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Abstract

In this paper, we consider a Stochastic System modelling by the Stochastic Rayleigh
Diffusion Process and we discuss theoretical aspects of the latter and establish a statis-
tical methodology to adjust it to real cases, particulary, in the field of biometry and
related areas. The Rayleigh process, according to the definition of [C. Giorno,
A. Nobile, L. Ricciardi, L. Sacerdote, Some remarks on the Rayleigh process, Journal
of Applied Probability 23 (1986) 398–408], is examined from the perspective of the cor-
responding nonlinear stochastic differential equation, and from its associated probabil-
ity density function we obtain the corresponding mean functions (trend function and
conditional trend function), which depend of Kummer functions. The drift parameters
are estimated by maximum likelihood on the basis of continuous sampling of the pro-
cess and they are calculated by computational methods. We propose numerical approxi-
mations for the diffusion coefficient, from an extension of the [M. Chesney, J. Elliot,
Estimating the instantaneous volatility and covariance of risky assets, Applied Stochas-
tic Models and Data Analysis 11 (1995) 51–58] procedure to the case of nonlinear
0096-3003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2005.07.047

* Corresponding author.
E-mail address: rgjaimez@ugr.es (R. Gutiérrez).

mailto:rgjaimez@ugr.es


R. Gutiérrez et al. / Appl. Math. Comput. 175 (2006) 628–644 629
stochastic differential equations and we establish also computational procedures and
simulation algorithm, that are applied to obtened simulated paths of the fitted process.
The proposed methodology is applied to two studies carried out in Andalusia (Spain) on
females and males life expectancy at birth, between 1944 and 2001.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The stochastic Rayleigh diffusion process (SRDP), from its first formulation
Rayleigh [27], has been widely used in physics. For example, the radial
Ornstein–Uhlenbeck process, a special case of the general Rayleigh process,
is quite naturally related with the description of ‘‘optical field’’ by means of
a pair of Ornstein–Uhlenbeck processes, which in turn describe the behaviour,
both real and imaginary, of an electrical field, and thus the Ito stochastic dif-
ferential equation (SDE) of the corresponding amplitude coincides with the
SDE of a Rayleigh diffusion process (see, for example, [9]).

In the last few decades, the Rayleigh process, or one of its particular cases,
has been discussed in conjunction with important theoretical and practical
problems in various aspects of Stochastic Modelling. For example, in the
theory of Point Processes, and in particular in modelling based on the Cox pro-
cess [4], a stationary radial Ornstein–Uhlenbeck process (a particular Rayleigh
process) plays an important role, as discussed by Clifford and Wei [3], who
showed that if a Cox process has an intensity that is the square of a stationary
radial Ornstein–Uhlenbeck process, then it is equivalent to a death process
within a ‘‘simple stationary immigration, birth and death process’’, with all
the advantages implicit in this, for example with respect to its simulation.

Recently, see for example Davidov and Linetsky [7], the Rayleigh diffusion
process has also been considered in the context of the path-dependent options
models used in economics and stochastic finance studies. Specifically, the
Rayleigh process (radial Ornstein–Uhlenbeck process) is used in relation with
important models formulated under the hypothesis that volatility is not con-
stant, but is rather a function of the underlying asset price. On the basis of con-
stant elasticity of variance (CEV) stochastic diffusions, or Cox processes [5],
which include as particular cases the lognormal diffusion of the Black–Scholes
model [1], the diffusion of the Merton model [24], the diffusion of the Cox–Ross
model [6] and others, it can be shown that there exists a specific functional tran-
formation between these CEV diffusion processes and the Rayleigh process and
its particular cases. The CEV models, and especially the Rayleigh model, are
today recognized to be very appropriate in real-life situations, under which
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the Black–Scholes model and the others named above have been found unable
to achieve good fits. The article by Davidov and Linetsky [7] describes various
simulations of the above-cited diffusions and some fits to real applications in
the Theory of Options and Risk. In other fields of science, and in particular
in Biomedical Science and related areas (such as demographic statistics and
the growth of cell populations), we are unaware of applications of the Rayleigh
process to theoretical modelling or to statistical fits to observed real data.

Giorno et al. [10], taking as their starting point a definition of the Rayleigh
process, in its broad sense, (see Section 2.1 below) established the basic prob-
abilistic theory of this process, obtaining their own transition density function
and first-passage time density for arbitrary constant barriers, on the basis of
the corresponding Kolmogorov equations (see, for example, [28]). As regards
the statistical inference of the Rayleigh process, especially concerning the esti-
mation of its drift and diffusion parameters, it is noteworthy that from the pub-
lished literature, it does not seem to have been dealt with in a complete,
integrated way (i.e. dealing with the estimation of the two types of parameter).
With respect to the drift parameters, and in the case of a Rayleigh (radial
Ornstein–Uhlenbeck) process with a diffusion coefficient equal to one, which
is thus a very special Rayleigh model with a constant volatility equal to one,
Prakasa Rao [25] considers the estimation to be based on eigenfunctions.

For other diffusions, and in particular Gompertz-type diffusions, the prob-
lem of the statistical inference of their drift and diffusion parameters has been
addressed. Drift parameters are estimated by continuous sampling and an
approximation of the diffusion coefficient is made by means of formulas based
on the quadratic variation of the process. This method represents an alterna-
tive to that presented in this paper for the Rayleigh process. In this Gompertz-
ian case, the statistical methodology is applied to real problems of tumor
growth [8] and energy consumptions [15].

In all the studies mentioned, and in other, similar ones, the Rayleigh process
has been studied theoretically from various viewpoints and it has been applied
to the theoretical structural modelling of the above-cited phenomena. How-
ever, no study has been carried out to obtain estimators of the parameters
by general methods of parametric statistical inference, such that the Rayleigh
model can be statistically fitted to real data obtained by time-continuous sam-
pling (sample trajectories) or by discrete sampling (observations within a time
discretization).

In the theoretical–practical context of the Rayleigh model as summarised
above, the present study is intended to achieve the following objectives: firstly,
taking into account the fitting and prediction methodology that will subse-
quently be used; Section 2.1 completes the probabilistic study of the Rayleigh
model developed in Giorno et al. [10], obtaining the trend function and condi-
tioned trend function, together with their asymptotic behaviour in time. Sec-
tion 3 contains an integrated study of the estimation of the drift and
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diffusion parameters. The former are estimated by maximum likelihood meth-
ods, using continuous sampling; moreover, we propose an approximate calcu-
lation by means of numerical procedures applying the discretization of the
Riemann integrals appearing in the corresponding expressions. As regards
the coefficient of diffusion, we propose a methodology of approximate estima-
tion, which is in fact a variation of the method described by Chesney and
Elliot [2]. Finally, we propose the estimations of the conditioned and non-
conditioned trend functions. Secondly, following this, Section 4 includes results
on the simulation of the Rayleigh process and on the application of the
proposed methodology to Females and Males Life Expectancy at Birth in
Andalusia (1944–2001).

We note the versatility of the Rayleigh model, in that it is capable of describ-
ing, to a considerable degree of accuracy, phenomena with increasing trends and
those with decreasing trends phenomena that in general are non-exponential.
2. The model and its trend functions

2.1. Rayleigh diffusion process model

The proposed model is a one dimensional diffusion process with values in
(0,1), and is defined by the process {Xt : t 2 [t0,T]} solution of the following
nonlinear stochastic differential equation (SDE) of the first order (see [10] for
the general case and [9] for a particular case):

dX t ¼
a

X t
þ bX t

� �
dt þ rdW t; X ðt0Þ ¼ x0; ð1Þ

where {W(t), t 2 [t0,T]} is a one-dimensional standard Wiener process and
r2 > 0, a and b (b 5 0) are real parameters (to be estimated).
2.2. Computation of the trend function

Taking into account the homogeneity of this process, and using the expres-
sion for the transition probability density function (t.p.d.f.) as obtained by
Giorno et al. [10] for a > � r2

2
and with the zero-flux condition, the t.p.d.f. of

the model is

f ðx; t=y; sÞ ¼ 2by�axaþ1

r2ðe2bðt�sÞ � 1Þ exp � bðx2 þ y2e2bðt�sÞÞ
r2ðe2bðt�sÞ � 1Þ � abðt � sÞ

� �
� Ia

2bxyebðt�sÞ

r2ðe2bðt�sÞ � 1Þ

 !
;

where Ia denotes the modified Bessel function of the first kind and a ¼ a
r2 � 1

2
.



632 R. Gutiérrez et al. / Appl. Math. Comput. 175 (2006) 628–644
The conditional trend function (CTF) of the process is

EðX t=X s ¼ xsÞ ¼
Z 1

0

xf ðx; t=xs; sÞdx:

Then, we have

EðX t=X s ¼ xsÞ

¼ 2bx�a
s

r2ðe2bðt�sÞ � 1Þ exp
�bx2

s e2bðt�sÞ

r2ðe2bðt�sÞ � 1Þ � abðt � sÞ
� �

�
Z 1

0

xaþ2 exp
�bx2

r2ðe2bðt�sÞ � 1Þ

� �
Ia

2bxxsebðt�sÞ

r2ðe2bðt�sÞ � 1Þ

� �
dx:

By applying the change of variable y = x2 and by using the relations Gradsh-
teyn and Ryzhik [11, 6.643],Z 1

0

e�kyyl�1=2I2mð2n
ffiffiffi
y
p Þdy ¼

Cðlþ mþ 1
2
Þ

Cð2mþ 1Þ n�1k�l exp
n2

2k

� �
M�l;m

n2

k

� �
;

where l + m + 1/2 > 0 and M�l,m is a Whittaker function Sepanier and Oldham
[29, p. 477:48–13.1]

M m;lðxÞ ¼ xlþ1=2e�x=2U l� mþ 1=2; 2lþ 1; xð Þ;
where U is the confluent hypergeometric function (Kummer function), the con-
ditional trend function of the proposed process leads to

EðX t=X s ¼ xsÞ

¼ Cðaþ 3=2Þ
Cðaþ 1Þ

b
r2ðe2bðt�sÞ � 1Þ

� ��1=2

exp
�bx2

s e2bðt�sÞ

r2ðe2bðt�sÞ � 1Þ

� �
� U aþ 3=2; aþ 1;

bx2
s e2bðt�sÞ

r2ðe2bðt�sÞ � 1Þ

� �
:

Finally, by the Kummer transformation U(b,c,z) = ezU(c � b,c,�z), we de-
duce that the final form of the conditional trend function of the model is:

EðX tjX s ¼ xsÞ ¼
Cðaþ 3=2Þ
Cðaþ 1Þ

b
r2ðe2bðt�sÞ � 1Þ

� ��1=2

� U � 1

2
; aþ 1;

�bx2
s

r2ð1� e�2bðt�sÞÞ

� �
: ð2Þ

From (2) and by considering the initial distribution P(X(t0) = x0) = 1, the trend
function (TF) of the process is
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EðX tÞ ¼
Cðaþ 3=2Þ
Cðaþ 1Þ

b
r2ðe2bðt�t0Þ � 1Þ

� ��1=2

� U � 1

2
; aþ 1;

�bx2
0

r2ð1� e�2bðt�t0ÞÞ

� �
: ð3Þ

These functions are utilized in the following Section to fit and predict the future
evolution of the Stochastic Rayleigh Diffusion Process (SRDP).

Using the relation Sepanier and Oldham [29] p.467: 47–9.6, for very large,
positive z and a 5 0,�1,�2, . . .,

Uða; b; zÞ � CðbÞ
CðaÞ z

a�b expðzÞ

one can show the right t0-continuity of (3), thus obtaining limt!tþ
0
EðX tÞ ¼ x0.

We can also study the asymptotic behaviour in time of the trend function,
thus obtaining, if b < 0: limt!þ1EðX tÞ ¼ Cðaþ3=2Þ

Cðaþ1Þ
�b
r2

� ��1=2
.

3. Parameter estimation. Computational aspects

We shall now estimate the parameters of the proposed model using two
methods: firstly, estimating the drift parameters (the a and b parameters) by
the maximum likelihood method, with continuous sampling of the process;
and secondly, by estimating the coefficient of diffusion by an approach pro-
posed in this paper, based on an extension of the procedure described by Ches-
ney and Elliot [2] for the case of a linear EDS, to the nonlinear case.

3.1. Estimation of drift parameters

Let us consider the following SDE (scalar)

dX t ¼ AtðX tÞhdt þ BtðX tÞdW t; t0 6 t 6 T ; ð4Þ
where the parameter h is a (k · 1)-vector, At is a (1 · k)-vector and Bt is R-val-
ued depending only on the sample path up to the given instant. We assume that
Eq. (4) has a unique solution for every h. The maximum likelihood estimator of
the vector h is given by (see, for example, [23,25])

ĥT ¼ S�1
T HT ; ð5Þ

where HT is the following (k · 1)-vector:

H T ¼
Z T

t0

A�t ðX tÞðBtðX tÞBtðX tÞÞ�1 dX t ð6Þ

and ST is the k · k-matrix:

ST ¼
Z T

t0

A�t ðX tÞðBtðX tÞBtðX tÞÞ�1AtðX tÞdt ð7Þ

and the asterisk denotes the transpose.
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The representative Eq. (1) of the model can be written in the vectorial form
(4), with:

AðX tÞ ¼
1

X t
;X t

� �
; h� ¼ ða; bÞ and BðX tÞ ¼ r:

The corresponding vector HT in Eq. (6) in this case leads us to

H �T ¼
1

r2

Z
t0

T dX t

X t
;

Z
t0

T

X t dX t

� �
;

ST is the following square matrix

ST ¼
1

r2

R T
t0

dt
X 2

t
ðT � t0Þ

ðT � t0Þ
R T

t0
X 2

t dt

0@ 1A:
Using Eq. (5) and after some calculation (not shown), we obtain the expres-

sions of the estimators

â ¼

R T
t0

X 2
t dt

� � R T
t0

dX t
X t

� �
� ðT � t0Þ

R T
t0

X t dX tR T
t0

dt
X 2

t

� � R T
t0

X 2
t dt

� �
� ðT � t0Þ2

;

b̂ ¼

R T
t0

dt
X 2

t

� � R T
t0

X t dX t

� �
� ðT � t0Þ

R T
t0

dX t
X t

� �
R T

t0
dt
X 2

t

� � R T
t0

X 2
t dt

� �
� ðT � t0Þ2

:

The stochastic integrals in the latter expressions can be transformed into
Riemann–Stieljes integrals by using the Itô formula, henceZ T

t0

dX t

X t
¼ logðX T Þ � logðx0Þ þ

r2

2

Z T

t0

dt

X 2
t

;Z T

t0

X t dX t ¼
1

2
X 2

T � x2
0

� �
� r2

2
ðT � t0Þ:

Therefore, the resulting maximum likelihood estimators are

â ¼

R T
t0

X 2
t dt

� �
log X T

x0

� �
þ r2

2

R T
t0

dt
X 2

t

� �
� T�t0

2
X 2

T � x2
0 � r2ðT � t0Þ

� �
R T

t0

dt
X 2

t

� � R T
t0

X 2
t dt

� �
� ðT � t0Þ2

; ð8Þ

b̂ ¼
1
2

R T
t0

dt
X 2

t

� �
X 2

T � x2
0 � r2ðT � t0Þ

� �
� ðT � t0Þ log X T

x0

� �
þ r2

2

R T
t0

dt
X 2

t

� �
R T

t0
dt
X 2

t

� � R T
t0

X 2
t dt

� �
� ðT � t0Þ2

:

ð9Þ
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The use of these expressions in estimating the parameters requires continuous
observations of the process, which in practice cannot be made. In such a situ-
ation, we consider a finite number of discrete observations at the instants
t0 < t1 < � � � < tn = T, and so the corresponding likelihood function is the prod-
uct of the transition density. The latter is normally difficult to obtain (in our
case it would be the product of very complicated Bessel functions). An alterna-
tive method, and one that is frequently used (see, for example, [30,15]), consists
in using the above expressions for the estimators and numerically calculating
the Riemann integrals appearing in them, for example, by means of the trape-
zium method.

3.2. Estimation of the diffusion coefficient

In general, no direct estimation methods exist to estimate the coefficient of
the diffusion parameter r. Various expressions have been proposed to obtain
approximate estimations, such as the formula proposed by Guerra and Stefa-
nini [12], based on the quadratic variation associated with the process, while
others, such as those of Skiadas and Giovani [30] and Katsamaki and Skiadas
[21] approximate this coefficient in the case of a linear SDE with multiplicative
white noise. In this paper, we propose a formula based on an extension to the
case of a nonlinear SDE from the procedure described by Chesney and Elliot
[2], as follows: By applying the Itô formula, we have

d
1

X t

� �
¼ � dX t

X 2
t

þ r2 dt

X 3
t

:

Using the following approximation in the interval [t � 1, t]:

d
1

X t

� �
’ 1

X t
� 1

X t�1

y dðX tÞ ’ X t � X t�1

then

X 3
t

1

X t
� 1

X t�1

� �
þ X tðX t � X t�1Þ ¼ r2:

An estimator for r is, therefore

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X t=X t�1

p
jX t � X t�1j:

For n + 1 observations of one trajectory of the process, the resulting estimator
has the following expression:

r̂ ¼ 1

n

Xn

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X t=X t�1

p
jX t � X t�1j: ð10Þ
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Remark. By using Zehna�s theorem, the estimated conditional trend function
(ECTF) of the SRDP is obtained by replacing the parameters in expression (2)
by Eqs. (8)–(10), and thus the ECTF is given by the following expression:

bEðX tjX s ¼ xsÞ ¼
Cðâþ 3=2Þ
Cðâþ 1Þ

b̂

r̂2ðe2b̂ðt�sÞ � 1Þ

 !�1=2

� U � 1

2
; âþ 1;

�b̂x2
s

r̂2ð1� e�2b̂ðt�sÞÞ

 !
; ð11Þ

where â ¼ â
r̂2 � 1

2
.

4. Applications and simulation. The life expectancy at birth in Spain

4.1. Applications

The homogeneous SRDP model with the statistical methodology proposed
above has been used for us to study the evolution of biometric-type variables in
Spain, such as ‘‘life expectancy at birth’’, ‘‘the rate of infant mortality’’ and ‘‘the
number of deaths by cancer’’. The present paper considers, particularly, the fe-
males life expectancy at birth and the males life expectancy at birth which are,
in this moment, of particular socio-demographic and economic interest in Spain.
Concretely we consider the Spanish region of Andalusia, which has a large degree
of self-government and a population of seven and half million. The respective
time-dependent stochastic variables (stochastic processes) that are considered are:

(1) X1(t), the value of female life expectancy at birth corresponding to year, t

of birth, in Andalusia (Spain).
(2) X2(t), the value of male life expectancy at birth corresponding to year, t of

birth, in Andalusia (Spain).

In each case, we took the time period of 1944–1999 to fit the corresponding
SRDP models X1(t) and X2(t). The values observed were the life expectancy at
birth calculated for each year of birth. Tables 1 and 2 show the sample values
observed for both processes. Note that these values correspond to observations
of the two stochastic processes in a time discretisation at equal-amplitude inter-
vals of one year. In both cases, the source for the data was The INE (National
Statistics Institute of Spain).

In applying the statistical methodology, the following steps were applied:

(1) Take the values observed for the period 1944–1999 for the two processes,
reserving the 2000–2001 values to compare these values with the corre-
sponding ones forecasted by the adjusted models.



Table 1
Observed values and predicted values of Z1(t)

Years X1 ETF X1 ECTF X1

1944 57.900 57.9000 57.9000
1945 58.618 59.0799 59.0799
1946 59.081 60.1923 59.7565
1947 60.243 61.2426 60.1932
1948 61.779 62.2355 61.2901
1949 62.430 63.1753 62.7425
1950 62.666 64.0656 63.3588
1951 64.229 64.9098 63.5823
1952 65.869 65.7111 65.0641
1953 67.594 66.4722 66.6214
1954 68.595 67.1957 68.2619
1955 69.004 67.8838 69.2149
1956 68.980 68.5387 69.6046
1957 69.581 69.1623 69.5817
1958 70.329 69.7564 70.1545
1959 71.432 70.3228 70.8678
1960 71.775 70.8629 71.9203
1961 72.002 71.3781 72.2477
1962 72.136 71.8699 72.4645
1963 72.546 72.3394 72.5925
1964 72.928 72.7879 72.9841
1965 73.317 73.2163 73.3491
1966 73.486 73.6257 73.7209
1967 73.690 74.0171 73.8824
1968 73.621 74.3913 74.0775
1969 73.839 74.7493 74.0115
1970 73.893 75.0917 74.2199
1971 74.454 75.4194 74.2716
1972 74.625 75.7329 74.8081
1973 74.947 76.0331 74.9717
1974 75.074 76.3205 75.2798
1975 75.535 76.5958 75.4013
1976 75.615 76.8594 75.8429
1977 76.454 77.1119 75.9190
1978 76.433 77.3538 76.7228
1979 77.048 77.5856 76.7026
1980 77.273 77.8077 77.2919
1981 77.595 78.0207 77.5073
1982 78.100 78.2248 77.8155
1983 78.080 78.4204 78.3001
1984 78.632 78.6080 78.2804
1985 78.702 78.7879 78.8099
1986 78.824 78.9605 78.8771
1987 79.029 79.1259 78.9935
1988 79.058 79.2846 79.1904
1989 79.453 79.4368 79.2186

(continued on next page)
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Table 1 (continued)

Years X1 ETF X1 ECTF X1

1990 79.424 79.5829 79.5977
1991 79.653 79.7230 79.5692
1992 80.136 79.8574 79.7892
1993 80.038 79.9865 80.2525
1994 80.461 80.1102 80.1583
1995 80.650 80.2290 80.5648
1996 80.724 80.3431 80.7459
1997 80.899 80.4525 80.8171
1998 80.976 80.5575 80.9854
1999 81.050 80.6584 81.0590

Predictions
2000 81.421 80.8481 81.1304
2001 81.710 80.8481 80.4860

Table 2
Observed values and predicted values of Z2(t)

Years X2 ETF X2 ECTF X2

1944 51.609 51.6099 51.6100
1945 51.701 52.9232 52.9232
1946 52.472 54.1471 53.0079
1947 53.710 55.2902 53.7261
1948 55.904 56.3599 54.8812
1949 56.522 57.3623 56.9340
1950 56.860 58.3031 57.5134
1951 58.604 59.1872 57.8305
1952 60.428 60.0189 59.4690
1953 62.504 60.8022 61.1864
1954 63.517 61.5405 63.1455
1955 63.776 62.2371 64.1030
1956 63.753 62.8948 64.3480
1957 64.256 63.5161 64.3262
1958 65.014 64.1036 64.8021
1959 66.000 64.6594 65.5198
1960 66.326 65.1854 66.4540
1961 66.510 65.6835 66.7630
1962 66.676 66.1555 66.9375
1963 66.977 66.6028 67.0949
1964 67.389 67.0270 67.3805
1965 67.642 67.4294 67.7714
1966 67.671 67.8112 68.0115
1967 67.788 68.1736 68.0391
1968 67.635 68.5178 68.1501
1969 67.793 68.8446 68.0049
1970 67.773 69.1551 68.1549
1971 68.420 69.4502 68.1359
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Table 2 (continued)

Years X2 ETF X2 ECTF X2

1972 68.681 69.7307 68.7503
1973 69.121 69.9973 68.9982
1974 69.341 70.2509 69.4163
1975 69.638 70.4920 69.6254
1976 69.720 70.7214 69.9079
1977 70.296 70.9396 69.9854
1978 70.286 71.1473 70.5336
1979 70.882 71.3450 70.5242
1980 71.499 71.5331 71.0909
1981 71.342 71.7122 71.6781
1982 71.891 71.8827 71.5291
1983 72.215 72.0451 72.0515
1984 72.178 72.1998 72.3603
1985 72.210 72.3470 72.3248
1986 72.470 72.4873 72.3550
1987 72.681 72.6210 72.6029
1988 72.672 72.7483 72.8039
1989 72.583 72.8696 72.7953
1990 72.520 72.9852 72.7103
1991 72.587 73.0954 72.6503
1992 73.095 73.2004 72.7140
1993 73.199 73.3005 73.1985
1994 73.590 73.3958 73.2979
1995 73.547 73.4868 73.6704
1996 73.714 73.5734 73.6297
1997 74.310 73.6560 73.7887
1998 74.063 73.7348 74.3572
1999 74.175 73.8099 74.1212

Predictions
2000 74.846 73.8815 74.2287
2001 75.106 73.9498 74.8687
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(2) Calculate the estimators of the parameters of each SRDP model, using
expressions Eqs. (8) and (9) for the drift parameters and expression
(10) for the respective coefficients of diffusion (volatilities). Expressions
Eqs. (8) and (9) are numerically approximated as described in this paper,
Section 3.1, using Mathematica 5.1. The parameters obtained are shown
in Table 3.

(3) After estimating the parameters, obtain the conditioned trend functions
(CTF), using expression (11). The respective trend functions (TF) are
obtained from expression (3), replacing the parameters by their corre-
sponding estimators. Tables 1 and 2 show the observed and adjusted val-
ues by the conditioned trends of the SRDP models for each of the
examples.



Table 3
Estimation of parameters

Variable â b̂ r̂2

Z1 136.83102 �0.01982 0.60859
Z2 132.35918 �0.02332 0.67293
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Finally, the years 2001 and 2002, which were not used for the statistical fit,
were compared with the values forecast by the respective ECTF for these years
(Tables 1 and 2). Figs. 1 and 2 show, respectively, the observed and adjusted
values by ETF and ECTF for each variables.

4.2. Simulation

For the simulation of the sample paths, we have used the procedure pro-
posed by Rao et al. [26], see also, for example, Kloeden and Platen [22]. The
derivation of this algorithm involves approximate discretization of the Itô inte-
gral equation in time intervals of length h.

In the case of the Rayleigh diffusion process, the algorithm becomes

xnþ1 ¼ xn þ h
a
xn
þ bxn

� �
þ rZ1n þ

h2

2
b2xn �

a2

x3
n

� �
þ b� a

x2
n

� �
rZ2n

þ ar2

x3
n

Z1nZ2n � Z3nð Þ; x0 ¼ xt0 ;
Fig. 1. Fit and forecast of X1(t), using ECTF.



Fig. 2. Fit and forecast of X2(t), using ECTF.
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where Z1n,N ½0; h�; Z2n,N 0; h3

3

h i
; E½Z1nZ2n� ¼ h2

2
and Z3n is not normal, but

for small values of h, one can approximate it by a normal variable with zero
mean and variance h4

12
verifying E[Z1nZ3n] = E[Z2nZ3n] = 0.

The simulation was carried out by taking values of a, b, r2 and x0 that were
close to the values estimated for these parameters in the two real-life applica-
tions for which this study was developed. In each case we generated 100
trajectories with 601 values each, and considered the time instants ti = (i � 1)h,
i = 1, . . . , 101. Figs. 3 and 4 show, for the particular cases of a = 136,
Fig. 3. A simulation of the trajectory of SRDP.



Fig. 4. A simulation of the trajectory of SRDP.
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b = �0.02, r2 = 0.608, h = 0.1 and x0 = 57.9, and of a = 132, b = �0.023,
r2 = 0.673, h = 0.1 and x0 = 51.6, which correspond, respectively to values
close to those obtained in the study of X1(t) and X2(t), ten of the simulated
trajectories, together with the theoretical trend function for the values of these
parameters. The Figs. 3 and 4 show the simulated trajectories of the Rayleigh
process, with the dark line representing the trend.
5. Conclusion and discussion

The main conclusion of this study is that the homogeneous Rayleigh model,
under the proposed statistical methodology, provides an accurate fit for the
Life expectancy by females and males. Furthermore, the model enables us to
accurately predict, in the medium term, the behaviour of the two dynamic
variables.

An alternative approach was to fit the two cases described in this paper
using other diffusion models, such as those based on lognormal or on
Gompertz homogeneous stochastic diffusions (see, for example, [18,14]). For
this purpose, a statistical-fit methodology was applied, but in both cases the fits
achieved were unsatisfactory. On the other hand, the SRDP model was found
to be ideal for interpreting the internal dynamic of the evolution of the two
variables considered in this paper, by means of the estimated Ito stochastic
equation (1).

As a possible area for future research, a study could be made of a
non-homogeneous version of the SRDP model, defined by introducing
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time-dependent exogenous variables into the trend function, analogously to the
work carried out on lognormal and Gompertz diffusions (see, for example,
[17,13,19,20,16]). This would enable us to study, for example, the effect of
certain preventive health policies on the behaviour of the endogenous variables
considered. The Life expectancy at birth is likely that there will be a ‘‘rebound’’
in the next few years as a result of the influence of an exogenous variable re-
lated to immigration, which is currently increasing at a fast rate in Spain. Thus,
the SRDP process described in this paper, with its associated statistical meth-
odology, is technically ready for the construction of the above-mentioned non-
homogeneous version.
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