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Abstract This paper describes techniques for estimation
and prediction of two-parameter lognormal diffusion
random fields. The drift and diffusion coefficients, which
characterize a two-parameter lognormal diffusion under
certain conditions, are estimated by maximum likeli-
hood. For data on a regular grid, an alternative method
is proposed to estimate the diffusion coefficient. Both of
these estimates are compared in several situations. The
kriging predictors are formulated involving the drift and
diffusion coefficients and the predictions are obtained
using the estimates of these coefficients.

Keywords Diffusion random field Æ Kriging Æ
Lognormal diffusion process

Introduction

Lognormal stochastic models play, at different technical
levels, an important role in various scientific fields, in
particular in Environmental Sciences. At the first level of
complexity, two-parameter and three-parameter log-
normal distributions have been used for statistical fitting
of random variables describing environmental phe-
nomena; see, for example, Crow (1988), Addiscott
(1994), Small et al. (1998), in the univariate case; Bu-
chanan and Leduc (1994), Indyk and Potocki (1994), in
the multivariate case.

Dynamic models formulated in terms of lognormal
stochastic processes have been also widely applied in
Environmental Sciences and related fields (see, for

example, Smith and De Veaux 1992; Zielinski and
Ponnambalam 1994; Tjeng and Chai 1999). In the re-
cent years, significant analytical and statistical aspects
related to univariate and multivariate lognormal
processes have been addressed from both the forward-
backward Kolmogorov equations and the Îto stochas-
tic formulation points of view; for instance, parameter
estimation and hypothesis testing, as well as first-pas-
sage time problems for certain time barriers, are solved
in Gutiérrez et al. (1995), Gutiérrez et al. (1997b), and
Gutiérrez et al. (1999). Furthermore, certain non-
homogeneous versions of lognormal diffusions, with
special incidence in this work, have been proposed and
applied in different contexts (for example, to Eco-
nomics, in relation to consumption of energetic prod-
ucts, etc.). Specifically, such models are constructed by
formulating the drift term as dependent on certain
deterministic functions in time (exogenous factors), and
their applicability is based on establishing statistical
inference results which allow model fitting to data ob-
tained from discrete or continuous sampling (see Gut-
iérrez et al. 1991, 1997a, 2001).

Lognormal random fields represent the technically
more complex stage of lognormal modelling. Usually
introduced as a random field whose logarithm is a
Gaussian random field (see, for example, Journel and
Huijbregts 1978; Christakos 1992; Cressie 1993), the
lognormal random field has been studied in the geosta-
tistical context in relation to the associated lognormal
kriging and to simulation aspects. Applications cover
relevant problems in Geosciences, Radar Theory and
Image Analysis, Astrophysics, Hydrology, etc. (see, for
instance, Frankot and Chellappa 1987; Sheth 1995; Lee
and Ellis 1997; Gómez-Hernández and Gorelick 1989;
Noda and Hoshiya 1998; Corazza and Vatalaro 1994;
Goldys et al. 2000). Problems as parameter estimation,
lognormal simple kriging, estimation based on lognor-
mal maximum entropy, among others, are generally
undertaken by simply considering the lognormal ran-
dom field as the exponential transformation of a
Gaussian random field, without reference to any specific
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diffusion structure. This latter approach, however, con-
stitutes an important alternative in relation to model-
ling, parameter estimation and inference, analysis of first
passage through barriers, associated Îto equations and
derivation of discrete simulation schemes, etc. Among
the contribution to theoretical foundations for diffusion
random fields, see Nualart (1983), and Ruiz-Medina and
Valderrama (1998). In this context, Gutiérrez and Rol-
dán (2001) develop a general study of homogeneous
lognormal random fields from both the Kolmogorov
and Îto equations.

It is expected that, in the next few years, important
problems in Environmental Sciences, such as the defi-
nition and calculation of pollution indexes, which has
been approached in some cases by consideration of
homogeneous Gaussian random fields (see, for exam-
ple, Christakos and Hristopulos 1997), will be modelled
in terms of two-dimensional non-homogeneous log-
normal random fields, taking into account the well-
known lognormal distribution of pollutant elements.
Subsequent development of space-time evolution
equations involving lognormal random fields is also
envisaged as an important direction for research, of
particular interest for applications in Environmental
Sciences.

In this paper, we study estimation and prediction of a
2D lognormal diffusion random field. The contents are
organized as follows. First, the lognormal random field
model is established and a related non-homogeneous
version is introduced, involving exogenous factors
affecting the drift term, following the same idea devel-
oped for the one-parameter case as mentioned above.
Maximum-likelihood estimation of the model parame-
ters based on discrete finite set of data is then explicitly
solved. Finally, aspects related to kriging and simulation
are addressed and illustrated.

Lognormal diffusion random fields

Lognormal diffusion processes are commonly used in
the analysis of economic variables. When the parameter
space is a subset of R+

2 , Nualart (1983) introduced a
class of two-parameter random fields which are diffu-
sions on each coordinate and satisfy a particular Mar-
kov property related to partial ordering in R+

2 . Using
this theory, Gutiérrez and Roldán (2001) gave a char-
acterization of a two parameter lognormal diffusion
random field and proved that the transition density is
determined by drift and diffusion coefficients, ~aand
~B:We next summarize the results related to this charac-
terization.

Let {X (z) : z = (s, t) 2 I = [0, S] · [0, T] � R+
2 } be

a positive-valued Markov random field, defined on a
probability space X; A; Pð Þ;where X(0, 0) is assumed to
be constant or a lognormal random variable with E[ln
X(0, 0)] = /0 and var(ln X(0, 0)) = r0

2. The distribu-
tion of the random field is determined by the following
transition probabilities:

P B; ðsþ h; t þ kÞjðx1; x; x2Þ; zð Þ
¼ P ½X ðsþ h; t þ kÞ 2 BjX ðs; t þ kÞ ¼ x1;X ðzÞ
¼ x;X ðsþ h; kÞ ¼ x2

where z = (s, t) 2 I, h, k>0, (x1, x, x2) 2 R+
3 and B is a

Borel subset. We suppose that the transition densities
exist and are given by

g y; ðsþ h; t þ kÞj x1; x; x2ð Þ; zð Þ

¼ 1

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
z;h;k

q exp � 1

2

ln yx=x1x2ð Þ � mz;h;k

rz;h;k

� �2
( )

;

for y 2 R+, with

mz;h;k ¼
Z

sþh

s

Z

tþk

t

~aðr; sÞ drds;

r2
z;h;k ¼

Z

sþh

s

Z

tþk

t

~Bðr; sÞdrds;

and ~a; ~Bbeing continuous functions on I. Under these
conditions we can assert that {X(z) : z 2 I} is a lognor-
mal diffusion random field. The one-parameter drift and
diffusion coefficients associated are given by

a1ðzÞx :¼ ~a1ðzÞ þ 1
2

~B1ðzÞ
� �

x; B1ðzÞx2 :¼ ~B1ðzÞx2;
a2ðzÞx :¼ ~a2ðzÞ þ 1

2
~B2ðzÞ

� �

x; B2ðzÞx2 :¼ ~B2ðzÞx2;

where

~a1ðs; tÞ ¼
R

t

0

~aðs; sÞds; ~B1ðs; tÞ ¼
R

t

0

~Bðs; sÞ ds;

~a2ðs; tÞ ¼
R

s

0

~aðr; tÞ dr; ~B2ðs; tÞ ¼
R

s

0

~Bðr; tÞ dr;

for all z = (s, t) 2 I, x 2 R+.
The random field {Y(z) : z 2 I} defined as Y(z) = ln

X(z) is then a Gaussian diffusion random field, with
~a and ~Bbeing, respectively, the drift and diffusion coef-
ficients, and ~a1; ~a2; ~B1 and ~B2being the corresponding
one-parameter drift and diffusion coefficients. Further-
more, if z, z¢ 2 I, z = (s, t), z¢ = (s¢, t¢) , then

mY ðzÞ : ¼ E½Y ðzÞ� ¼ /0 þ
R

s

0

R

t

0

~aðr; sÞ drds;

r2
Y ðzÞ : ¼ varðY ðzÞÞ ¼ r2

0 þ
R

s

0

R

t

0

~Bðr; sÞdrds;

cY ðz; z0Þ : ¼ covðY ðzÞ; Y ðz0ÞÞ ¼ r2
Y ðz ^ z0Þ;

where we write z ^ z0for s ^ s0; t ^ t0ð Þ;with ‘�’ denoting
the minimum.

Henceforth we will assume that the condition usually
considered for estimation of the drift and diffusion
coefficients in the one-parameter case hold; that is, P[ln
X(0, 0) = /0]=1 (i.e. r0

2=0) and

r2
Y ðzÞ ¼ ~Bst; z ¼ ðs; tÞ 2 I :
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Estimation of the drift and diffusion coefficients

Let {X(z) : z 2 I} be a lognormal diffusion random
field. Data X = (X(z1), ..., X(z n))

t are assumed to be
observed at known spatial locations z1 = (s1, t1),
z2 = (s2, t2), ..., z n = (s n, t n) 2 I. Let x = (x1, x2, ...,
x n)

t be a sample. Let us consider the log-transformed
n-dimensional random vector, Y = (Y(z1), Y(z2), ...,
Y(z n))

t = (ln X(z1), ln X(z2), ..., ln X(z n))
t = ln

X, and the log-transformed sample, y = (y1, y2, ..., y n)
t = ln x. We denote

mY ¼ ðmY ðz1Þ; . . . ;mY ðznÞÞt;
RY ¼ r2

Y ðzi ^ zjÞ
� �

i;j¼1;...;n:

MLE for the drift and diffusion coefficients using
exogenous factors

Suppose that the drift coefficient ~aof Y is a linear com-
bination of several known functions, set {h1(z), ..., h

p(z) : z 2 I}, with real coefficients /1, ..., / p:

~aðzÞ ¼
X

p

a¼1
/ahaðzÞ; z 2 I :

Defining, for z = (s, t) 2 I,

f0ðzÞ ¼ 1;

faðzÞ ¼
R

s

0

R

t

0

haðr; sÞ drds; a ¼ 1; . . . ; p;

the mean of Y is given by

mY ðs; tÞ ¼ /0 þ
P

p

a¼1
/a

R

s

0

R

t

0

haðr; sÞ drds

¼
P

p

a¼0
/afaðzÞ:

Thus, denoting F = (f0, f1, ..., f p), with fa = (fa(z1),
fa(z2), ..., fa(z n))

t, for a=0, 1, ..., p, and
/ ¼ /0;/1; . . . ;/p

� �t
;we have

/Y ¼ ð/0f0 þ /1f1 þ . . .þ /pfpÞ ¼ F/:

Let us write

RY¼~BM:

¼~B

s1t1 ðs1^s2Þðt1^t2Þ ��� ðs1^snÞðt1^tnÞ
ðs1^s2Þðt1^t2Þ s2t2 ��� ðs2^snÞðt2^tnÞ

..

. ..
. . .

. ..
.

ðs1^snÞðt1^tnÞ ðs2^snÞðt2^tnÞ ��� sntn

0

B

B

B

@

1

C

C

C

A

:

With this notation, the joint density function of the
random vector Y is

f ðyÞ¼ 1

ð2pÞn=2 ~BM
�

�

�

�

1=2
exp �1

2
ðy�F/Þt ~BM

� ��1ðy�F/Þ
� �

;

and then, the joint density function of X is given by

gðxÞ ¼ 1

ð2pÞn=2 ~BM
�

�

�

�

1=2
Pn

i¼1xi

� exp � 1

2
ðln x� F/Þt ~BM

� ��1ðlnx� F/Þ
� �

:

Therefore, the associated log-likelihood function is

ln L x; /; ~B
� �

¼� n
2
lnð2pÞ � 1

2
ln ~BM
�

�

�

�� ln
Y

n

i¼1
xi

 !

� 1

2
ðln x� F/Þt ~BM

� ��1ðln x� F/Þ

¼� n
2
lnð2pÞ � n

2
ln ~B� 1

2
ln Mj j � ln

Y

n

i¼1
xi

 !

� 1

2~B
ðln x� F/ÞtM�1ðln x� F/Þ:

Differentiating with respect to / and ~B;and equating
to 0, we have

ln x� F/ð ÞtM�1F ¼ 0;

� n

2~B
þ n

2~B2
ðln x� F/ÞtM�1ðln x� F/Þ ¼ 0;

with 0 ¼ 0; . . . ; 0ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

pþ1

:Solving for / and ~B;we obtain

/� ¼ /�0;/
�
1; . . . ;/�p


 �t
¼ ðFtM�1FÞ�1FtM�1ln x ð1Þ

and

~B� ¼ 1

n
ðln x�m�Y Þ

t
M�1ðln x�m�Y Þ; ð2Þ

where m�Y ¼ F/�:

Remark.

In many practical applications, a polynomial trend
provides a suitable representation for the drift surface,

mðzÞ ¼
X

06kþl6r

/kls
ktl; z ¼ ðs; tÞ;

for some appropriate choice of r.

Estimation of the drift and diffusion coefficients from
data on a regular grid

Suppose now that the data are obtained on a regular
grid in R+

2 . Let z = (s, t) be a point on a set S of
locations included in the regular grid and let us denote
the 2D four-point increment of Y by

Y ðDhkðzÞÞ ¼ Y ðsþ h; t þ kÞ � Y ðs; t þ kÞ � Y ðsþ h; tÞ
þ Y ðs; tÞ;

for h, k>0. Taking into account that the variance of this
increment,
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varðY ðDhkðzÞÞÞ ¼ r2
z;h;k ¼

Z

sþh

s

Z

tþk

t

~Bðr; sÞ drds ¼ ~Bhk;

does not depend on the location z, but only on the area
hk, the diffusion coefficient ~Bcan be estimated using a
similar approach to Matheron’s (1962) estimator for the
variogram (see also Cressie 1993), considering here 2D
four-point increments, as follows.

Under the implicit condition that z i = (s i, t i) < z

j = (s j, t j), we denote

½zi; zj� ¼ ðsi; tiÞ; ðsi; tjÞ; ðsj; siÞ; ðsj; tjÞ
� 

:

Assuming first that the mean is constant, we propose
the estimator

varðY ðDhkðzÞÞÞ ¼
1

jNðhkÞj
X

NðhkÞ

�

Y ðsþ h; t þ kÞ

�Y ðs; t þ kÞ � Y ðsþ h; tÞ þ Y ðs; tÞ
�2
; ð3Þ

where

NðhkÞ �
�

zi; zj
� �

: zi; zj
� �

2 S;

v ðsj � siÞðtj � tiÞ ¼ hk; i; j ¼ 1; . . . ; n


and | N(hk) | is the number of distinct elements of N(hk).
Note that, in this case, the mean does not need to be
estimated. From Eq. 3, we can estimate variances for the
different areas hk associated with the grid subset S
considered. Then, an estimate for ~Bcan be obtained from
the slope of the ‘best’ straight line starting at the origing
and approximating the set of points hk;dvarð Y Dhkðð
zð ÞÞÞÞ calculated. Here we adopt the usual least-squares
criterion for optimality, and denote ~B��the correspond-
ing estimator for ~B:

If the mean is not constant, we can also estimate the
increment variances as follows:

var ðY ðDhkðzÞÞÞ ¼
1

jNðhkÞj
X

NðhkÞ
ðY ðsþ h; t þ kÞ

� Y ðs; t þ kÞ � Y ðsþ h; tÞ þ Y ðs; tÞ

� mY ðsþ h; t þ kÞ þ mY ðs; t þ kÞ

þ mY ðsþ h; tÞ � mY ðs; tÞÞ2; ð4Þ

for z = (s, t). If the mean is unknown, it can be esti-
mated using Eq. 1 by m�Y zð Þ ¼

Pp
a¼0 /�afa zð Þ:

Lognormal kriging

Let z0 be a known spatial location where we are inter-
ested to estimate X from observations at locations z1, ...,
z n 2 I. Here we follow the usual approach which con-

sists of transforming the data from the X scale to the Y
scale,

Y ¼ ðY ðz1Þ; . . . ; Y ðznÞÞt
¼ ðlnðz1Þ; . . . ; lnðznÞÞt:

Using this data we obtain the kriging predictor for
Y(z0),

Ŷ ðz0Þ ¼
X

n

i¼1
kiY ðziÞ ¼ ktY:

Then, the predictor for X(z0), X̂ z0ð Þ;is obtained using
an appropriate unbiased back transformation of
Ŷ z0ð Þ;(Cressie 1993). We next summarize the results
obtained under the different hypotheses that are usually
considered.

We denote

cY ¼ r2
Y ðz0 ^ z1Þ; . . . ; r2

Y ðz0 ^ znÞ
� �t

;

where z0, z1, ..., z n 2 I.

Simple lognormal kriging

Assuming that /0 and ~Bare known constants and ~ais a
known continuous function on I, an unbiased predictor
of X(z0) is given by

X̂ ðz0Þ ¼ exp

(

ct
Y R�1Y ðY�mY Þ þ mY ðz0Þ

þ r2
Y ðz0Þ � ct

Y R�1Y cY

2

)

¼ exp Ŷ ðz0Þ þ
r2

Yskðz0Þ
2

� �

; ð5Þ

where

Ŷ ðz0Þ ¼ ct
Y R�1Y ðY�mY Þ þ mY ðz0Þ:

The corresponding minimum mean-squared predic-
tion error is

E X ðz0Þ � X̂ ðz0Þ
� �2
h i

¼ exp 2mY ðz0Þ þ r2
Y ðz0Þ

� 

� exp r2
Y ðz0Þ

� 

� exp var Ŷ ðz0Þ
� �� � �

;

where

var Ŷ ðz0Þ
� �

¼ ktRY k; with kt ¼ ct
Y R�1Y :

Ordinary lognormal kriging

We now consider /0 to be an unknown constant,
~aðzÞ ¼ 0;for all z2I, and ~Ba known constant. In this
case, an unbiased predictor of X(z0) is given by
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X̂ ðz0Þ ¼ exp

(

ct
Y R�1Y Yþ ð1� 1tR�1Y cY Þ/̂0

þ 1

2
r2

Y ðz0Þ � ct
Y R�1Y cY þ

ð1� 1tR�1Y cY Þ2

1tR�1Y 1

 !

� 1� 1tR�1Y cY

1tR�1Y 1

)

¼ exp Ŷ ðz0Þ þ
r2

Yokðz0Þ
2

�M
� �

;

where

/̂0 ¼
1tR�1Y Y

1tR�1Y 1
;

Ŷ ðz0Þ ¼ ct
Y R�1Y Yþ ð1� 1tR�1Y cY Þ/̂0; and

M ¼ ð1� 1tR�1Y cY Þð1tR�1Y 1Þ�1 ðLagrange multiplierÞ:

The minimized mean-squared prediction error is

Ê X ðz0�X̂ ðz0Þ
� �2
h i

¼ exp 2/̂0þr2
Y ðz0Þ

n o

�
h

exp r2
Y ðz0Þ

� 

þexp var Ŷ ðz0Þ
� �� 

ð1�2e�MÞ
i

;

where

var Ŷ ðz0Þ
� �

¼ ktRY k; with kt

¼ ct
Y R�1Y þ ð1� 1tR�1Y cY Þð1tR�1Y 1Þ�11tR�1Y :

Numerical examples

In this section we describe some numerical examples
illustrating estimation and prediction for a lognormal
diffusion random field under the approaches considered.
First, using simulated data on a regular grid, the two
estimation methods for the diffusion coefficient respec-
tively described in Sects. 3.1 and 3.2 are compared. Both
cases of known mean and unknown constant mean (for
the associated Gaussian random field; see Sect. 4) are
studied. For the latter case, we obtain (lognormal) kri-
ging predictions of the field.

The parameter space considered is I = [0, 1.67]·[0,
1.07]. Realizations are generated on a regular 19·19 grid
with SW corner at point (0.05, 0.05) and NE corner at
point (1.67, 1.07) using the method of unconstrained
simulation (see Christakos 1992). Parameter estimates
and predictions are obtained on this grid based on the
data X, consisting of the values corresponding to the 7·7
grid subset determined by the same corner points. Both
sets are displayed in Fig. 1.

We first consider a lognormal diffusion random field
with non constant mean, and with /0=0.25,
~aðzÞ ¼ �2;for all z2I, and ~B ¼ 1:Table1 gives the

estimates of ~B�and ~B��obtained for 16 independent
unconstrained simulations for this random field,
assuming that the mean of the associated Gaussian
random field is knowm.

In particular, the values obtained for
cvar Y DhkðzÞð Þð Þ(see Eq. 4) from simulation 1, for the
posible values of hk and |N(hk)| determined by the 7·7
grid considered, are given in Table 2. The corresponding
regression line from which ~B��was obtained is repre-
sented in Fig. 2. For these data, the slope is
~B�� ¼ 1:2778:

Assuming now that the mean is constant,
~aðzÞ ¼ 0; for all z 2 I ;for all z 2 I, we have generated 16
unconstrained simulations for a lognormal diffusion
random field with /0=0.25, and ~B ¼ 1;as before. Esti-
mates /0

*, ~B�and ~B��are given in Table 3. (In this case,
the values of dvar Y Dhk zð Þð Þð Þare obtained using the
Eq. 3.)

As for kriging, we have considered the latter case,
that is, the lognormal diffusion random field with
/0=0.25, ~a ¼ 0and ~B ¼ 1:Using the 49 values obtained
from simulation 1 (see Fig. 3) and ~B� ¼ 1:1328we have
obtained 361 predictions by ordinary lognormal kriging
(see Eq. 6). The results are plotted in Fig. 4.

Figure 5 displays a contour-level plot for the 19·19
realization obtained from simulation 1.

From the results obtained in both cases studied, we
can observe that the maximum-likelihood estimation
method overall provides more accurate estimates for the
diffusion coefficient than the alternative method based
on evaluation of 2D four-point increments. A similar
behavior has been observed in several other cases stud-
ied by the authors. Lack of stability in the estimate
~B�can be possibly overcome by robust estimation of the
slope of cvar Y DhkðzÞð Þð Þversus hk instead of using the
least-squares approach.

Conclusions

In this paper we study estimation of the drift and dif-
fusion coefficients and prediction for a 2D lognormal

s

t

0.0 0.5 1.0 1.5

0.
2

0.
4

0.
6

0.
8

1.
0

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Fig. 1 Grids with the 49 observation locations and the 361
locations for prediction
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diffusion random field, including exogenous factors in its
formulation. This is an important case of random fields
which are not intrinsically stationary, then well-known
related techniques cannot be applied. Such models are
useful to represent diffusion-type positive valued char-
acteristics associated to phenomena of interest in dif-
ferent fields, in particular pollutant indicators in
environmental studies.

Two approaches are considered for parameter esti-
mation from discrete observations: one is based on
MLE, which can be applied to irregularly spaced
observations; the other one exploits the Gaussian dis-
tribution of the log-transformation of the random field
and stationarity of the 2D four-point increments, which
can be applied to the case of observations lying on a
regular grid. Unbiased kriging predictors are obtained
for the cases of known and constant unknown mean for

the associated Gaussian field. Numerical examples
illustrating the methods considered, are provided.

The approach considered allows us to use well-known
techniques for estimation and prediction, such as simple
kriging. The numerical examples show that both meth-
ods of estimation considered provide reasonable results.
However, as commented in Sect. 5, our experience with
these and other cases studied suggests that the imple-
mentation of the 2D four-point increment approach
might be improved, e.g. by using robust regression for
estimating the diffusion coefficient, for increasing the
stability of estimates. A rigorous formal comparative
study on the statistical performance of both methods is
not available at this stage.

Possible extensions under investigation by the au-
thors include consideration of non-constant diffusion-
type values at the boundary axes, to exploit exogenous
factors accounting for covariable effects, as well as
higher-dimension spatial and spatio-temporal formula-
tions. Also, development of validation techniques in this
context would be most important for real applications.

Table 1 Estimates of ~Bby the two methods considered, for 16
simulations of the lognormal diffusion random field (known non
constant mean case)

Simulation
number

~B� ~B��

1 1.0045 1.2778
2 0.9528 0.7436
3 1.1243 0.8203
4 0.9492 1.7679
5 0.7116 0.2694
6 0.7615 0.4587
7 1.0214 0.3270
8 1.0359 3.9383
9 0.7809 0.3710
10 0.7884 0.5202
11 0.8757 0.5730
12 0.9804 0.9938
13 1.2311 0.3689
14 0.5693 1.1436
15 1.0823 0.4155
16 0.8557 0.8566

Table 2 Values of |N(hk)| and dvar Y Dhk zð Þð Þð Þfor the possible val-
ues of the areas hk

hk | N(hk)| dvar Y Dhk zð Þð Þð Þ

0.0459 36 0.0441
0.0918 60 0.0725
0.1377 48 0.0996
0.1836 61 0.1511
0.2295 24 0.2242
0.2754 52 0.2531
0.3672 30 0.3423
0.4131 16 0.3560
0.4590 20 0.4099
0.5508 34 0.6100
0.6885 16 0.7041
0.7344 9 0.9754
0.8262 8 0.9570
0.9180 12 1.1385
1.1016 6 1.6370
1.1475 4 1.1602
1.3770 4 1.7207
1.6524 1 2.5249

Table 3 Estimates of /0 and ~Bby the two methods considered for
16 simulations of the lognormal diffusion random field (unknown
constant mean case)

Simulation number /0
* ~B� ~B��

1 0.2465 1.1328 1.2162
2 0.2965 1.1060 0.6644
3 0.3357 0.6264 0.4295
4 0.2555 1.0045 0.8650
5 0.2453 0.9928 0.5687
6 0.2434 1.3253 0.5777
7 0.1959 0.9338 0.3480
8 0.2202 0.8337 0.5206
9 0.2814 0.8788 0.4451
10 0.3016 1.0578 0.9393
11 0.2036 1.0823 0.2217
12 0.2509 0.9359 0.6627
13 0.2968 0.9008 0.3172
14 0.2159 0.9217 0.6742
15 0.1809 0.9993 0.5006
16 0.2834 0.8746 0.7880
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Fig. 2 Straight line fitted by least squares
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Fig. 5 Contour-level plot of the 361 values (including the 49 values
used for estimating ~B) generated (simulation 1) for the lognormal
diffusion random field considered
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264



Noda S, Hoshiya M (1998) Kriging of lognormal stochastic field. J
Eng Mech 124(11):1775–1184

Nualart D (1983) Two-parameter diffusion processes and martin-
gales. Stochastic Process Appl 15:31–57

Ruiz-Medina MD, Valderrama MJ (1998) Two-parameter diffu-
sion random fields. Stochastic Anal Appl 16(2):391–402

Sheth RK (1995) Constrained realizations and minimum variance
reconstruction of non Gaussian random fields. Monthly No-
tices of the Royal Astronomical Society 277(3):933–944

Small MJ, Sutton MC, Milke MV (1998) Parametric distributions
of regional lake Chemistry: fitted and derived. Environ Sci
Technol 22:196–204

Smith JA, De Veaux RD (1992) The temporal and spatial varia-
blility of rainfall power. Environmetrics 3(1):29–53

Tjeng TT, Chai CC (1999) Fade statistics in Nakagami-lognormal
channels. IEEE Transact Commun 47(12):1769–1772

Zielinski PA, Ponnambalam K (1994) Computational methods in
stochastic river waters quality modeling. In: Hipel KW (ed)
Stochastic and statistical methods in hydrology and environ-
mental engineering, vol 2. Kluwer, Dordrecht, pp 187–195

265


	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Fig1
	Tab1
	Tab2
	Tab3
	Fig2
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	Fig3
	Fig5
	Fig4
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29

