TOPOLOGÍA. Examen del Tema 1

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08 Profesor: Rafael López Camino

Nombre:

- 1. Sea X un conjunto y $A \subset X$. Para cada $x \in X$, definimos $B_x = A \cup \{x\}$. Probad que $\beta = \{B_x; x \in X\}$ es una base de topología de X. Hallad la adherencia de A.
- 2. Con la topología usual de \mathbb{R} , sea $\{x_n\}_n \to x$. Hallad el interior y la adherencia de $\{x_n\}_n \cup \{x\}$.
- 3. Con la topología usual de \mathbb{R}^2 , se considera $A=\mathbb{Z}\times\mathbb{Z}$. Describid la topología inducida en A.
- 4. Se considera un espacio métrico (X,d) y $A\subset X$. Si $x\in X$, se define

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

Probad que $x \in \overline{A}$ sii d(x, A) = 0.

TOPOLOGÍA. Examen del Tema 1

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

1. Sea X un conjunto y $A \subset X$. Para cada $x \in X$, definimos $B_x = A \cup \{x\}$. Probad que $\beta = \{B_x; x \in X\}$ es una base de topología de X. Hallad la adherencia de A. Solución: Probamos las dos propiedades para β .

(a)

$$\bigcup_{x \in X} B_x = A \bigcup \left(\bigcup_{x \in X} \{x\} \right) = X.$$

(b) Se tiene (si $x \neq y$)

$$B_x \cap B_y = (A \cup \{x\}) \cap (A \cup \{y\}) = A$$

y $A \in \beta$ porque $A = B_a$ para cualquier $a \in A$. Por tanto, si $z \in B_x \cap B_y = A$, tomamos B_a y es evidente que $z \in B_a = B_x \cap B_y$.

Como cualquier elemento de la base β interseca a A, por la caracterización de punto adherente mediante bases de abiertos, se tiene entonces que $\overline{A} = X$.

- 2. Con la topología usual de \mathbb{R} , sea $\{x_n\}_n \to x$. Hallad el interior y la adherencia de $\{x_n\}_n \cup \{x\}$. Solución: Llamemos $A = \{x_n\}_n \cup \{x\}$.
 - (a) Si $a \in A$ es un punto interior, existe $\epsilon > 0$ tal que $(x \epsilon, x + \epsilon) \subset A$: contradicción, pues A es numerable y cualquier intervalo de \mathbb{R} no lo es. Por tanto, $int(A) = \emptyset$.
 - (b) Sea $y \in \overline{A}$. Entonces existe $\{a_n\} \subset A$ convergente a y. En particular, $\{a_n\}$ es una subsucesión de A. Las únicas que son convergentes son las que son constantes a partir de un cierto luegar –y en tal caso, $y \in A$ –, o es una parcial de $\{x_n\}$ y por tanto, su límite es x. En particular, $y = x \in A$. Por tanto, hemos probado que $\overline{A} = A$.
- 3. Con la topología usual de \mathbb{R}^2 , se considera $A = \mathbb{Z} \times \mathbb{Z}$. Describid la topología inducida en A. Solución: Sea $p = (n, n) \in \mathbb{Z} \times \mathbb{Z}$. Se sabe que la familia de discos $\{B_r(p); 0 < r < 1\}$ es una base de entornos p en la topología de \mathbb{R}^2 . Por tanto, $\{B_r(p) \cap (\mathbb{Z} \times \mathbb{Z}); 0 < r < 1\}$ es una base de entornos de p en la topología inducida de A. Pero es evidente que $B_r(p) \cap (\mathbb{Z} \times \mathbb{Z}) = \{p\}$. En clase se había probado que la topología que tiene como base de entornos de cualquier punto el propio punto, es la topología discreta.
- 4. Se considera un espacio métrico (X,d) y $A \subset X$. Si $x \in X$, se define

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

Probad que $x \in \overline{A}$ sii d(x, A) = 0.

Solución:

- (a) Supongamos que $x \in \overline{A}$. Entonces existe $\{a_n\} \subset A$ tal que $\{a_n\} \to x$. En particular $\{d(x,a_n)\} \to 0$. Por tanto, en el conjunto $\{d(x,a); a \in A\}$ –que está acotado inferiormente por 0–, existe un subconjunto, a saber, $\{d(x,a_n)\}$, cuyo ínfimo es 0. Concluímos entonces que el ínfimo del primer conjunto también es 0.
- (b) Supongamos que d(x,A)=0. Sea $n\in\mathbb{N}$ y 0=d(x,A)<1/n. Por la definición de ínfimo, existe $a_n\in A$ tal que $0\leq d(x,a_n)<1/n$. Tomando límites cuando $n\to\infty$, se tiene que $\{d(x,a_n)\}\to 0$. Esto quiere decir que hemos encontrado una sucesión en A, a saber, $\{a_n\}$, que converge a x. En particular, $x\in\overline{A}$.