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Problem

Rigid body B floating on a layer of a viscuous, incompressible fluid;
upper surface Σ of the fluid domain (which is an unknown of the
problem) is governed by surface tension
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Two unknowns

(i) Position, orientation and motion of B and capillary surface Σ

(ii) Velocity v and pressure p in the fluid domain



Existence theorem

Approximation where the unknowns (Σ,B) are determined under
the assumption that (v , p) are known, as well as the other way
around.



Capillarity problem

G := Ω× R+, Ω ⊂ R2 bounded domain; G partly filled with fluid.

B(c,R) ⊂ Ω×R+ domain occupied by the body B after Euclidean
motion

y = x + c + Rx ,

where c = translation, R = R(α) = rotation about an axis that
contains the center of B.



Position of B

Position of B(c,R) is determined by the force that the fluid exerts
on it, i.e. ∫

∂B−

T (v , p) · n dσ,

where ∂B− is the wetted part of ∂B.

The mean curvature HΣ of the capillary surface is proportional to
the normal component of the stress vector:

σHΣ = n · T (v , p) · n

In the hydrostatic case the integrand reduces to p · n and the
right-hand side in the mean-curvature equation equals p.



Gravitational energies

Gravitational energy of B(c,R):

ρ0g
∫

B(c,R)

x3dx , ρ0 density of B

Gravitational energy of the fluid:

ρg
∫
E

x3dx , ρ density and E domain occupied by fluid



Adhesion and cohesion energy

Adhesion energies:
κ

∫
(Ω×R+)\B(c,R)

ϕE dσ

κ0

∫
∂B(c,R)

ϕE dx

Cohesion energy:
σ

∫
(Ω×R+)\B(c,R)

|DϕE |



Variational problem (hydrostatic case v ≡ 0)

E(c,R; E ) :=σ

∫
(Ω×R+)\B(c,R)

|DϕE |

+ κ

∫
(Ω×R+)\B(c,R)

ϕE dσ

+ κ0

∫
∂B(c,R)

ϕE dx

+ ρg
∫
E

x3dx + ρ0g
∫

B(c,R)

x3dx −→ min.

in
C := {(c,R; E ) : c ∈ R3, R ∈ SO(3),

such that B(c,R) ⊆ Ω× R+;

E ⊂ Ω× R+ measurable set with E ∩ B(c,R) 6= ∅ and
L 3(E ) = V0 }



Existence of a minimizer

(i) E(c,R; E ) bounded from below on C
(ii) {(cn,Rn,En)} bounded: |cn| ≤ C1, |Rn| ≤ C2; ‖ϕEn‖BV ≤ C3
⇒ ∃ subsequence with ϕEnk

→ ϕE0 in L1(G), k →∞
(iii) E is lower semicontinuous

with respect to the convergence in (ii)



Emmer’s Lemma

∫
∂G

u dσ ≤
√

1 + L2 ∫
G(ε)

|Du| +Cε
∫

G(ε)

|u| dx

(y1, y2)

∂Ω× R
∂B

ω(y1, y2)
β(y1, y2)



B
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Tool from capillarity theory

x0
E (x0) = {(x , x3) ∈ E : x = x0}

Replace E (x0) by segment (0, h(x0)) with h(x0) = meas (E (x0)).
This reduces the energy.



Restriction to the class of graphs

B(0,R) rigid body; ∃ h0 > 0, such that

meas {B(0,R) ∩ {x3 < h0} } =
2
3 |B|.

B strictly convex, hence ∃ function h∗ : B(h) ⊂ Ω→ R
that describes ∂B(0,R) ∩ {x3 > h0}:

h0

h∗

B(h)

Set h(0,R; x) =

{
h∗(0,R; x) ∀x s. t. h∗(x) > h0

h0 elsewhere in Ω



Obstacle problem

We then look for graphs u, such that u(x) ≥ h(c,R; x):

h0

u

B(c , R)



Properties of u

a) u ∈ BV(Ω)

b) u(x) ≥ h(c,R; x) ∀ x ∈ Ω for some c and R
c)

∫
Ω u(x)dx = V0 + |B|



Energy

E(c,R; u) :=σ

∫
Ω∩{u>h}

√
1 + |Du|2 + κ

∫
∂Ω

u dσ +
ρg
2

∫
Ω

u2dx

+ (ρ− ρ0)g
∫

B(c,R)

x3dx3dx + κ0
{
|B| −

∫
B(h0)\{u>h}

√
1 + |Dh|dx

}

in
C := {(c,R; u) : c,R such that B(c,R) ⊆ Ω× R+;

u satisfies a), b), c)}



∫
Ω\{u>h}

√
1 + |Du|2 =

∫
Ω

√
1 + |Du|2 +

∫
B(h0)∩{u>h}

√
1 + |Dh|2 dx ′

−
∫

B(h0)

√
1 + |Dh|2 dx ′



Properties of the solution (c0, R0; u0)

(i) ∃ C , such that |u0(x)| ≤ C
(ii) u0 is regular in the set {x : u(x) > h(x)}

(iii) u0 meets the obstacle h in a smooth curve C(u) that is
contained in B(h), in particular: u(x) > h0, i.e. u0 never
meets the “artificial” obstacle h0

(iv) u0 meets h under a constant angle θ with cos θ = −κ0
σ

(v) The projection of the part of ∂B that is not in contact with
the fluid is a simply connected set.



First Variation of the Energy Functional

The first variation of F(c,R; u) with respect to u gives the
Euler-Lagrange equations

σ div

 Du√
1 + |Du|2

 = ρgu + λ in Ω \ B(h) (1)

and the boundary conditions

Du · n√
1 + |Du|2

= − κ

σ
on ∂Ω (2)

1 + Du · Dh√
1 + |Du|2 ·

√
1 + |Dh|2

= − κ0
σ

on γ . (3)



First variation with respect to motions of B
For capillary surfaces Σ that are given by parametric surfaces
x : B2(0) \ B1(0)→ R3 and for general deformations of the body
the first variation of the enrgy has been calculated by J. McCuan.
Here we present a much shorter proof for the case that is discussed
before; in particular we write the (infinitesimal) Euclidean motions
of B as perturbations of the real function h that describes the
upper boundary of B.
For Bε = B + ε · e3, e3 = (0, 0, 1), we clearly have

ϕ(x ′) = 1 ; (4.1)

for Bε = B + ε · e, e3 = (e′, 0), ‖e′‖ = 1, we get

ϕ(x ′) = −Dh(x ′) · e′ +O(ε) (4.2)

because

hε(x ′) = h(x ′ − εe′) = h(x ′)− εDh(x ′) · e′ + o(ε) .



For a general rotation about an axis with direction
d = (d1, d2, d3) , ‖d‖ = 1, we have

Bε = {xε ∈ R3 : xε = cos(ε)x+(1−cos(ε))(d ·x)d+sin(ε)d∧x , x ∈ B}

which gives
xε = x + εd ∧ x + o(ε) ,

in particular,{
x1 − εd3x2 = xε1 − ε{d2h(x ′)− d3x2}+ o(ε) ,

εd3x1 + x2 = xε2 + εd1h(x ′) + o(ε)

hε(x1, x2) = h(x1 − ε[d2h(x ′)− d3x2], x2 − ε[d1h(x ′)− d3x1])

ϕ(x ′) = (d1x2 − d2x1) + Dh(x ′) · {(−d2, d1)h(x ′)− (d3x2, d3x1)}



Some domains of integration contain the set {u > hε}, hence we
must write

γε = ∂{u(x1, x2) > h(x1, x2) + εϕ(x1, x2)}
as a perturbation of

γ = ∂{u(x1, x2) > h(x1, x2)}.
Set

x ′ = ξ + tnγ(ξ) ξ ∈ γ, |t| < ε0

for all x ′ from a neighborhood of γ, and for
γε = {ξ + δ(ξ, ε)nγ(ξ), ξ ∈ γ}, we obtain

u(ξ + δ(ξ, ε)nγ(ξ)) = h(ξ + δ(ξ, ε)nγ(ξ)) + εϕ(ξ + δ(ξ, ε)nγ(ξ)) .

From this, δ can be determined:

u(ξ)+δ(ξ, ε)Du(ξ)·nγ(ξ) = h(ξ)+δ(ξ, ε)Dh(ξ)·nγ(ξ)+εϕ(ξ)+o(ε) .

Hence,

δ = δ(ξ, ε) = ε
ϕ(ξ)

(Du(ξ)− Dh(ξ)) · nγ(ξ)
+ o(ε)



First Variation of Surface Energies

I =

∮
γ

−
√

1 + |Du|2

(Du − Dh) · nγ
+ κ

√
1 + |Dh|2

(Du − Dh) · nγ

ϕ ds .

I =

∮
Γ

E · N0 ds

with E = (0, 0, ϕ(x ′)) and N0 being the unit vector that is normal
to the contact line Γ and lies in the tangent plane to Σ = graph(u).



Equilibrium Condition

σ

∮
Γ

E · N0 ds + ρg
∫

ΣB

−E · Nx3 dσ

− ρ0g(e + d ∧ xs)3|B| = 0 ,

where N is the normal to the floating body B, and ΣB denotes its
wetted part.



Literature

J. McCuan: A variational formula for floating bodies. Pac. J.
Math. 231 (2007) 167-191
J. Bemelmans, G.P. Galdi, M. Kyed: Fluid Flows Around Floating
Bodies, I: The Hydrostatic Case. J. Math. Fluid Mech. 14 (2012)
751-770
J. Bemelmans, G.P. Galdi, M. Kyed: Capillary surfaces and floating
bodies. Annali di Matematica 193 (2014) 1185 -1200


