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Abstract

In this paper we propose a new homogeneous stochastic Gompertz diffusion model with a threshold parameter. This
can be considered an extension of the homogeneous three parameter Gompertz process with the addition of a fourth
parameter. From the corresponding Kolmogorov equations and Ito’s stochastic differential equations, we obtain the
transition probability density function and the moments of this process (specifically, the trend functions). The parameters
are estimated by considering discrete sampling of the sample path of the model and by using maximum likelihood
methodology. Estimation of the threshold parameter requires us to solve a non-linear equation, which is achieved by
the Newton–Raphson method. Simulated model data are considered and the methodology in question is applied to
estimate the parameters; the values obtained are compared with those used in the simulation. Finally, the model is applied
to model the evolution of the trend of the dynamic variable ‘‘average monthly salary cost’’, for all sectors and broken down
(construction, industry, services) in Spain, for the period (1985–2005).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent decades, the notion of the stochastic diffusion process, defined by means of stochastic differential
equations (SDE) or by the Kolmogorov equation, has been used in many fields, including economics, physics,
engineering, cybernetics, environmetrics and biology.

The problem of estimating the parameters of the drift coefficient in these models has received considerable
attention recently, especially in situations in which the process is observed continuously. The statistical infer-
ence is usually based on approximating maximum likelihood methodology. An extensive review of this theory
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can be found in Prakasa Rao [18], and related new work has been done by Bibby and Sorensen [1], Kloeden
et al. [16], Singer [19] and others.

A wide variety of stochastic diffusion processes can be found in the literature, both general and specific. One
such process is the stochastic Gompertz diffusion process (SGDP). From the point of view of stochastic dif-
ferential equations, the homogeneous SGDP was introduced by Ricciardi [21] in a theoretical form, and sub-
sequently applied by Ferrante et al. [4] (growth of cancer cells) and by Gutiérrez et al. [12] (consumption of
natural gas in Spain). From the perspective of the Kolmogorov equations, the model was defined by Nafidi
[17] in a general form, and later applied by Gutiérrez et al. [10] in a study of the stock of motor vehicles in
Spain. The non-homogeneous form of the process (with exogenous factors) has been addressed by Nafidi
[17] in a very general context. Later, Gutiérrez et al. [13,15] studied the case in which only the growth rate
in the drift is affected by exogenous factors in a linear way, and applied this both to the growth in the price
of new housing in Spain and to the consumption of electricity in Morocco. Finally, Ferrante et al. [5] consid-
ered a non-homogeneous version in which the growth rate is the sum of two exponential functions that are
exogenous factors.

As well as these non-homogeneous extensions of the SGDP, it would be useful to possess other extensions
for real situations that might arise in various scientific fields. Frank [2] and Frank et al. [3] introduced a Gom-
pertz diffusion process with delay, which was studied on the basis of the generalized Fokker–Planck equations
with delays (given by Guillouzic et al. [23]). The present Gompertz model is used in the context of the stochas-
tic system with delays.

With respect to introducing delay into the Gompertz diffusion process, another possibility might be to con-
sider a threshold parameter. Thus, the model described in this paper is an extension of the homogeneous three-
parameter SGDP model that is obtained by incorporating a threshold parameter in an analogous way to the
procedure for homogeneous lognormal diffusion with two parameters when the threshold parameter is incor-
porated (see [11,20]).

This parameter influences the dynamic variable under study, as well as its trend functions, and so we can
obtain a better fit of the SGDP model to certain real phenomena that naturally present a threshold value in
their behaviour pattern, i.e. a non-null minimum value from which the process trajectories evolve in time.

It is a known fact that the transition probability density function (TPDF) of a diffusion process, in general,
cannot be expressed in closed form. Fortunately, for the process we propose, this function can be obtained,
and thanks to its type (established as the density of a lognormal distribution), it offers the possibility of devel-
oping an inferential methodology based on the use of a discrete sampling of its trajectories, which is different
from what was studied, for example, by [6,12,14], and which enables us to estimate its trend functions (both
conditioned and non-conditioned), which are the necessary tools for fitting and predicting real phenomena.

This paper is organised, henceforth, as follows: in the second section the proposed model is defined on the
basis of the corresponding Kolmogorov equations and on that of Ito’s stochastic differential equation, to
obtain the TPDF and its moments. Subsequently, we estimate the parameters of the model by means of
the maximum likelihood model, using discrete sampling of the process. Estimation of the threshold parameter
requires us to resolve a non-linear equation, which is done by means of the Newton Raphson method. Section
3 contains a simulation of the exact solution of Ito’s SDE which characterises the process, thus illustrating the
methodology by the simulation of its trajectories with respect to the theoretical trend function. The simulated
process data are used to estimate the parameters of the model using the proposed methodology and these are
compared with the true values used for the simulation. In Section 4, we describe an application of the process
studied to model the evolution of the trend of the dynamic variable ‘‘average monthly salary cost’’, both over-
all and by sectors (construction, industry, services) in Spain, using the data base for the period (1985–2005).

2. The model and its characteristics

2.1. The stochastic diffusion Gompertz with threshold parameters

The one-dimensional Gompertz diffusion process with threshold parameter c can be defined as a Markov
process {Xt, t 2 [t0,T], t0 > 0}, taking values on ]c, +1[ with almost certainly continuous paths and the infin-
itesimal moments
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AðxÞ ¼ aðx� cÞ � bðx� cÞ logðx� cÞ;
BðxÞ ¼ r2ðx� cÞ2;

ð1Þ
where a 2 R, b, r and c are positive real numbers (to be estimated). In the growth population, a is the intrinsic
growth rate; b is the deceleration factor and r is the diffusion coefficient volatility.

Let f(y, t/x, s) be the transition probability density function (TPDF) of this process. The latter, under certain
conditions of regularity and with the initial condition limt!s f(y, t/x, s) = d(y � x), is the unique solution of the
backward (Fokker–Planck) and forward (Kolmogorov) equations
of ðy; t=x; sÞ
ot

¼ o½AðyÞf ðy; t=x; sÞ�
oy

þ 1

2

o2½BðyÞf ðy; t=x; sÞ�
oy2

;

of ðy; t=x; sÞ
os

¼ �AðxÞ of ðy; t=x; sÞ
ox

� 1

2
BðxÞ o

2f ðy; t=x; sÞ
ox2

:

Alternatively, the above-defined process can be considered as the solution of Itô’s stochastic differential
equation (SDE)
dX t ¼ ðX t � cÞ a� b logðX t � cÞ½ �dt þ rðX t � cÞdW t;

X t0
¼ x0; t 2 ½t0; T �;

ð2Þ
where Wt is a standard Wiener process.
The common solution to the Kolmogorov equations can be obtained using Ricciardi’s theorem (see [22]) of

the transformation of the diffusion process into the Wiener process. The infinitesimal moments (1) verify the
conditions of the theorem cited; therefore such a transform exists and has the following form:
Wðx; tÞ ¼ bt
r

logðx� cÞ � a� r2=2

r

Z t

ebs ds;

UðtÞ ¼
Z t

e2bs ds:
From the above, the TPDF for the considered process is
f ðy; tjx; sÞ ¼ 1

y � c
½2pr2k2ðs; tÞ��1=2 exp � ½logðy � cÞ � lðs; tÞ�2
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This transition is the density function of the one-dimensional lognormal distribution: K1(l(s, t),r2k2(s, t))
and l(s, t) and k(s, t) are given, respectively, by
lðs; tÞ ¼ e�bðt�sÞ logðx� cÞ þ a� r2=2

b
ð1� e�bðt�sÞÞ;

k2ðs; tÞ ¼ 1

2b
ð1� e�2bðt�sÞÞ:
2.2. The moments of the process

Taking into account that the random variable Xt � cjXs = xs has the lognormal distribution K1(l(s, t),
r2k2(s, t)), we have
EððX t � cÞrjX s ¼ xÞ ¼ exp rlðs; tÞ þ r2r2

2
k2ðs; tÞ

� �
and by using Newton’s binomial expansion, the rth conditional moment of the process is given by
EðX r
t jX s ¼ xÞ ¼

Xr
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from which we obtain the conditional trend function of the process (r = 1)
EðX tjX s ¼ xsÞ ¼ cþ exp logðxs � cÞe�bðt�sÞ þ a� r2=2

b
ð1� e�bðt�sÞÞ

� �
� exp

r2

4b
1� e�2bðt�sÞ� �� �

ð4Þ
and by assuming P ½X t0
¼ x0� ¼ 1, the non-conditional trend function of the process is given by the following

expression:
EðX tÞ ¼ cþ exp logðx0 � cÞe�bðt�t0Þ þ a� r2=2

b
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2.3. Computation of the parameter estimators

The drift parameters a, b and c, and the diffusion coefficient r are estimated by means of the maximum
likelihood (ML) method using discrete sampling. Let us consider a discrete sample of the process
(x1,x2, . . . ,xn) at the time instants (t1, t2, . . . , tn), and let us assume, moreover, that the length of the time inter-
vals [ti�1, ti] (i = 2, . . . ,n) is equal to constant h (ti � ti�1 = h). Under the initial condition P ½X t1

¼ x1� ¼ 1, the
associate likelihood function can be obtained by the following expression:
Lðx1; . . . ; xn; a; b; r2; cÞ ¼
Yn

j¼2

f ðxj; tjjxj�1; tj�1Þ:
This function tends to infinity when c tends to x(1), where x(1) = inf06j6n(xj).
Using (3), the log-likelihood function can be written as follows:
LogðLÞ ¼
�b
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where a = a � r2/2.
By applying ML methodology, i.e. deriving with respect to the parameters and setting these derivatives

equal to zero, and after various operations, the resulting ML estimators of a and r2 and b are found to be
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h i
� ðn� 1Þ

Pn
j¼2yj;ĉyj�1;ĉ
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where yj;ĉ ¼ logðxj � ĉÞ and yj�1;ĉ ¼ logðxj�1 � ĉÞ, for j = 2, . . . ,n and the estimator of the threshold parameter
c is given by the following non-linear equation:
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where ĉ < xð1Þ.
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3. Simulation studies

The trajectory of the model can be obtained by simulation of the exact solution of the equation (2). This
solution can be obtained by means of Itô’s formula applied to the transform ebtlog(Xt � c), from which we
obtain the following equation:
Table
Estima

Simula
Estima
d½ebt logðX t � cÞ� ¼ ða� r2=2Þe�bt dt þ re�bt dW t:
By simplifying and integrating, the solution of the equation (2) leads us to
X t ¼ cþ exp logðxs � cÞe�bðt�sÞ þ a� r2=2

b
ð1� e�bðt�sÞÞ

� �
� exp r

Z t

s
e�bðt�sÞ dW s

� �
:

From this explicit solution, we obtain the simulated trajectories of the process by the following discretising
time interval [t0,T]: ti = t0 + ih, for i = 0, . . . ,n with h = T/n (n is an integer) and taking into account that
the random variable in the last expression

R t
s e�bðt�sÞ dW s is distributed as a one-dimensional normal distribu-

tion N1ð0;
R t

s e�2bðt�sÞ dsÞ.
From this simulated process sample, the parameters are estimated by ML using the Newton–Raphson non-

linear approach to approximate the value of ĉ. The parameters of the process are then estimated by applying
the method to the simulated data set described previously, which enables us to test the effectiveness of the
method.

Table 1 shows the values used in the simulation and the results obtained by estimating the parameters, using
the methods described above, implemented using the Mathematica packages, and considering h = 1, n = 30
and an initial value x0 = 0.99.

Fig. 1 illustrates the process with the behaviour of its theoretical trend function obtained from expression
(5) with respect to the trajectories of the process being studied.

4. Application to reals data

In this application, we examine the average salary cost per worker and per month, by sectors (all activities,
construction, services and industry) for the period 1986–2005. The following time-dependent random variables
are considered:

• X1(t): average salary cost per worker and per month, for all activities.
• X2(t): average salary cost per worker and per month, for the construction sector.
1
tion based on simulated data

â r̂ b̂ ĉ

tion 1 0.0001 0.5 0.5
tion 0.999896 0.000130768 0.500062 0.500003
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Fig. 1. Simulated trajectories versus the trend function.
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• X3(t): average salary cost per worker and per month, for the industrial sector.
• X4(t): average salary cost per worker and per month, for the services sector.

The data in Tables 3 and 4 are expressed in euros and were obtained from the Survey of Salaries in Industry
and Services for the years 1986–1999, and from the Quarterly Survey of Labour Costs for the years 2000–2005
from the TEMPUS database maintained by the Spanish National Institute of Statistics (INE). This may be
consulted at http://www.ine.es/. In the present study, we analyse the trend of the above-mentioned ‘‘Average
salary cost per worker and per month, by activities’’ in Spain, by fitting the observed data to the estimated
trend function (ETF) and the estimated conditional trend function (ECTF) of a threshold parameter- stochas-
tic Gompertz diffusion model, as introduced in the above paragraphs. The methodology can be summarised in
the following two phases:

• Step 1: Use the first 19 data in the series of observations considered to estimate the parameters of the model,
using expressions (6)–(9).

• Step 2: For the year 2005, predict the corresponding values for ‘‘Average salary cost per worker in Spain’’
using the ETF and the ECTF, obtained by replacing the parameters with their estimators in expressions (4)
and (5), and compare the results with the corresponding observed data for the same year.

A Mathematica program was implemented to carry out the calculations required for this study. The values
of the corresponding estimators are given in Table 2.
Table 2
Estimation based on observed data

â r̂ b̂ ĉ

X1(t) 1.01257 0.0184793 0.146124 419.901
X2(t) 1.18294 0.0274114 0.173729 428.210
X3(t) 0.89271 0.0194647 0.124331 401.796
X4(t) 1.09802 0.0197937 0.160986 437.634

Table 3
Fit and prediction X1(t) and X2(t)

Times X1(t) ETF ECTF X2(t) ETF ECTF

1986 546.91 546.91 546.91 469.49 469.49 469.49
1987 589.81 588.50 588.50 495.83 495.73 495.73
1988 634.32 635.25 636.70 529.68 530.32 530.44
1989 675.95 685.97 684.97 569.81 572.76 572.01
1990 736.22 739.31 728.89 628.27 621.82 618.49
1991 799.01 793.94 790.81 693.17 675.72 682.63
1992 864.37 848.61 853.63 748.34 732.47 750.40
1993 921.52 902.24 917.52 801.51 790.12 805.92
1994 967.07 953.95 972.35 843.15 846.94 857.99
1995 1010.82 1003.08 1015.44 887.78 901.54 897.94
1996 1054.68 1049.15 1056.36 929.22 952.91 940.06
1997 1089.75 1091.88 1096.98 964.49 1000.38 978.58
1998 1113.11 1131.13 1129.18 995.80 1043.58 1010.97
1999 1135.88 1166.89 1150.51 1032.76 1082.41 1039.44
2000 1160.15 1199.23 1171.20 1067.43 1116.93 1072.72
2001 1199.97 1228.30 1193.15 1116.61 1147.35 1103.65
2002 1246.61 1254.29 1228.96 1164.62 1173.96 1147.07
2003 1283.62 1277.42 1270.59 1212.36 1197.08 1188.98
2004 1310.13 1297.91 1303.40 1258.59 1217.07 1230.23

Prediction

2005 1341.26 1316.02 1326.78 1281.21 1234.28 1269.79

http://www.ine.es/
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Tables 3 and 4 summarise the prediction results, i.e. the observed data, and the values predicted by ETF
and ECTF, respectively.

Figs. 2 and 3 show the fits and the predictions made using the ETF and the ECTF, respectively.
Table 4
Fit and prediction X3(t) and X4(t)

Times X1(t) ETF ECTF X2(t) ETF ECTF

1986 581.08 581.08 581.08 545.20 545.20 545.20
1987 630.05 628.01 628.01 585.95 585.52 585.52
1988 677.86 679.57 681.78 631.89 631.54 632.03
1989 720.39 734.80 732.98 674.62 681.86 682.23
1990 785.01 792.63 777.66 734.83 734.85 727.34
1991 857.00 852.00 844.24 797.02 788.94 788.91
1992 931.23 911.88 916.88 858.59 842.67 850.59
1993 993.77 971.34 990.39 915.38 894.84 910.10
1994 1044.16 1029.60 1051.38 954.85 944.52 963.84
1995 1096.65 1085.98 1099.97 989.78 991.04 1000.63
1996 1149.37 1139.96 1150.12 1027.47 1033.99 1032.84
1997 1204.13 1191.16 1200.04 1053.95 1073.17 1067.25
1998 1233.68 1239.33 1251.46 1077.44 1108.55 1091.24
1999 1258.89 1284.29 1279.04 1098.08 1140.22 1112.38
2000 1284.31 1326.01 1302.47 1131.31 1168.35 1130.87
2001 1331.80 1364.48 1326.02 1168.89 1193.18 1160.46
2002 1393.08 1399.79 1369.81 1212.84 1214.99 1193.66
2003 1432.34 1432.04 1425.92 1248.29 1234.05 1232.17
2004 1470.24 1461.39 1461.66 1269.71 1250.64 1263.00

Prediction

2005 1508.96 1488.00 1496.01 1303.29 1265.04 1281.53
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Fig. 2. Fits and forecasts using ETF.
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5. Discussions and conclusions

• From a theoretical standpoint, the main conclusion to be drawn from the present study is that it is possible
to utilise a Gompertz homogeneous diffusion process that contains a c > 0 parameter in such a way that the
process is defined in ]c,1[, and that this extends to the Gompertz process the idea of the existence of a
‘‘threshold parameter’’, which has previously been considered both for probabilistic distributions (for
example, in the distributions of extreme values in reliability studies) and in other diffusion processes such
as the three-parameter lognormal distribution studied by the present authors (see, for example [11,20]). The
process presented in this paper can be studied probabilistically in an explicit way, thus obtaining its tran-
sition probability density function and moment functions (trend functions). From the statistical standpoint,
we have shown that it is possible to establish an estimation method based on obtaining a conditional like-
lihood function (Section 2.3) in a natural way, associated with the Markovian nature of the Gompertz pro-
cess being considered, this function being constructed from a discrete time sampling of the process. We can
then derive the maximum likelihood estimators of the four parameters for the model in question, including
the threshold parameter. In this respect, we have established a methodology for obtaining the estimators
that includes the numerical resolution of the implied non-linear equation.

• From a practical standpoint, we have followed the methodology previously adopted by the present authors
for other Gompertz-type diffusion processes with no threshold parameter (see, for example [12,13,15]) for
lognormal processes (see [7–9]) and Rayleigh processes (see [14]). The fundamental idea is as follows: on the
basis of the discrete observations of the dynamic stochastic variable being considered in a real application,
the Gompertz model is fitted using a threshold parameter. This fitting is effected as follows: the four param-
eters of the model are estimated using the methodology described in Section 2.3. From Zehna’s Theorem of
the theory of maximum likelihood estimation, the conditional and non-conditional (mean function) trends
are estimated; these are given by expressions (4) and (5), with the parameters being substituted by their
respective estimators. Finally, these estimated trend functions are used to calculate, for the different time
values, the respective fitted values, which are taken as the values assigned to the study variable by the fitted
model. The values estimated by the model (the fitted values) are compared with their respective observed
values, for the same time periods, for the process being studied.

• In the real case under study, which is of interest for economic studies in countries, like Spain where the
Growth Domestic Product increased considerably during the period in question (1985–2005), the following
conclusions are drawn: firstly, the consideration of a threshold parameter is found to confer a substantial
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advantage over the basic three-parameter Gompertz homogeneous model lacking such a threshold param-
eter. Thus, the fits obtained (see Figs. 2 and 3 and Tables 3 and 4) present a high degree of matching for all
the process variables considered (Xi : i = 1,2,3,4) and this is especially so for the fits obtained using ECTF.
The fits obtained with the two trend types, ECTF and ETF, can be compared in Tables 3 and 4. In every
case, if the same methodology is utilised to obtain fits for the variables Xi : i = 1,2,3,4, with the Gompertz
model lacking a threshold factor, it is apparent that these fits are not satisfactory. Finally, let us note that,
as is the case with other diffusion models, for example the lognormal type, the introduction of exogenous
factors (time-continuous factors that affect the drift) into the Gompertz model we are studying, produces
non-homogeneous extensions of the model, which may in turn improve the fits for real phenomena, as the
possible effects of exogenous variables on the endogenous ones are taken into account.
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