TOPOLOGÍA I. Examen del Tema 2

- Grado en Matemáticas. Curso 2013/14 -

Nombre:

- 1. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_u)\to(\mathbb{R},\tau_d), f(x)=\sin(x)$.
- 2. Probar que los espacios de cada pareja son homeomorfos entre sí:
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \ge 0\}, B = [0, 1].$
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}, B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$
 - (c) $A = (0,1) \cup [2,3], B = (5,7) \cup [10,12].$
- 3. Se considera (\mathbb{R}, τ) donde τ es la topología del punto incluido para p=1. Estudiar la continuidad global de la aplicación $f: (\mathbb{R} \times \mathbb{R}, \tau \times \tau) \to (\mathbb{R}, \tau), \ f(x,y) = y x$. Hallar el interior del conjunto $A = \{(x,y) \in \mathbb{R}^2 : y > x\}$ en $(\mathbb{R} \times \mathbb{R}, \tau \times \tau)$.
- 4. En $X=([0,1]\times\{0\})\cup([0,1]\times\{1\})\subset\mathbb{R}^2$ se define la relación

$$(x,y) R (x',y') \Leftrightarrow \begin{cases} (x,y) = (x',y') \\ (0,0) R (0,1) \\ (1,0) R (1,1) \end{cases}$$

Hallar y probar a qué subconjunto de \mathbb{R}^2 es homeomorfo X/R.

Razonar todas las respuestas

Soluciones

1. Una base de entornos de $x \in (\mathbb{R}, \tau_u)$ es $\beta_x = \{(x - r, x + r) : r > 0\}$ y de $x \in (\mathbb{R}, \tau_d)$ es $\beta'_x = \{[x, \infty)\}$. La continuidad de f en x se expresa como: encontrar r > 0 tal que

$$f((x-r,x+r)) \subset [\sin(x),\infty) \Leftrightarrow f((x-r,x+r)) \ge \sin(x).$$

Analizando la gráfica de la función seno, se observa que para todo r>0, f((x-r,x+r)) tiene puntos menores estrictos que $\sin(x)$. Esto está asegurado al menos en los puntos donde la función es creciente o decreciente. En los puntos donde el seno es 1, es decir, si $x=\pi/2+2k\pi,$ $k\in\mathbb{Z}$, la continuidad equivale a que $f((x-r,x+r))\geq 1$, lo cual es imposible. Y en los puntos donde el seno es -1, es decir, si $x=3\pi/2+2k\pi$, $\sin(x)=-1$, y la continuidad exige que $f((x-r,x+r))\geq -1$, que siempre es cierto.

Por tanto, la función sólo es continua en los puntos donde el seno es -1, es decir, $\{3\pi/2 + 2k\pi : k \in \mathbb{Z}\}.$

- 2. (a) El conjunto A es el grafo sobre el eje y de la función $f(y)\sqrt{1-x^2}$ definida en [-1,1]. Por tanto, $A=G(f)\cong [-1,1]$ y se sabe que dos intervalos cerrados son homeomorfos entre sí, luego homeomorfo a B.
 - [Otra forma. Hacemos en \mathbb{R}^2 un giro de 90 grados (que es un homeomorfismo) y lleva A en $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1, y \ge 0\}$. Este conjunto es el grafo de la función $g(x) = \sqrt{1-x^2}$ definida en [-1,1) y el argumento sigue los mismos pasos que antes.]
 - (b) El conjunto A es $(0, \infty) \times (0, \infty)$. Como $(0, \infty) \cong \mathbb{R}$ ya que dos intervalos abiertos de \mathbb{R} son homeomorfos entre sí, entonces $A \cong \mathbb{R} \times \mathbb{R}$. Ahora bien, el producto topológico de \mathbb{R} con la topología usual sobre sí mismo es \mathbb{R}^2 con la topología usual. Por tanto, $A \cong \mathbb{R}^2$. El conjunto B es una bola y se probó en clase que una bola de \mathbb{R}^n es homeomorfa a \mathbb{R}^n .
 - (c) Escribimos $A = A_1 \cup A_2$ y $B = B_1 \cup B_2$. Sabemos que $A_1 \cong B_1$ (los dos son intervalos abiertos) y que $A_2 \cong B_2$ (los dos son intervalos cerrados). El homeomorfismo entre A y B es el que lleva A_1 en B_1 y A_2 en B_2 y observando que A_1 y A_2 son conjuntos abiertos en A:

$$A_1 = (0,1) \cap A, \ A_2 = (1,5) \cap A.$$

La continuidad de la inversa sigue los mismos pasos, observando de nuevo, que B_1 y B_2 son abiertos $en\ B$.

[Nota: Los conjuntos A_1 y A_2 también son cerrados en A, luego el argumento de continuidad también se pueda realizar usando este hecho: $A_1 = [0,1] \cap A$ y $A_2 = [2,3] \cap A$.]

- 3. (a) El conjunto $O' = \{1\}$ es abierto en (\mathbb{R}, τ) . Hallamos su imagen inversa: $(x, y) \in f^{-1}(O')$ si $y x \in \{1\}$, es decir, $f^{-1}(O') = \{(x, y) : y = x + 1\}$, es decir, es una recta del plano. Este conjunto no es abierto en $(\mathbb{R}^2, \tau \times \tau)$ ya que al menos, contendría un elemento de la base $\tau \times \tau$, es decir, al menos $G_1 \times G_2 \in f^{-1}(O')$, con $G_i \in \tau$. En particular, $(1, 1) \in f^{-1}(O')$, lo cual no es cierto. Esto prueba que la aplicación no es continua globalmente.
 - [Nota: se puede tomar otros abiertos O', tales como $O' = \{1,2\}$, cuya imagen inversa son dos rectas paralelas y ninguna contiene al (1,1). Si se hubiera tomado como abierto el conjunto $G' = \{0,1\}$, entonces sí contiene al (1,1), pero esto no quiere decir que el conjunto $f^{-1}(G')$ sea abierto, ya que la topología $\tau \times \tau$ no es la topología del punto incluido en \mathbb{R}^2 para el punto (1,1). En verdad, tampoco dicho conjunto es abierto, ya que $(0,0) \in f^{-1}(G')$ y si es un punto interior, entonces $(0,0) \in \{0,1\} \times \{0,1\} \subset f^{-1}(G')$, lo cual tampoco es cierto.]
 - (b) Sea $(x, y) \in int(A)$. Entonces existe $O, O' \in \tau$ tal que $(x, y) \in O \times O' \subset A$. Ya que $1 \in O, O'$, entonces $(1, 1) \in A$, lo cual es falso. Esto prueba que $int(A) = \emptyset$.
- 4. El conjunto cociente X/R es homeomorfo a \mathbb{S}^1 donde $f:X\to\mathbb{S}^1$ está dada por

$$f(x,y) = \begin{cases} (\cos(\pi x), \sin(\pi x)) & y = 0\\ (\cos(\pi (1-x) + \pi), \sin(\pi (1-x) + 1)) & y = 1 \end{cases}$$

La aplicación f lleva $[0,1] \times \{0\}$ en la parte de arriba de \mathbb{S}^1 y lleva $[0,1] \times \{1\}$ en la de abajo de \mathbb{S}^1 , continuando desde el punto (-1,0) hasta (1,0). Por tanto, $R = R_f$. Además esto prueba que es sobreyectiva.

[Con algo más de detalle. Si $y=0, \pi x$ varía de 0 a π conforme vamos recorriendo el intervalo [0,1]. Si $y=1, (\pi(1-x)+\pi$ va de 2π a π , conforme vamos de 0 a 1. Por tanto, en el primer trozo, se cubre la parte de arriba $(y\geq 0)$ de \mathbb{S}^1 y en el segundo trozo, la parte de abajo $(y\leq 0)$ de \mathbb{S}^1 . Además, f(0,0)=f(0,1) y f(1,0)=f(1,1).]

La aplicación f es continua, ya que es continua en cada trozo de X (componiendo con las proyecciones de \mathbb{R}^2) y $[0,1] \times \{0\}$ y $[0,1] \times \{1\}$ son cerrados de \mathbb{R}^2 (producto de cerrados) y por tanto de cerrados en X.

Ya que X es acotado y cerrado en \mathbb{R}^2 (y f es continua), la aplicación f es cerrada. Por tanto una identificación, probando que $X/R_f = X/R \cong f(X) = \mathbb{S}^1$.