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(1) By Yasunori, Aoki, Department of Mathematics Uppsala University

A capillary surface, a liquid surface at equilibrium, can be modelled
mathematically by a nonlinear elliptic PDE called Laplace-Young equation:

∇ · ∇u√
1 + |∇u|2

= κu

where u is the height of the capillary surface and κ is a physical constant.
Consider a domain and the boundary conditions as depicted in Figure 1.
The known solution characteristics can be summarised as follows (as appear
in [1,2]):

Theorem 1: u is unbounded if cos γ1 + cos γ2 6= 0.
Theorem 2: u is bounded if cos γ1 + cos γ2 = 0 and f1,2 have finite curva-
tures.

Theorem 3: u = cos γ1+cos γ2
f1(x)−f2(x) + O

(
f ′
1(x)−f ′

2(x)
f1(x)−f2(x)

)
in a non-osculatory cusp

domain if cos γ1 + cos γ2 6= 0.
I propose the following open problems, conjectures for Open Problems 1
and 2 can be found in [3].
Open Problem 1: Is u bounded or unbounded if cos γ1 + cos γ2 = 0 and
f1,2 have infinite curvature?

Open Problem 2: Does u follow the asymptotic relationship: u = cos γ1+cos γ2
f1(x)−f2(x) +

O
(
f ′
1(x)−f ′

2(x)
f1(x)−f2(x)

)
if cos γ1 +cos γ2 6= 0 and the domain is an osculatory cusp?

Open Problem 3: If the contact angles γ1,2 are not constants and limx→0 cos γ1(x)+

r

Figure 1. Domain and Boundary conditions, where γ1,2 are phys-
ical constants. 1
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Figure 2. The floating problem

cos γ2(x) = 0. What is the asymptotic conditions required for γ1,2(x) for
the solution u to be bounded? (based on a discussion with Kirk Lancaster
and others in June 2015)
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(2) By Josef Bemelmans (RWTH Aachen University)
Capillary Surfaces and Floating Bodies - Problems.

A rigid body B is floating on a layer of a fluid; the upper surface Σ of the
fluid domain (which is an unknown of the problem) is governed by surface
tension. We show existence of a solution to the equations that describe this
configuration. The surface Σ meets the floating body in the contact line Γ.
Question 1: Let γ be the projection of Γ onto R2; is γ then the boundary of
a convex region, if the floating body B is strictly convex and if the contact
angle is 90o?

Question 2: Is the solution stable with respect to small variations of
thedata, e.g. of the density of the floating body?

(3) By Paolo Caldiroli (Dipartimento di Matematica, Università di Torino)

Spherical surfaces with prescribed mean curvature

Given a smooth mapping H : R3 → R, we call H-sphere a closed surface
S homeomorphic to S2, whose mean curvature at every point p ∈ S equals
H(p).

Let H : R3 → (0,∞) be a smooth, radially symmetric function with
lim|p|→∞H(p) = H∞ ∈ (0,∞). Hence there exists R > 0 such that H(p) =

R−1 if |p| = R, and the round sphere SR of radius R centered at the origin
is an H-sphere.

Question: assuming that H is non increasing and non constant, is the
round sphere SR the unique H-sphere?

Remarks: The answer is positive in low dimension, i.e., considering
closed curves in the plane rather than spheres in R3 (see: Musina, R.:
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Planar loops with prescribed curvature: existence, multiplicity and unique-
ness, Proc. Amer. Math. Soc. 139 (2011) 4445–4459). In low dimension
one can also provide an example of a positive, radially symmetric and in-
creasing mapping k for which a suitable ellipse has curvature k at every
point. Hence the kind of monotonicity seems to have a role.

Closed immersed surfaces with prescribed mean curvature

Let H : R3 → R be a Lipschitz continuous function which is strictly
monotone in some direction, i.e., there is a versor ~e ∈ R3 such that ∇H(p) ·
~e > 0 for almost every p ∈ R3. It is known that there exists no C1-closed
embedded surface in R3 of mean curvature H. For a proof, just use the
formula for the first variation which gives∫

S

〈H~e, ~N〉 dΣ = 0

where ~N is the Gauss map for the surface S and dΣ denotes its surface
element. Since S is embedded, there exists an open domain Ω in R3 such
that S = ∂Ω. Then use the Stokes formula∫

S

〈H~e, ~N〉 dΣ =

∫
Ω

∇H(p) · ~e dp

and conclude.

Question: does the same nonexistence result hold true also for closed
immersed surfaces?

(4) By Jaigyoung Choe (Korea Institute for Advanced Study)

1. (well known problem) If Σ is a minimal annulus in a ball B ⊂ R3 and
orthogonal to ∂B3, is Σ the catenoidal waist?

2. Let Σ ⊂ R3 be a capillary surface in a solid cylinder C. Show that if
the boundaries of Σ are not null homotopic in the surface cylinder ∂C then
Σ is part of the Delaunay surface. Do we need to assume that Σ is stable?

3. Let Σ ⊂ R3 be a capillary surface outside C whose boundaries are
not null homotopic on ∂C. Prove that Σ is also part of the Delaunay sur-
face with (or without) the stability assumption.

4. Let Σ be a CMC surface in a half space H ⊂ R3 making a constant
contact angle 6= π/2 with the plane ∂H. Can one extend Σ across ∂H
analytically? In case Σ is minimal, an affirmative answer is obtained in
[C]. The Schwarz reflection principle and the Weierstrass representation
formula are used in the proof of [C].
[C] J. Choe, On the analytic reflection of a minimal surface, Pacific J. Math.
157 (1993), 29-35.

5. Let Σ1,Σ2 be compact minimal surfaces in S3. Suppose they intersect
at a constant angle 6= π/2. Is it true that they are both great spheres or
both Clifford tori?
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(5) By Ailana Fraser (Columbia University)

Question 1. Is the critical catenoid the only embedded free boundary
minimal annulus in B3?

This is a free boundary analog of Lawson’s conjecture that the Clifford
torus is the only compact embedded minimal surface in S3 of genus 1 ([L],
[B]).

Question 2. Let Σ be an embedded free boundary minimal surface in
B3. Is it true that the first Steklov eigenvalue σ1(Σ) = 1?

This is a free boundary analog of Yau’s conjecture [Y] that for any em-
bedded minimal surface Σ in S3, λ1(Σ) = 2. If Question 2 is true, then [2]
Theorem 6.6 implies Question 1 is true; cf. [MR].
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(6) By Brien Freidin and Peter McGrath (Brown University).
(a) Suppose Σk ⊂ Bn(r) ⊂ Sn+(1) is a free boundary minimal surface,

where Bn(r) is a geodesic ball and §n+ is the upper hemisphere with

the round metric. Is it true that |Σk| ≥ |Bk(r)|?
(b) Suppose Σ ⊂ R3 is a CMC topological disk and ∂Σ is a round circle

in a plane in R3. Is Σ necessarily a spherical cap?
(7) By David Hartley (ICMAT).

(a) Unduloids with Maximum Volume. When considering a family of De-
launay hypersurfaces with a fixed period in Rn+1, the enclosed volume
exhibits an intriguing feature in certain dimensions. For hypersurfaces
of dimension n ≤ 8 the maximum enclosed volume (over a one period
length) occurs at spheres, while for dimension n ≥ 11 it occurs at the
cylinders. Interestingly in dimensions n = 9, 10 the enclosed volume is
maximised by an unduloid (in fact for n = 8 there is also an unduloid
that obtains a local maximum enclosed volume). It seems strange that
such an optimisation would occur at an unduloid instead of a sphere
or cylinder, an analysis and explanation of this attribute would be
worthwhile.

(b) Topology of Level Sets of Minimal Graphs. Suppose that u : Ω ⊂
Rn → R satisfies the minimal surface equation

div

(
∇u√

1 + |∇u|2

)
= 0,

what forms can the nodal set {x ∈ Ω : u(x) = 0} take? Recently
it was proved by A. Enciso and D. Peralta that given any compact
hypersurface Ω ⊂ Rn there is a solution to the Allen-Cahn equation
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in Rn such that the nodal set contains Ω as a component. It would be
interesting to see if this is also true for the minimal surface equation,
a difficulty occurs in using their methods due to the minimal surface
equation being quasi-linear while the Allen-Cahn equation is semi-
linear.

(8) By Miyuki Koiso, Kyushu University

The following result was proved by J. Choe and M. Koiso (to appear in
Pacific Journal of Mathematics).

Let Σ be a compact immersed stable capillary hypersurface in a
wedge bounded by two hyperplanes in Rn+1, n ≥ 2. Suppose that
Σ meets those two hyperplanes in constant contact angles and
does not hit the edge of the wedge. We also assume that each
contact angle is greater than or equal to π/2, and that ∂Σ consists
of two smooth embedded (n − 1)-dimensional manifolds, one in
each hyperplane of the wedge, and that each component of ∂Σ is
convex when n ≥ 3. Then Σ is part of the sphere. Also, the
same conclusion holds if Σ is in the half-space of Rn+1 and ∂Σ is
connected.

Question 1. Weaken the assumption that “each support hyperplane in-
cludes at most one boundary component of the capillary hypersurface”.

Question 2. Weaken the assumption that “each boundary component of
the capillary hypersurface is convex” for n ≥ 3.

(9) By Bennett Palmer (Idaho State University)

1. Consider a liquid drop contained in the unit ball B ⊂ R3 and having
free boundary on the sphere S2. We consider an energy functional E made
up of three terms: the free surface of the drop is assigned its area A[Σ], the
part Ω of the sphere in contact with the drop is assigned a multiple of its
area ωA[Ω] and the boundary curve C = ∂Σ is assigned a multiple of its
length βL[C]. The total energy is thus

E = A[Σ] + ωA[Ω] + βL[C] .

The critical points of this functional, constrained by the requirements
that the volume is preserved and that ∂Σ always lies on S2, are character-
ized by the conditions that the mean curvature H of Σ is constant in the
interior of Σ and along C, X ·N = X ·N = −βk̄g +ω holds. Here X is the
position vector, N is the unit normal to Σ which points out of the drop,
and k̄g is the geodesic curvature of C in S2.

Must every critical point of disc type must be either a flat disc or spheri-
cal cap? With the additional hypothesis that the drop is stable, the answer
is in the affirmative.

In the case that β = 0, the answer is also in the affirmative as was shown
by Nitsche in the case ω = 0 and by Ros-Souam in the case of general ω.
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2. The surface of a rotating liquid drop satisfies an equation

(1) H = −αr
2

4
+H0 ,

where α and H0 are constants and r is the distance from the rotation axis.
The problem is to determine which axially symmetric disc type critical
points are stable for the prescribed boundary (Dirichlet) problem.

The surfaces can be explicitly determined. Noether’s Theorem implies
that each drop has a first integral

(2) 2r cos θ + 2H0r
2 − αr4

4
≡ constant =: A .

Here cos2 θ =:
√

1−N2
3 where N = (N1, N2, N3) is the surface normal. If

(2) is solved for r = r(θ), then the vertical coordinate z of the surface can
be found by

z(θ) = −
∫
θ0

rθ cot(θ) dθ

and the surface is given by X = (r(θ)eiθ, z(θ)). With the assumption that
the surface is of disc type, we can take r = 0 in (2) and get that A = 0
holds so (2) becomes a cubic which can be explicitly solved.

The Jacobi operator for this problem is

L[ψ] = ∆ψ + (|dN |2 + α(X1N1 +X2N2))ψ .

Write the position vector on S2 as N = (ueiθ, v) and define the triple
branched covering h : S2 → S2 by (ueiθ, v) 7→ (uei3θ, v). In the special case
when H0 = 0, the map h ◦N : Σ→ S2 is a branched conformal map under
which the Jacobi operator L is transformed into a multiple of the operator
∆S2 + 2. Using this, we can establish that a maximal stable domain in Σ
is given by the inequality N3 ≥ −1/3.

(10) By Julian Scheuer (Freiburg Unviersity).
In [1] it is shown that the smooth inverse mean curvature flow (IMCF)

in Rn+1,

(3) ẋ =
1

H
ν,

with perpendicular free boundary on the unit sphere drives strictly con-
vex hypersurfaces to the embedding of a flat unit disk. The proof makes
tremendous use of the convexity. Hence we would be really interested in
the

Question 1: Does the same result hold for mean-convex hypersurfaces?

There seem to be canonical solutions to this flow: Let C ⊂ Rn+1 be a
rotationally symmetric convex cone pointed at the origin, whose intersec-
tion with Sn is a geodesic hypersphere of Sn. Let M0 = C ∩ B̄1(0) be the
intersection of this cone with the unit ball. This is a hypersurface of Rn+1

with singularity at the origin and perpendicular to Sn.
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Question 2: Can the weak notion of IMCF be used to show that the
flow preserves the conical shape of M0 and converges to a flat disk? If yes,
can this flow be used as barrier to control the original flow and to get better
control of the speed of convergence?
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(11) By Keomkyo Seo (Sookmyung Women’s University)

Problem(1)
In [2], Fraser and Schoen proved that if Σ is a free boundary minimal surface
in a unit ball B3, then

area(Σ) ≥ area(flat disk) = π,

Equality holds if and only if Σ is a flat disk. (See also [1] for higher di-
mensional cases.) From this, one can see that the lowest area among free
boundary minimal surfaces is achieved by a flat disk. It is natural to ask
what is the next possible lower bound. The conjecture is the following:
Conjecture: Let Σ be a free boundary minimal surface which is nonflat.
Then

area(Σ) ≥ area(critical catenoid).

It seems that this problem might be closely related with Marques-Neves’s
min-max method [4].

Problem(2)
Nitsche’s Theorem about capillary surface says that if Σ is a capillary disk
in a ball in space forms, then Σ is totally umbilic. (See [3, 5, 6] and the
references therein.)
Prove this theorem without using Hopf differential. From this, one might
be able to prove the higher-dimensional analogue.
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