TOPOLOGÍA. Examen del Tema 6

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Consideramos el espacio (X, τ) con X = (0, 1) y $\tau = \{\emptyset, X\} \cup \{(0, a); a < 1\}$. Caracterizar los conjuntos compactos y estudiar si es localmente compacto.
- 2. (a) Poner un ejemplo de un espacio topológico y dos subconjuntos suyos compactos cuya intersección no es compacta.
 - (b) En $\mathbb R$ con la topología del punto incluido para p=0, hallar un subconjunto A que sea compacto, pero $\overline A$ no lo sea.
- 3. Se considera el espacio topológico $X = \mathbb{R} \cup \{p,q\}$, donde $p,q \notin \mathbb{R}$ cuya base es

$$\beta = \{(a, b); a, b \in \mathbb{R}, a < b\} \cup \{(-\infty, a) \cup \{p\}; a \in \mathbb{R}\} \cup \{(a, \infty) \cup \{q\}; a \in \mathbb{R}\}.$$

Probar (X, τ) es compacto y que $(X, i : \mathbb{R} \hookrightarrow X)$ es una compactificación de (\mathbb{R}, τ_u) .