Capillary Surfaces and Floating Bodies

J. Bemelmans
RWTH Aachen University

Geometric aspects on capillary problems and related topics
Universidad de Granada
December, 14-17, 2015

Problem

Rigid body \mathcal{B} floating on a layer of a viscuous, incompressible fluid; upper surface Σ of the fluid domain (which is an unknown of the problem) is governed by surface tension

$$
\Sigma_{0}
$$

Two unknowns

(i) Position, orientation and motion of \mathcal{B} and capillary surface Σ
(ii) Velocity v and pressure p in the fluid domain

Existence theorem

Approximation where the unknowns (Σ, \mathcal{B}) are determined under the assumption that (v, p) are known, as well as the other way around.

Capillarity problem

$G:=\Omega \times \mathbb{R}^{+}, \Omega \subset \mathbb{R}^{2}$ bounded domain；G partly filled with fluid． $\mathcal{B}(c, R) \subset \Omega \times \mathbb{R}^{+}$domain occupied by the body \mathcal{B} after Euclidean motion

$$
y=x+c+R x
$$

where $\mathrm{c}=$ translation，$R=R(\alpha)=$ rotation about an axis that contains the center of \mathcal{B} ．

Position of \mathcal{B}

Position of $\mathcal{B}(c, R)$ is determined by the force that the fluid exerts on it, i.e.

$$
\int_{\partial \mathcal{B}^{-}} T(v, p) \cdot n \mathrm{~d} \sigma,
$$

where $\partial \mathcal{B}^{-}$is the wetted part of $\partial \mathcal{B}$.
The mean curvature H_{Σ} of the capillary surface is proportional to the normal component of the stress vector:

$$
\sigma H_{\Sigma}=n \cdot T(v, p) \cdot n
$$

In the hydrostatic case the integrand reduces to $p \cdot n$ and the right-hand side in the mean-curvature equation equals p.

Gravitational energies

Gravitational energy of $\mathcal{B}(c, R)$:

$$
\rho_{0} g \int_{\mathcal{B}(c, R)} x_{3} \mathrm{~d} x, \rho_{0} \text { density of } \mathcal{B}
$$

Gravitational energy of the fluid:
$\rho g \int_{E} x_{3} \mathrm{~d} x, \rho$ density and E domain occupied by fluid

Adhesion and cohesion energy

Adhesion energies:

$$
\begin{array}{r}
\kappa \int_{\left(\Omega \times \mathbb{R}^{+}\right) \backslash \mathcal{B}(c, R)} \varphi_{E} \mathrm{~d} \sigma \\
\kappa_{0} \int \varphi_{E} \mathrm{~d} x \\
\partial \mathcal{B}(c, R)
\end{array}
$$

Cohesion energy:

$$
\begin{array}{r}
\sigma \int_{\left(\Omega \times \mathbb{R}^{+}\right) \backslash \mathcal{B}(c, R)}\left|D \varphi_{E}\right|
\end{array}
$$

Variational problem (hydrostatic case $v \equiv 0$)

$$
\begin{aligned}
& \mathcal{E}(c, R ; E):= \sigma \int\left|D \varphi_{E}\right| \\
&\left(\Omega \times \mathbb{R}^{+}\right) \backslash \mathcal{B}(c, R) \\
&+\kappa \int_{E} \varphi_{E} \mathrm{~d} \sigma \\
&\left(\Omega \times \mathbb{R}^{+}\right) \backslash \mathcal{B}(c, R) \\
&+\kappa_{0} \int_{E} \varphi_{E} \mathrm{~d} x \\
& \partial \mathcal{B}(c, R) \\
&+\rho g \int_{E} x_{3} \mathrm{~d} x+\rho_{0} g \int x_{3} \mathrm{~d} x \longrightarrow \min . \\
& \mathcal{B}(c, R)
\end{aligned}
$$

in

$$
\begin{aligned}
\mathcal{C}:=\{ & (c, R ; E): c \in \mathbb{R}^{3}, R \in S O(3), \\
& \text { such that } \mathcal{B}(c, R) \subseteq \Omega \times \mathbb{R}^{+} ;
\end{aligned}
$$

$E \subset \Omega \times \mathbb{R}^{+}$measurable set with $E \cap \mathcal{B}(c, R) \neq \emptyset$ and $\left.\mathscr{L}^{3}(E)=V_{0}\right\}$

Existence of a minimizer

（i） $\mathcal{E}(c, R ; E)$ bounded from below on \mathcal{C}
（ii）$\left\{\left(c_{n}, R_{n}, E_{n}\right)\right\}$ bounded：$\left|c_{n}\right| \leq C_{1},\left|R_{n}\right| \leq C_{2} ;\left\|\varphi_{E_{n}}\right\|_{\mathrm{BV}} \leq C_{3}$ $\Rightarrow \exists$ subsequence with $\varphi_{E_{n_{k}}} \rightarrow \varphi_{E_{0}}$ in $L^{1}(G), k \rightarrow \infty$
（iii） \mathcal{E} is lower semicontinuous with respect to the convergence in（ii）

Emmer's Lemma

$$
\int_{\partial G} u \mathrm{~d} \sigma \leq \sqrt{1+L^{2}} \int_{G(\varepsilon)}|D u|+C_{\varepsilon} \int_{G(\varepsilon)}|u| \mathrm{d} x
$$

Tool from capillarity theory

$$
\begin{gathered}
x_{0} \\
E\left(x_{0}\right)
\end{gathered}=\left\{\left(x, x_{3}\right) \in E: x=x_{0}\right\}
$$

Replace $E\left(x_{0}\right)$ by segment $\left(0, h\left(x_{0}\right)\right)$ with $h\left(x_{0}\right)=$ meas $\left(E\left(x_{0}\right)\right)$. This reduces the energy.

Restriction to the class of graphs

$\mathcal{B}(0, R)$ rigid body; $\exists h_{0}>0$, such that

$$
\text { meas }\left\{\mathcal{B}(0, R) \cap\left\{x_{3}<h_{0}\right\}\right\}=\frac{2}{3}|\mathcal{B}| \text {. }
$$

\mathcal{B} strictly convex, hence \exists function $h^{*}: B(h) \subset \Omega \rightarrow \mathbb{R}$ that describes $\partial \mathcal{B}(0, R) \cap\left\{x_{3}>h_{0}\right\}$:

Set $h(0, R ; x)= \begin{cases}h^{*}(0, R ; x) & \forall x \text { s. t. } h^{*}(x)>h_{0} \\ h_{0} & \text { elsewhere in } \Omega\end{cases}$

Obstacle problem

We then look for graphs u, such that $u(x) \geq h(c, R ; x)$:

Properties of u

a) $u \in \operatorname{BV}(\Omega)$
b) $u(x) \geq h(c, R ; x) \forall x \in \Omega$ for some c and R
c) $\int_{\Omega} u(x) \mathrm{d} x=V_{0}+|\mathcal{B}|$

Energy

$$
\begin{aligned}
\mathcal{E}(c, R ; u):= & \sigma \int_{\Omega \cap\{u>h\}} \sqrt{1+|D u|^{2}}+\kappa \int_{\partial \Omega} u \mathrm{~d} \sigma \\
& +\left(\rho-\rho_{0}\right) g \int_{\mathcal{B}(c, R)} x_{3} \mathrm{~d} x_{3} \mathrm{~d} x+\kappa_{0}\left\{|\mathcal{B}|-\int_{B\left(h_{0}\right) \backslash\{u>h\}} \sqrt{1+|D h|} \mathrm{d} x\right\}
\end{aligned}
$$

in

$$
\begin{aligned}
\mathcal{C}:=\{ & (c, R ; u): c, R \text { such that } \mathcal{B}(c, R) \subseteq \Omega \times \mathbb{R}^{+} ; \\
& u \text { satisfies a), b), c) }\}
\end{aligned}
$$

$$
\begin{aligned}
\int_{\Omega \backslash\{u>h\}} \sqrt{1+|D u|^{2}} & =\int_{\Omega} \sqrt{1+|D u|^{2}}+\int_{B\left(h_{0}\right) \cap\{u>h\}} \sqrt{1+|D h|^{2}} \mathrm{~d} x^{\prime} \\
& -\int_{B\left(h_{0}\right)} \sqrt{1+|D h|^{2}} \mathrm{~d} x^{\prime}
\end{aligned}
$$

Properties of the solution $\left(c_{0}, R_{0} ; u_{0}\right)$

(i) $\exists C$, such that $\left|u_{0}(x)\right| \leq C$
(ii) u_{0} is regular in the set $\{x: u(x)>h(x)\}$
(iii) u_{0} meets the obstacle h in a smooth curve $C(u)$ that is contained in $B(h)$, in particular: $u(x)>h_{0}$, i.e. u_{0} never meets the "artificial" obstacle h_{0}
(iv) u_{0} meets h under a constant angle θ with $\cos \theta=-\frac{\kappa_{0}}{\sigma}$
(v) The projection of the part of $\partial \mathcal{B}$ that is not in contact with the fluid is a simply connected set.

First Variation of the Energy Functional

The first variation of $\mathcal{F}(c, R ; u)$ with respect to u gives the Euler-Lagrange equations

$$
\begin{equation*}
\sigma \operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\rho g u+\lambda \quad \text { in } \Omega \backslash \overline{B(h)} \tag{1}
\end{equation*}
$$

and the boundary conditions

$$
\begin{gather*}
\frac{D u \cdot n}{\sqrt{1+|D u|^{2}}}=-\frac{\kappa}{\sigma} \quad \text { on } \partial \Omega \tag{2}\\
\frac{1+D u \cdot D h}{\sqrt{1+|D u|^{2}} \cdot \sqrt{1+|D h|^{2}}}=-\frac{\kappa_{0}}{\sigma} \quad \text { on } \gamma . \tag{3}
\end{gather*}
$$

First variation with respect to motions of \mathcal{B}

For capillary surfaces Σ that are given by parametric surfaces $x: B_{2}(0) \backslash \overline{B_{1}(0)} \rightarrow \mathbb{R}^{3}$ and for general deformations of the body the first variation of the enrgy has been calculated by J. McCuan. Here we present a much shorter proof for the case that is discussed before; in particular we write the (infinitesimal) Euclidean motions of \mathcal{B} as perturbations of the real function h that describes the upper boundary of \mathcal{B}.
For $\mathcal{B}_{\varepsilon}=\mathcal{B}+\varepsilon \cdot e_{3}, e_{3}=(0,0,1)$, we clearly have

$$
\begin{equation*}
\varphi\left(x^{\prime}\right)=1 \text {; } \tag{4.1}
\end{equation*}
$$

for $\mathcal{B}_{\varepsilon}=\mathcal{B}+\varepsilon \cdot e, e_{3}=\left(e^{\prime}, 0\right),\left\|e^{\prime}\right\|=1$, we get

$$
\begin{equation*}
\varphi\left(x^{\prime}\right)=-D h\left(x^{\prime}\right) \cdot e^{\prime}+\mathcal{O}(\varepsilon) \tag{4.2}
\end{equation*}
$$

because

$$
h_{\varepsilon}\left(x^{\prime}\right)=h\left(x^{\prime}-\varepsilon e^{\prime}\right)=h\left(x^{\prime}\right)-\varepsilon D h\left(x^{\prime}\right) \cdot e^{\prime}+o(\varepsilon) .
$$

For a general rotation about an axis with direction $d=\left(d_{1}, d_{2}, d_{3}\right),\|d\|=1$, we have
$\mathcal{B}_{\varepsilon}=\left\{x^{\varepsilon} \in \mathbb{R}^{3}: x^{\varepsilon}=\cos (\varepsilon) x+(1-\cos (\varepsilon))(d \cdot x) d+\sin (\varepsilon) d \wedge x, x \in \mathcal{B}\right\}$
which gives

$$
x^{\varepsilon}=x+\varepsilon d \wedge x+o(\varepsilon)
$$

in particular,

$$
\left\{\begin{array}{l}
x_{1}-\varepsilon d_{3} x_{2}=x_{1}^{\varepsilon}-\varepsilon\left\{d_{2} h\left(x^{\prime}\right)-d_{3} x_{2}\right\}+o(\varepsilon) \\
\varepsilon d_{3} x_{1}+x_{2}=x_{2}^{\varepsilon}+\varepsilon d_{1} h\left(x^{\prime}\right)+o(\varepsilon)
\end{array}\right.
$$

$h^{\varepsilon}\left(x_{1}, x_{2}\right)=h\left(x_{1}-\varepsilon\left[d_{2} h\left(x^{\prime}\right)-d_{3} x_{2}\right], x_{2}-\varepsilon\left[d_{1} h\left(x^{\prime}\right)-d_{3} x_{1}\right]\right)$
$\varphi\left(x^{\prime}\right)=\left(d_{1} x_{2}-d_{2} x_{1}\right)+\operatorname{Dh}\left(x^{\prime}\right) \cdot\left\{\left(-d_{2}, d_{1}\right) h\left(x^{\prime}\right)-\left(d_{3} x_{2}, d_{3} x_{1}\right)\right\}$

Some domains of integration contain the set $\left\{u>h_{\varepsilon}\right\}$, hence we must write

$$
\gamma_{\varepsilon}=\partial\left\{u\left(x_{1}, x_{2}\right)>h\left(x_{1}, x_{2}\right)+\varepsilon \varphi\left(x_{1}, x_{2}\right)\right\}
$$

as a perturbation of

$$
\gamma=\partial\left\{u\left(x_{1}, x_{2}\right)>h\left(x_{1}, x_{2}\right)\right\} .
$$

Set

$$
x^{\prime}=\xi+t n_{\gamma}(\xi) \quad \xi \in \gamma,|t|<\varepsilon_{0}
$$

for all x^{\prime} from a neighborhood of γ, and for $\gamma_{\varepsilon}=\left\{\xi+\delta(\xi, \varepsilon) n_{\gamma}(\xi), \xi \in \gamma\right\}$, we obtain

$$
u\left(\xi+\delta(\xi, \varepsilon) n_{\gamma}(\xi)\right)=h\left(\xi+\delta(\xi, \varepsilon) n_{\gamma}(\xi)\right)+\varepsilon \varphi\left(\xi+\delta(\xi, \varepsilon) n_{\gamma}(\xi)\right)
$$

From this, δ can be determined:
$u(\xi)+\delta(\xi, \varepsilon) D u(\xi) \cdot n_{\gamma}(\xi)=h(\xi)+\delta(\xi, \varepsilon) D h(\xi) \cdot n_{\gamma}(\xi)+\varepsilon \varphi(\xi)+o(\varepsilon)$.
Hence,

$$
\delta=\delta(\xi, \varepsilon)=\varepsilon \frac{\varphi(\xi)}{(D u(\xi)-D h(\xi)) \cdot n_{\gamma}(\xi)}+o(\varepsilon)
$$

First Variation of Surface Energies

$$
\begin{gathered}
\mathcal{I}=\oint_{\gamma}\left(-\frac{\sqrt{1+|D u|^{2}}}{(D u-D h) \cdot n_{\gamma}}+\kappa \frac{\sqrt{1+|D h|^{2}}}{(D u-D h) \cdot n_{\gamma}}\right) \varphi \mathrm{d} s . \\
\mathcal{I}=\oint_{\Gamma} E \cdot N_{0} \mathrm{~d} s
\end{gathered}
$$

with $E=\left(0,0, \varphi\left(x^{\prime}\right)\right)$ and N_{0} being the unit vector that is normal to the contact line Γ and lies in the tangent plane to $\Sigma=\operatorname{graph}(u)$ ．

Equilibrium Condition

$$
\begin{aligned}
\sigma \oint_{\Gamma} E \cdot N_{0} \mathrm{~d} s & +\rho g \int_{\Sigma_{\mathcal{B}}}-E \cdot N x_{3} \mathrm{~d} \sigma \\
& -\rho_{0} g\left(e+d \wedge x_{s}\right)_{3}|\mathcal{B}|=0
\end{aligned}
$$

where N is the normal to the floating body \mathcal{B}, and $\Sigma_{\mathcal{B}}$ denotes its wetted part.

Literature

J. McCuan: A variational formula for floating bodies. Pac. J. Math. 231 (2007) 167-191
J. Bemelmans, G.P. Galdi, M. Kyed: Fluid Flows Around Floating Bodies, I: The Hydrostatic Case. J. Math. Fluid Mech. 14 (2012) 751-770
J. Bemelmans, G.P. Galdi, M. Kyed: Capillary surfaces and floating bodies. Annali di Matematica 193 (2014) 1185-1200

