STABLE CAPILLARY HYPERSURFACES IN A WEDGE

Jaigyoung Choe

KIAS
(Joint with Miyuki Koiso)

- Among all domains of fixed volume in \mathbb{R}^{n+1}, which one has least boundary area?
isoperimetric problem \Rightarrow the ball
- Which one has critical boundary area?

More general domains enclosed by immersed hypersurfaces Σ :
Oriented volume: $V(\Sigma)=\frac{1}{n+1} \int_{\Sigma}\langle X, \nu\rangle d S$.

- $|\Sigma|$ is critical among all hypersurfaces enclosing fixed oriented volume. $\Leftrightarrow \Sigma$ has constant mean curvature.
- Hopf conjecture: CMC immersion \Rightarrow round sphere counterexample: Wente torus
- CMC + extra condition \Rightarrow sphere ?

Alexandrov: embedded $+\operatorname{CMC}\left(\Sigma^{n} \subset \mathbb{R}^{n+1}\right)$
Hopf: immersed CMC sphere $\left(\Sigma^{2} \subset \mathbb{R}^{3}\right)$
Barbosa-do Carmo: stable CMC $\left(\Sigma^{n} \subset \mathbb{R}^{n+1}\right)$

- Σ is stable if the second variation of $|\Sigma|$ is nonnegative for all volume preserving perturbations.
- Modified situation: $\Sigma \subset \mathbb{R}^{n+1} \rightarrow \Sigma \subset$ wedge W,

$$
\partial \Sigma \subset \Pi_{1} \cup \Pi_{2}
$$

- $E(\Sigma):=|\Sigma|-\left|D_{1}\right| \cos \theta_{1}-\left|D_{2}\right| \cos \theta_{2}$: total energy $\widehat{V}(\Sigma):=\frac{1}{n+1} \int_{\Sigma \cup D_{1} \cup D_{2}}\langle X, \nu\rangle d S$
- Finn: A critical point of $E(\Sigma)$ among all hypersurfaces
$\Sigma \subset W$ with $\widehat{V}(\Sigma)=$ const is a capillary surface with constant contact angles θ_{1}, θ_{2}.
- McCuan: \nexists embedded annular capillary surface in W if $\theta_{1}+\theta_{2} \leq \pi+\alpha$.
Park: embedded annular capillary surface in $W \Rightarrow$ round.
McCuan: inversion
Park: Bonnet transform $X+\frac{1}{H} \nu:$ CMC surface \rightarrow CMC surface
- Generalize Alexandrov, Hopf, Barbosa-do Carmo for capillary hypersurfaces in a wedge:
Is there an embedded capillary surface of genus ≥ 1 in W ?
McCuan: No, if $\theta_{i} \leq \pi / 2$.
Is there an immersed capillary nonspherical surface in W ?
Yes, if $g=0$. Wente, Bobenko, Heil
- What if Σ is stable?

Theorem

$\Sigma^{n} \subset \mathbb{R}^{n+1}$: immersed stable capillary hypersurface in a wedge $W, \theta_{i} \geq \pi / 2$, disjoint from the edge of W.
$\partial \Sigma$: embedded for $n=2$ or convex for $n \geq 3$.
Then Σ is part of a round sphere.

- McCuan and Park's theorems $\Rightarrow \Sigma$ with $\theta_{i}<\pi / 2$ is less likely to exist.
- Σ with least total energy can intersect the edge of W and can be nonspherical.
- (CK) $\quad \Sigma^{n} \subset \mathbb{R}^{n+1}$: immersed stable capillary hypersurface in a half-space, $\theta \geq \pi / 2$.
$\partial \Sigma$: embedded for $n=2$ or convex for $n \geq 3$.
$\Rightarrow \Sigma$ is a spherical cap.
- Wente (1980): An embedded capillary hypersurface in a half-space $\subset \mathbb{R}^{n+1}$ is a spherical cap.
- Nitsche: An immersed disk type capillary surface in a half-space $\subset \mathbb{R}^{3}$ is a spherical cap.
- Marinov (2012): A stable capillary surface in a half-space $\subset \mathbb{R}^{3}$ with embedded boundary is a spherical cap.
- Ainouz-Souam (2015): An immersed stable capillary hypersurface Σ in a half-space $\subset \mathbb{R}^{n+1}$ with $\theta \leq \pi / 2$ and with embedded boundary is a spherical cap.
- Barbosa-do Carmo used variation field (1+H〈X, $\nu\rangle) \nu$.

Wente: variations by parallel surfaces and homotheties.
\Rightarrow explicit computations of volume, area as polynomials.

- Proof. Σ_{t}^{1} parallel hypersurface of Σ with distance t.

$$
\Sigma: X, \quad \Sigma_{t}^{1}: X+t \nu
$$

- Σ : constant contact angle $\Rightarrow \partial \Sigma_{t}^{1} \subset$ hyperplanes $/ / \Pi_{i}$.
- $\left|\Sigma_{t}^{1}\right|$: Weyl's tube formula
$S_{r} \subset \mathbb{R}^{3}$: sphere of radius $r \Rightarrow\left|S_{r}\right|=4 \pi r^{2}$,

$$
\left|S_{r+t}\right|=4 \pi(r+t)^{2}=4 \pi r^{2}+8 \pi r t+4 \pi t^{2}
$$

$$
\left|\Sigma_{t}^{1}\right|=|\Sigma|+\left(\int_{\Sigma} n H d S\right) t+\left(\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S\right) t^{2}+\cdots
$$

$$
+\left(\int_{\Sigma} k_{1} k_{2} \cdots k_{n} d S\right) t^{n}
$$

- \exists a such that $\Sigma_{t}^{2}:=\Sigma_{t}^{1}+$ ta has boundary $\partial \Sigma_{t}^{2} \subset \Pi_{1} \cup \Pi_{2}$. $\widehat{V}\left(\Sigma_{t}^{2}\right)=\widehat{V}\left(\Sigma_{t}^{1}\right)$
- $\frac{d}{d t} \widehat{V}\left(\Sigma_{t}^{2}\right)=\left|\Sigma_{t}^{2}\right|-\cos \theta_{1}\left|D_{1}^{t}\right|-\cos \theta_{2}\left|D_{2}^{t}\right|$

$$
=E\left(\Sigma_{t}^{2}\right)
$$

- Σ : constant contact angle $\Rightarrow \partial D_{i}^{t}$ are parallel surfaces of ∂D_{i}.
$\therefore\left|D_{i}^{t}\right|=\left|D_{i}\right|+\int_{0}^{t}\left|\partial D_{i}^{t}\right| \sin \theta_{i} d t$
$=\left|D_{i}\right|+\left|\partial D_{i}\right| t \sin \theta_{i}+\frac{1}{2} \int_{\partial D_{i}}(n-1) \bar{H} d S \cdot t^{2} \sin \theta_{i}+\cdots$
- $\frac{d}{d t} \widehat{V}\left(\Sigma_{t}^{2}\right)=\left|\Sigma_{t}^{2}\right|-\cos \theta_{1}\left|D_{1}^{t}\right|-\cos \theta_{2}\left|D_{2}^{t}\right|$
$=\left\{|\Sigma|-\sum_{i} \cos \theta_{i}\left|D_{i}\right|\right\}+\left\{n H|\Sigma|-\sum_{i} \cos \theta_{i} \sin \theta_{i}\left|\partial D_{i}\right|\right\} t$
$+\left\{\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S-\frac{1}{2} \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \int_{\partial D_{i}}(n-1) \bar{H} d S\right\} t^{2}+$
$=E\left(\Sigma_{t}^{2}\right):=e_{0}+e_{1} t+e_{2} t^{2}+\cdots+e_{n} t^{n}$.
- $\widehat{V}\left(\Sigma_{t}^{2}\right):=v_{0}+v_{1} t+\cdots+v_{n+1} t^{n+1}$.
$\therefore \frac{d}{d t} \widehat{V}\left(\Sigma_{t}^{2}\right)=E\left(\Sigma_{t}^{2}\right) \Rightarrow v_{1}=e_{0}, 2 v_{2}=e_{1}$.
- $\widehat{V}\left(\Sigma_{t}^{2}\right)=\widehat{V}\left(\Sigma_{t}^{1}\right)>\widehat{V}(\Sigma)$.

Introduce $\Sigma_{t}^{3}:=s(t) \Sigma_{t}^{2}$, contraction centered at O such that $\widehat{V}\left(\Sigma_{t}^{3}\right)=\widehat{V}(\Sigma)=v_{0}$.
$\therefore \partial \Sigma_{t}^{3} \subset \Pi_{1} \cup \Pi_{2}$.
$-\left\{\begin{array}{l}\widehat{V}\left(\Sigma_{t}^{3}\right)=s(t)^{n+1}\left(v_{0}+v_{1} t+\cdots+v_{n+1} t^{n+1}\right)=v_{0} . \\ E\left(\Sigma_{t}^{3}\right)=s(t)^{n}\left(e_{0}+e_{1} t+e_{2} t^{2}+\cdots+e_{n} t^{n}\right) .\end{array}\right.$

- $s(t)^{n}=1-\frac{n}{n+1} \frac{v_{1}}{v_{0}} t+\left\{\frac{n(2 n+1)}{2(n+1)^{2}}\left(\frac{v_{1}}{v_{0}}\right)^{2}-\frac{n}{n+1}\left(\frac{v_{2}}{v_{0}}\right)\right\} t^{2}+\cdots$
- $\therefore E\left(\Sigma_{t}^{3}\right)=e_{0}+\left\{e_{1}-\frac{n}{n-1} \frac{v_{1}}{v_{0}} e_{0}\right\} t+$
$\left\{e_{2}-\frac{n}{n+1} \frac{v_{1}}{v_{0}} e_{1}+\frac{n(2 n+1)}{2(n+1)^{2}}\left(\frac{v_{1}}{v_{0}}\right)^{2} e_{0}-\frac{n}{n+1}\left(\frac{v_{2}}{v_{0}}\right) e_{0}\right\} t^{2}+\cdots$
- $\left(\frac{d}{d t} \widehat{V}\left(\Sigma_{t}^{2}\right)=E\left(\Sigma_{t}^{2}\right) \Rightarrow v_{1}=e_{0}, 2 v_{2}=e_{1}\right)$.
$E^{\prime}(0)=0 \Rightarrow v_{0}=\frac{n}{n+1} \frac{e_{0}^{2}}{e_{1}}$.
$E^{\prime \prime}(0)=\frac{1}{n e_{0}}\left\{2 n e_{0} e_{2}-(n-1) e_{1}^{2}\right\} \geq 0$.
- $n e_{0} E^{\prime \prime}(0)=2 n\left(|\Sigma|-\sum_{i} \cos \theta_{i}\left|D_{i}\right|\right) \times$
$\left(\int_{\Sigma} \sum_{i<j} k_{i} k_{j} d S-\frac{1}{2} \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i} \cdot \int_{\partial D_{i}}(n-1) \bar{H} d S\right)$ $-(n-1)\left(n H|\Sigma|-\sum_{i} \cos \theta_{i} \sin \theta_{i}\left|\partial D_{i}\right|\right)^{2}$.
- Balancing formula
$\Delta_{\Sigma} X=n H \nu$: Integrate over Σ.

$$
\left\{\begin{array}{l}
\int_{\Sigma} \nu d S \rightarrow-\int_{D_{i}} \nu d S \rightarrow\left|D_{i}\right| \\
\int_{\Sigma} \Delta_{\Sigma} X d S=\int_{\partial \Sigma} \eta=\int_{\partial D_{i}} \eta^{\top}+\int_{\partial D_{i}} \eta^{\perp} \rightarrow\left|\partial D_{i}\right|
\end{array}\right.
$$

$\therefore \quad \therefore H\left|D_{i}\right|=\sin \theta_{i}\left|\partial D_{i}\right|$

- $n e_{0} E^{\prime \prime}(0)=\left(|\Sigma|-\sum_{i} \cos \theta_{i}\left|D_{i}\right|\right) \times\left\{-\int_{\Sigma} \sum_{i<j}\left(k_{i}-k_{j}\right)^{2} d S\right.$ $\left.-(n-1) \sum_{i} \cos \theta_{i} \sin ^{2} \theta_{i}\left(n \int_{\partial D_{i}} \bar{H} d S-\frac{\left|\partial D_{i}\right|^{2}}{\left|D_{i}\right|}\right)\right\}$ $E^{\prime \prime}(0) \leq 0$.

But stability $\Rightarrow E^{\prime \prime}(0) \geq 0$.
$\therefore E^{\prime \prime}(0)=0$, umbilic everywhere.

- $n \int_{\partial D_{i}} \bar{H} d S-\frac{\left|\partial D_{i}\right|^{2}}{\left|D_{i}\right|} \leq 0$??
- Minkowski inequality

Minkowski sum of $A, B \subset \mathbb{R}^{n}$:

$$
A+B=\{a+b: a \in A, b \in B\}
$$

- D : convex body in \mathbb{R}^{n}, B : unit ball in \mathbb{R}^{n}. Steiner formula: $|D+t B|=\sum_{j=0}^{n}\binom{n}{j} W_{j}(D) t^{j}$, $W_{j}(D)$: jth quermassintegral of D.
- $\frac{d}{d t}|D+t B|=|\partial(D+t B)|$

$$
\begin{aligned}
\therefore W_{0}(D) & =|D|, \\
n W_{1}(D) & =|\partial D|, \\
n W_{2}(D) & =\int_{\partial D} H d S, \\
n(n-1)(n-2) W_{3}(D) & =2 \int_{\partial D} \sum_{i<j} k_{i} k_{j} d S .
\end{aligned}
$$

- Alexandrov-Fenchel inequality:
$W_{i}(D)^{2} \geq W_{i-1}(D) \cdot W_{i+1}(D)$.
$\therefore W_{1}(D)^{2} \geq W_{0}(D) \cdot W_{2}(D): n \int_{\partial D} H d S \leq \frac{|\partial D|^{2}}{|D|}:$ Minkowski $W_{2}(D)^{2} \geq W_{1}(D) \cdot W_{3}(D):$
$\int_{\partial D} \sum_{i<j} k_{i} k_{j} d S \leq \frac{(n-1)(n-2)}{2 n^{2}} \frac{|\partial D|^{3}}{|D|^{2}}$.
- $D \subset \mathbb{R}^{2}: \int_{\partial D} k d s=2 \pi$.
\therefore Minkowski $\Rightarrow 4 \pi|D| \leq|\partial D|^{2}$.
(Theorem) $D_{i} \subset \Pi_{i} \subset \mathbb{R}^{3}$: embedded, not necessarily convex
$D \subset \mathbb{R}^{3}: \int_{\partial D} k_{1} k_{2} d S=4 \pi$.
\therefore Minkowski $\Rightarrow 36 \pi|D|^{2} \leq|\partial D|^{3}$.
- $n \int_{\partial D} H d S \leq \frac{|\partial D|^{2}}{|D|} \Leftrightarrow n \frac{\left|\partial D_{t}\right|^{\prime}}{\left|\partial D_{t}\right|} \leq(n-1) \frac{\left|D_{t}\right|^{\prime}}{\left|D_{t}\right|} \Leftrightarrow\left(\frac{\left|\partial D_{t}\right|^{n}}{\left|D_{t}\right|^{-1}}\right)^{\prime} \leq 0$.
$\Rightarrow D_{t}$ becomes rounder as t increases.

Capillary surfaces in a slab

- Examples: cylinder, unduloid, nodoid, catenoid
- Wente (1980): An embedded capillary hypersurface in a slab $\subset \mathbb{R}^{n+1}$ is rotationally invariant. (\therefore spherical, Delaunay)
- Ros (2007): A stable capillary surface in a slab $\subset \mathbb{R}^{3}$ with $\theta=\pi / 2$ is a cylinder.
- Ainouz-Souam (2015): An immersed stable capillary surface of genus 0 in a slab $\subset \mathbb{R}^{3}$ with contact angles θ_{1}, θ_{2} is a Delaunay surface.
- Among embedded rotationally symmetric capillary hypersurfaces in a slab $\subset \mathbb{R}^{n+1}$ with $\theta=\pi / 2$ only the circular cylinders are stable for $2 \leq n \leq 7$;

Some unduloids are also stable for $n \geq 9$.
($n=2$: Athanassenas, Vogel, $n \geq 3$: Pedrosa-Ritoré)

- Ainouz-Souam (2015): If $\Sigma \subset \mathbb{R}^{n+1}$ is an immersed stable capillary hypersurface in a slab with $\theta=\pi / 2$ and with embedded boundary, then Σ is rotationally symmetric.

Capillary surfaces in a ball

- Nitsche: A capillary disk in a ball $\subset \mathbb{R}^{3}$ is a spherical cap.
- Ros-Souam: (i) A stable capillary surface of genus 0 in a ball $\subset \mathbb{R}^{3}$ is a spherical cap.
(ii) A stable minimal surface with constant contact angle in a ball $\subset \mathbb{R}^{3}$ is a flat disk or a surface of genus 1 with at most 3 boundary components.
- Ros-Vergasta: A stable minimal hypersurface in a ball $B \subset \mathbb{R}^{n}, \perp \partial B$, is totally geodesic.

Problems

- If Σ is a minimal annulus in a ball $B \subset \mathbb{R}^{3}$ and orthogonal to ∂B, is Σ the catenoidal waist?

Fraser-Schoen (2013): For all $n \geq 3, \exists$ minimal surface of genus $0, \#$ (ends) $=n$, and with free boundary in B. Kapouleas-Li (2015): \exists minimal surface of sufficiently large genus with free boundary in B (3 boundary components). Zolotareva et al. (2015): \exists minimal surface of genus 1 , sufficiently large number of ends, and with free boundary in B.

- Show that a minimal surface with connected free boundary in B is flat.
- Let $\Sigma \subset \mathbb{R}^{3}$ be a capillary surface in a solid cylinder C. Show that if the boundaries of Σ are not null homotopic in the surface cylinder ∂C then Σ is part of the Delaunay surface. Do we need to assume that Σ is stable?
- Let $\Sigma \subset \mathbb{R}^{3}$ be a capillary surface outside C whose boundaries are not null homotopic on ∂C. Prove that Σ is also part of the Delaunay surface with (or without) the stability assumption.
- Let Σ be a CMC surface in a half space $\mathbb{H} \subset \mathbb{R}^{3}$ making a constant contact angle $\neq \pi / 2$ with the plane $\partial \mathbb{H}$. Can one extend Σ across $\partial \mathbb{H}$ analytically? In case Σ is minimal, an affirmative answer is obtained in [C]. The Schwarz reflection principle and the Weierstrass representation formula are used in the proof of [C].
[C] J. Choe, On the analytic reflection of a minimal surface, Pacific J. Math. 157 (1993), 29-35.
- Let Σ_{1}, Σ_{2} be compact minimal surfaces in \mathbb{S}^{3}. Suppose they intersect at a constant angle $\neq \pi / 2$. Is it true that they are both great spheres or both Clifford tori?

