + \alpha.$

Park: embedded annular capillary surface in $W \Rightarrow$ round. McCuan: inversion

Park: Bonnet transform $X + \frac{1}{H}\nu$: CMC surface \rightarrow CMC surface

 Generalize Alexandrov, Hopf, Barbosa-do Carmo for capillary hypersurfaces in a wedge:

Is there an embedded capillary surface of genus \geq 1 in *W*? McCuan: No, if $\theta_i \leq \pi/2$.

Is there an immersed capillary nonspherical surface in W?

Yes, if g = 0. Wente, Bobenko, Heil

What if Σ is stable?

Theorem

 $\Sigma^n \subset \mathbb{R}^{n+1}$: immersed stable capillary hypersurface in a wedge $W, \theta_i \geq \pi/2$, disjoint from the edge of W. $\partial \Sigma$: embedded for n = 2 or convex for $n \geq 3$. Then Σ is part of a round sphere.

- McCuan and Park's theorems ⇒ Σ with θ_i < π/2 is less likely to exist.
- Σ with least total energy can intersect the edge of W and can be nonspherical.

- (CK) Σⁿ ⊂ ℝⁿ⁺¹: immersed stable capillary hypersurface in a half-space, θ ≥ π/2.
 ∂Σ: embedded for n = 2 or convex for n ≥ 3.
 ⇒ Σ is a spherical cap.
- Wente (1980): An embedded capillary hypersurface in a half-space ⊂ ℝⁿ⁺¹ is a spherical cap.
- ► Nitsche: An immersed disk type capillary surface in a half-space ⊂ ℝ³ is a spherical cap.
- Marinov (2012): A stable capillary surface in a half-space
 ⊂ ℝ³ with embedded boundary is a spherical cap.
- Ainouz-Souam (2015): An immersed stable capillary hypersurface Σ in a half-space ⊂ ℝⁿ⁺¹ with θ ≤ π/2 and with embedded boundary is a spherical cap.

- ▶ Barbosa-do Carmo used variation field (1 + H⟨X, ν⟩)ν.
 Wente: variations by parallel surfaces and homotheties.
 ⇒ explicit computations of volume, area as polynomials.
- **Proof.** Σ_t^1 parallel hypersurface of Σ with distance *t*.

 $\Sigma : X, \quad \Sigma_t^1 : X + t\nu$

• Σ : constant contact angle $\Rightarrow \partial \Sigma_t^1 \subset$ hyperplanes // Π_i .

• $|\Sigma_t^1|$: Weyl's tube formula

$$S_r \subset \mathbb{R}^3: \text{ sphere of radius } r \Rightarrow |S_r| = 4\pi r^2,$$

$$|S_{r+t}| = 4\pi (r+t)^2 = 4\pi r^2 + 8\pi rt + 4\pi t^2.$$

$$|\Sigma_t^1| = |\Sigma| + \left(\int_{\Sigma} nHdS\right) t + \left(\int_{\Sigma} \sum_{i < j} k_i k_j dS\right) t^2 + \frac{1}{2} \left(\int_{\Sigma} k_1 k_2 \cdots k_n dS\right) t^n.$$

- ► \exists *a* such that $\Sigma_t^2 := \Sigma_t^1 + ta$ has boundary $\partial \Sigma_t^2 \subset \Pi_1 \cup \Pi_2$. $\widehat{V}(\Sigma_t^2) = \widehat{V}(\Sigma_t^1)$
- $\stackrel{d}{dt} \widehat{V}(\Sigma_t^2) = |\Sigma_t^2| \cos \theta_1 |D_1^t| \cos \theta_2 |D_2^t|$ $= E(\Sigma_t^2)$

. .

• Σ : constant contact angle $\Rightarrow \partial D_i^t$ are parallel surfaces of ∂D_i .

$$\therefore |D_i^t| = |D_i| + \int_0^t |\partial D_i^t| \sin \theta_i dt$$

= $|D_i| + |\partial D_i| t \sin \theta_i + \frac{1}{2} \int_{\partial D_i} (n-1) \overline{H} dS \cdot t^2 \sin \theta_i + \cdots$
$$= \frac{d}{dt} \widehat{V}(\Sigma_t^2) = |\Sigma_t^2| - \cos \theta_1 |D_1^t| - \cos \theta_2 |D_2^t|$$

= $\{|\Sigma| - \sum_i \cos \theta_i |D_i|\} + \{nH|\Sigma| - \sum_i \cos \theta_i \sin \theta_i |\partial D_i|\} t$
+ $\{\int_{\Sigma} \sum_{i < j} k_i k_j dS - \frac{1}{2} \sum_i \cos \theta_i \sin^2 \theta_i \int_{\partial D_i} (n-1) \overline{H} dS \} t^2 + \cdots$

$$= E(\Sigma_t^2) := e_0 + e_1 t + e_2 t^2 + \dots + e_n t^n.$$

$$\widehat{V}(\Sigma_t^2) := v_0 + v_1 t + \dots + v_{n+1} t^{n+1}.$$

$$\therefore \frac{d}{dt} \widehat{V}(\Sigma_t^2) = E(\Sigma_t^2) \Rightarrow v_1 = e_0, \ 2v_2 = e_1.$$

•
$$\widehat{V}(\Sigma_t^2) = \widehat{V}(\Sigma_t^1) > \widehat{V}(\Sigma).$$

Introduce $\Sigma_t^3 := s(t)\Sigma_t^2$, contraction centered at O such that $\widehat{V}(\Sigma_t^3) = \widehat{V}(\Sigma) = v_0$. $\therefore \partial \Sigma^3_t \subset \Pi_1 \cup \Pi_2.$ $\begin{cases} \widehat{V}(\Sigma_t^3) = s(t)^{n+1}(v_0 + v_1t + \dots + v_{n+1}t^{n+1}) = v_0. \\ E(\Sigma_t^3) = s(t)^n(e_0 + e_1t + e_2t^2 + \dots + e_nt^n). \end{cases}$ ► $s(t)^n = 1 - \frac{n}{n+1} \frac{v_1}{v_0} t + \left\{ \frac{n(2n+1)}{2(n+1)^2} \left(\frac{v_1}{v_0} \right)^2 - \frac{n}{n+1} \left(\frac{v_2}{v_0} \right) \right\} t^2 + \cdots$ • $\therefore E(\Sigma_t^3) = e_0 + \left\{ e_1 - \frac{n}{n-1} \frac{v_1}{v_0} e_0 \right\} t +$ $\left\{ e_2 - \frac{n}{n+1} \frac{v_1}{v_0} e_1 + \frac{n(2n+1)}{2(n+1)^2} \left(\frac{v_1}{v_0} \right)^2 e_0 - \frac{n}{n+1} \left(\frac{v_2}{v_0} \right) e_0 \right\} t^2 + \cdots$ $\blacktriangleright \left(\frac{d}{dt}\widehat{V}(\Sigma_t^2) = E(\Sigma_t^2) \Rightarrow v_1 = e_0, \ 2v_2 = e_1\right).$ $E'(0)=0 \Rightarrow V_0=\frac{n}{n+1}\frac{e_0^2}{e_1}.$ $E''(0) = \frac{1}{ne_0} \{2ne_0e_2 - (n-1)e_1^2\} \ge 0.$

11

►
$$ne_0 E''(0) = 2n(|\Sigma| - \sum_i \cos \theta_i |D_i|) \times$$

 $\left(\int_{\Sigma} \sum_{i < j} k_i k_j dS - \frac{1}{2} \sum_i \cos \theta_i \sin^2 \theta_i \cdot \int_{\partial D_i} (n-1) \bar{H} dS\right)$
 $-(n-1)(nH|\Sigma| - \sum_i \cos \theta_i \sin \theta_i |\partial D_i|)^2.$

Balancing formula

 $\Delta_{\Sigma} X = n H \nu$: Integrate over Σ .

$$\int_{\Sigma} \Delta_{\Sigma} X dS = \int_{\partial \Sigma} \eta = \int_{\partial D_i} \eta^{\top} + \int_{\partial D_i} \eta^{\perp} \to |\partial D_i|$$

 $:: nH|D_i| = \sin \theta_i |\partial D_i|$

►
$$ne_0 E''(0) = (|\Sigma| - \sum_i \cos \theta_i |D_i|) \times \{-\int_{\Sigma} \sum_{i < j} (k_i - k_j)^2 dS$$

 $-(n-1) \sum_i \cos \theta_i \sin^2 \theta_i \left(n \int_{\partial D_i} \overline{H} dS - \frac{|\partial D_i|^2}{|D_i|}\right)\}$
 $E''(0) \le 0.$

But stability $\Rightarrow E''(0) \ge 0$.

 $\therefore E''(0) = 0$, umbilic everywhere.

•
$$n \int_{\partial D_i} \bar{H} dS - rac{|\partial D_i|^2}{|D_i|} \le 0$$
 ??

Minkowski inequality

Minkowski sum of $A, B \subset \mathbb{R}^n$:

 $\textit{A} + \textit{B} = \{\textit{a} + \textit{b} : \textit{a} \in \textit{A}, \textit{b} \in \textit{B}\}$

► *D*: convex body in \mathbb{R}^n , *B*: unit ball in \mathbb{R}^n . Steiner formula: $|D + tB| = \sum_{j=0}^n \binom{n}{j} W_j(D)t^j$, $W_j(D) : j$ th **quermassintegral** of *D*.

$$\frac{d}{dt}|D+tB| = |\partial(D+tB)|$$

$$\therefore W_0(D) = |D|,$$

$$nW_1(D) = |\partial D|,$$

$$nW_2(D) = \int_{\partial D} HdS,$$

$$n(n-1)(n-2)W_3(D) = 2\int_{\partial D} \sum_{i < j} k_i k_j dS.$$

Alexandrov-Fenchel inequality:

 $W_i(D)^2 > W_{i-1}(D) \cdot W_{i+1}(D).$ $\therefore W_1(D)^2 \ge W_0(D) \cdot W_2(D)$: $n \int_{\partial D} H dS \le \frac{|\partial D|^2}{|D|}$: Minkowski $W_2(D)^2 > W_1(D) \cdot W_3(D)$: $\int_{\partial D} \sum_{i < i} k_i k_i dS \leq \frac{(n-1)(n-2)}{2n^2} \frac{|\partial D|^3}{|D|^2}.$ • $D \subset \mathbb{R}^2$: $\int_{\partial D} k ds = 2\pi$. \therefore Minkowski $\Rightarrow 4\pi |D| < |\partial D|^2$. (Theorem) $D_i \subset \Pi_i \subset \mathbb{R}^3$: embedded, not necessarily convex $D \subset \mathbb{R}^3$: $\int_{\partial D} k_1 k_2 dS = 4\pi$.

 \therefore Minkowski $\Rightarrow 36\pi |D|^2 \le |\partial D|^3$.

►
$$n \int_{\partial D} HdS \leq \frac{|\partial D|^2}{|D|} \Leftrightarrow n \frac{|\partial D_t|'}{|\partial D_t|} \leq (n-1) \frac{|D_t|'}{|D_t|} \Leftrightarrow \left(\frac{|\partial D_t|^n}{|D_t|^{n-1}}\right)' \leq 0.$$

⇒ D_t becomes rounder as *t* increases.

Capillary surfaces in a slab

- Examples: cylinder, unduloid, nodoid, catenoid
- Wente (1980): An embedded capillary hypersurface in a slab ⊂ ℝⁿ⁺¹ is rotationally invariant. (∴ spherical, Delaunay)
- <u>Ros</u> (2007): A stable capillary surface in a slab $\subset \mathbb{R}^3$ with $\theta = \pi/2$ is a cylinder.
- <u>Ainouz-Souam</u> (2015): An immersed stable capillary surface of genus 0 in a slab ⊂ ℝ³ with contact angles θ₁, θ₂ is a Delaunay surface.

- Among embedded rotationally symmetric capillary hypersurfaces in a slab ⊂ ℝⁿ⁺¹ with θ = π/2 only the circular cylinders are stable for 2 ≤ n ≤ 7;
 Some unduloids are also stable for n ≥ 9.
 (n = 2: Athanassenas, Vogel, n ≥ 3: Pedrosa-Ritoré)
- Ainouz-Souam (2015): If Σ ⊂ ℝⁿ⁺¹ is an immersed stable capillary hypersurface in a slab with θ = π/2 and with embedded boundary, then Σ is rotationally symmetric.

Capillary surfaces in a ball

- ▶ <u>Nitsche</u>: A capillary disk in a ball $\subset \mathbb{R}^3$ is a spherical cap.
- <u>Ros-Souam</u>: (i) A stable capillary surface of genus 0 in a ball ⊂ ℝ³ is a spherical cap.

(ii) A stable minimal surface with constant contact angle in a ball $\subset \mathbb{R}^3$ is a flat disk or a surface of genus 1 with at most 3 boundary components.

► <u>Ros-Vergasta</u>: A stable minimal hypersurface in a ball $B \subset \mathbb{R}^n, \perp \partial B$, is totally geodesic.

Problems

If Σ is a minimal annulus in a ball B ⊂ ℝ³ and orthogonal to ∂B, is Σ the catenoidal waist?

<u>Fraser-Schoen</u> (2013): For all $n \ge 3$, \exists minimal surface of genus 0, #(ends) = n, and with free boundary in *B*. <u>Kapouleas-Li</u> (2015): \exists minimal surface of sufficiently large genus with free boundary in *B* (3 boundary components). <u>Zolotareva et al.</u> (2015): \exists minimal surface of genus 1, sufficiently large number of ends, and with free boundary in *B*.

Show that a minimal surface with connected free boundary in *B* is flat.

- Let Σ ⊂ ℝ³ be a capillary surface in a solid cylinder C. Show that if the boundaries of Σ are not null homotopic in the surface cylinder ∂C then Σ is part of the Delaunay surface. Do we need to assume that Σ is stable?
- Let Σ ⊂ ℝ³ be a capillary surface **outside** C whose boundaries are not null homotopic on ∂C. Prove that Σ is also part of the Delaunay surface with (or without) the stability assumption.

- Let Σ be a CMC surface in a half space $\mathbb{H} \subset \mathbb{R}^3$ making a constant contact angle $\neq \pi/2$ with the plane $\partial \mathbb{H}$. Can one extend Σ across $\partial \mathbb{H}$ analytically? In case Σ is minimal, an affirmative answer is obtained in [C]. The Schwarz reflection principle and the Weierstrass representation formula are used in the proof of [C]. [C] J. Choe, On the analytic reflection of a minimal
 - surface, Pacific J. Math. 157 (1993), 29-35.
- Let Σ₁, Σ₂ be compact minimal surfaces in S³. Suppose they intersect at a constant angle ≠ π/2. Is it true that they are both great spheres or both Clifford tori?