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Abstract

This paper considers a stochastic model based on the homogeneous stochastic Rayleigh diffusion process. We first examine
the main probabilistic characteristics of the model and describe, among other results, an explicit expression of the trends (both
conditioned and nonconditioned) and, when it exists, the stationary distribution. We then obtain results of the statistical estimation
of the corresponding parameters and consider the computational problems that may arise. In addition, we present an algorithm for
the stochastic simulation of the sample path of the model based on the corresponding Ito stochastic differential equation. Finally,
the model is applied to study the evolution of the production of thermal electricity in countries in the Maghreb region; the results
obtained are in good statistical accord with the real data observed for the period 1980–2002.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that in stochastic modelling an outstanding role is played by stochastic diffusion processes; these are
considered either from the viewpoint of the corresponding Ito or Stratonovich stochastic differential equations (SDEs)
or from the associated Kolmogorov (Fokker-Planck and backward) differential equations. Stochastic diffusions have
been widely used in diverse fields, such as stochastic financial analysis, animal or cell growth in a random environment,
marketing, and the natural environment. In particular, Gompertz and lognormal stochastic diffusion processes have been
studied with respect to specific theoretical aspects, and they have been successfully applied to real cases in Gutiérrez
et al. [12,10] and Ferrante et al. [2]. In order to apply these diffusion processes to the modelling and prediction of
real phenomena, it is necessary to develop results of statistical inference, firstly on the estimation of their parameters
(general results on this question can be consulted in Prakasa Rao [16]). The corresponding statistical methodology
is based on a continuous sampling of the sample paths or on time-discretised observations of the dynamic variable
under consideration. This may, however, run into problems related to computation and to numeric approximations with
respect to the resolution of nonlinear equations and the calculation of integrals. The algorithms used to simulate the
sample paths of the processes considered must also be based upon discretised approximations of the corresponding Ito
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stochastic equations. This methodology has been considered by several authors recently; specifically, for Gompertz and
logistic lognormal diffusion processes, real results and applications are available, see for example Gutiérrez et al. [11,9]
and Giovanis and Skiadas [4]. With respect to the Rayleigh process considered in the present paper, we study the above-
mentioned questions and establish a methodology that enables it to be statistically fitted to real observed data. In Section
2 we consider basic theoretical results of a probabilistic nature that complement the results obtained by Giorno et al.
[3], and we obtain the moment functions expressed in terms of Kummer functions, as well as the stationary distribution.
In particular, we obtain the trends (the conditioned and the nonconditioned mean functions). Subsequently, in Section
3, we present results of the estimation of the parameters of the model, obtained by the continuous sampling of sample
paths and by the maximum likelihood method; we then propose a methodology to resolve the computational problems
that may arise in its calculation. Finally, in Section 4 we analyse the modelling procedure, using the Rayleigh model
proposed, of the dynamic evolution of the trend corresponding to thermal electricity production in countries within the
Maghreb region, using real data for annual production for the period 1980–2002. The variable that is considered is of
great interest in environmental scientific studies concerning, the global emission of CO2 (see Gutiérrez et al. [8]).

2. The model and its basic probabilistic characteristics

2.1. The proposed model

The stochastic model proposed is based on a homogeneous stochastic Rayleigh diffusion process (HSRDP), which is
defined as a Markov process {Xt ; t ∈ [0, T ]}, with values in ]0, ∞[, and sample paths that are almost surely continuous
and with infinitesimal moments (drift and diffusion coefficient) that are given by (see Giorno et al. [3])

A1(x) = a

x
+ bx, A2(x) = σ2, (1)

where σ, a and b (b �= 0) are real parameters.
If f (y, t|x, s) denotes the transition probability density function (TPDF) of this process, under certain conditions of

regularity, which are satisfied by (1) and with the initial condition limt→sf (y, t|x, s) = δ(y − x), the above-mentioned
TPDF satisfies the Kolmogorov (Fokker-Planck) forward equation

∂f (y, t|x, s)

∂t
= −∂[A1(y)f (y, t|x, s)]

∂y
+ 1

2

∂2[A2(y)f (y, t|x, s)]

∂y2 (2)

Alternatively, under known conditions of regularity (see for example, Wong and Hajek [17]) satisfied by (1), the above
process can be considered as the unique solution (with a probability of 1) of Ito’s stochastic differential equation (SDE)

dXt =
(

a

Xt

+ bXt

)
dt + σdWt, X0 = x0, (3)

where Wt is a standard Wiener process.
The unique solution (a.s.) to the above Eq. (2) can be obtained (see Giorno et al. [3]) and can be expressed as follows

f (x, t|y, s) = 2by−αxα+1 e−αb(t−s)

σ2(e2b(t−s) − 1)
exp

(
−b(x2 + y2 e2b(t−s))

σ2(e2b(t−s) − 1)

)
Iα

(
2bxy eb(t−s)

σ2(e2b(t−s) − 1)

)

for a > −σ2/2 and with the zero-flux condition. In this expression Iα denotes the modified Bessel function of the first
kind and α = a/σ2 − 1/2.

2.2. Moments of the model

In Giorno et al. [3], certain probabilistic aspects of the HSRDP are ignored; nevertheless, these are of great interest
in statistical modelling methodology and in the forecasting of real cases, for example in calculating moment functions
and the statistical estimation of the process parameters. In the present paper, we establish in an explicit way the
conditioned moment functions of order r for HSRDP and, in particular, the trend (mean) functions, both conditioned
and nonconditioned, all of which are expressed by means of Kummer functions.
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By definition, the k-order conditional moment of the model is given by:

mk(t|s) = E(Xk
t |Xs = xs) =

∫ ∞

0
xkf (x, t|xs, s) dx

To simplify the calculations involved in the above, let us denote: λ = λ(s, t) = b/σ2(e2b(t−s) − 1) and ξ = ξ(s, t) =
λxs eb(t−s). Then, in terms of λ and ξ, the conditional moments of the HRSDP are

mk(t|s) = 2λα+1ξ−α e−ξ2/λ

∫ ∞

0
xα+k+1 e−λx2

Iα(2ξx) dx

With the change variable z = x2, we obtain

mk(t|s) = λα+1ξ−α e−ξ2/λ

∫ ∞

0
zα+k/2 e−λzIα(2ξ

√
z) dz

then, by the relation (see ref. [5], p. 720:6.643): for Re(μ + ν + 1/2) > 0∫ ∞

0
zμ−1/2 e−βzI2ν(2γ

√
z) dy = Γ (μ + ν + 1/2)

Γ (2ν + 1)
γ−1β−μ exp

(
γ2

2β

)
M−μ,ν

(
γ2

β

)

where M.,. is a Whittaker function, and as a result

mk(t|s) = Γ (α + k/2 + 1)

Γ (α + 1)
λ(α−k+1)/2ξ−α−1 e−ξ2/2λM−(α+k+1)/2,α/2

(
ξ2

λ

)

by means of the related (see ref. [5], p. 1059:9.220) with the confluent hypergeometric function Φ (Kummer function):

Mν,μ(x) = x(μ+1)/2 e−x/2Φ(μ − ν + 1/2, 2μ + 1, x)

we find that

mk(t/s) = Γ (α + k/2 + 1)

Γ (α + 1)
λ−k/2 e−ξ2/λΦ

(
α + k/2 + 1, α + 1,

ξ2

λ

)

Finally, by the Kummer transformation (see ref. [5], p. 1058:9.212) Φ(β, γ, z) = ezΦ(γ − β, γ, −z), we deduce that
the final form of the k-order conditional moment of the model is

mk(t|s) = Γ (α + k/2 + 1)

Γ (α + 1)
λ−k/2Φ

(
−k

2
, α + 1, −ξ2

λ

)

From this expression, we deduce the conditional trend function of the process, which is expressed as

E(Xt|Xs = xs) = Γ (α + 3/2)

Γ (α + 1)

(
b

σ2(e2b(t−s) − 1)

)−1/2

× Φ

(
−1

2
, α + 1,

−bx2
s

σ2(1 − e−2b(t−s))

)
. (4)

From Eq. (4) and under the initial distribution P(X0 = x0) = 1, the trend function of the process takes the following
form

E(Xt) = Γ (α + 3/2)

Γ (α + 1)

(
b

σ2(e2bt − 1)

)−1/2

Φ

(
−1

2
, α + 1,

−bx2
0

σ2(1 − e−2bt)

)
(5)

The two expressions (4) and (5) play a fundamental role in constituting the estimated trend functions (see following
Section), which enable us to fit and predict the future evolution of the stochastic variable in question.

2.3. Stationary distribution of the process

Let us now analyse the existence of the stationary distribution and obtain the explicit expression for its density. In
general (see Nobile et al. [15]) the density function of stationary distribution, S(x), in a diffusion can be expressed,
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under specific conditions that satisfy the HSRDP, as

S(x) = c

A2(x)
exp

[
2
∫ x

z

A1(y)

A2(y)
dy

]

where z is an arbitrary point in the interval ]0, +∞], and c is a constant to be determined by the following normalization
condition:

c =
[∫ +∞

0

1

A2(x)
exp

(
2
∫ x

z

A1(y)

A2(y)
dy

)
dx

]−1

By applying the above results, we can deduce that for b < 0, the density function of the stationary distribution of
the HSRDP exists, and takes the form

S(x) = 2(−b/σ2)
α+1

x2α+1 ebx2/σ2

Γ (α + 1)

It can be shown straightforwardly that the function S is the density of the square of a random variable that has a Gamma
distribution with parameters α + 1 and −σ2/b.

Use can be made of this expression to calculate the asymptotic moment of order k, and thus we have for b < 0

E[Xk(∞)] =
∫ ∞

0
xkS(x) dx = (−b/σ2)

−k/2
Γ (α + k/2 + 1)

Γ (α + 1)

The asymptotic trend function of the process is, for b < 0

E[X(∞)] = (−b/σ2)
−1/2

Γ (α + 3/2)

Γ (α + 1)
(6)

It can be seen that the limit of the trend function in Eq. (5) (when t tends to ∞) coincides with the asymptotic trend
function in Eq. (6).

3. Estimation and approximation

In this section we obtain estimators of the parameters and consider the computational questions that are encountered.
For the drift parameters (a and b), we use the maximum likelihood method based on continuous sampling, and for the
diffusion coefficient (the parameter σ) we obtain an approximate numerical estimation, based on the approximation of
Ito’s equation, that characterises the model between consecutive observations during an observed sample path of the
process.

3.1. Estimation of drift parameters

The drift parameters a and b are estimated from an observed sample path of the HSRDP. The process is assumed
to be observed in the interval [0; T ]; then, the log-likelihood function under certain conditions that are satisfied by the
HSRDP (see, for example Lipster and Shiryayev [14] for the general case) is given by

log(L) = 1

σ2

∫ T

0

(
a

Xt

+ bXt

)
dXt − 1

2σ2

∫ T

0

(
a

Xt

+ bXt

)2

dt

By applying the Maximum Likelihood method (deriving with respect to the parameters and equalling to zero), and
after various operations that need not be detailed, the estimators of the parameters are found to be:

â = (
∫ T

0 X2
t dt)(

∫ T

0 dXt/Xt) − T
∫ T

0 Xt dXt

(
∫ T

0 dt/X2
t )(
∫ T

0 X2
t dt) − T 2
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b̂ = (
∫ T

0 dt/X2
t )(
∫ T

0 Xt dXt) − T (
∫ T

0 dXt/Xt)

(
∫ T

0 dt/X2
t )(
∫ T

0 X2
t dt) − T 2

By means of Ito’s formula, the stochastic integrals present in the latter expressions can be transformed into Riemann-
Stieljes integrals, and we then have∫ T

0

dXt

Xt

= log(XT /x0) + σ2

2

∫ T

0

dt

X2
t

and
∫ T

0
Xt dXt = X2

T − x2
0

2
− σ2T

2

Therefore, the expressions of the maximum likelihood estimators can be expressed as follows:

â = (
∫ T

0 X2
t dt)(log(XT /x0) + σ2/2

∫ T

0 dt/X2
t ) − T/2(X2

T − x2
0 − σ2T )

(
∫ T

0 dt/X2
t )(
∫ T

0 X2
t dt) − T 2

(7)

b̂ = 1/2(
∫ T

0 dt/X2
t )(X2

T − x2
0 − σ2T ) − T (log(XT /x0) + σ2/2

∫ T

0 dt/X2
t )

(
∫ T

0 dt/X2
t )(
∫ T

0 X2
t dt) − T 2

(8)

In order to use the above expressions to estimate the parameters, we must have continuous observations. In practice,
continuous sample paths are not usually observed. Rather, the state of the diffusion process is observed at a finite number
of time instances (0 = t0 < t1 < · · · < tn = T ). By the Markov properties, the likelihood function corresponding to
such data is the product of transition densities (in the present case, has a complicate form) and it is very difficult to find
the estimators explicitly. An alternative estimation procedure that is frequently utilised (see, for example refs. [4,9]) for
such data is to use the continuous time maximum likelihood estimators with suitable approximations of the integrals
that appear in the expressions (7) and (8); specifically, the Riemann-Stieljes integrals are approximated by means of
the trapezoidal formula.

3.2. Approximate estimator of the diffusion coefficient

Different procedures have been used to approximate the estimator of the diffusion coefficient of SDEs in general.
Examples of such procedures include [6] who used spline cubic [4,9], with the extension of the procedure proposed in
ref. [1], and which is utilised below to obtain an approximate estimator of the σ parameter of the HSRDP model being
studied. The model we propose is as follows: by applying Ito’s formula, we have

d

(
1

Xt

)
= −dXt

X2
t

+ σ2 dt

X3
t

. (9)

The differentials shown in (9) can be approximated by consecutive observations of a sample paths of the process in
t − 1 and t, as follows:

d

(
1

Xt

)
� 1

Xt

− 1

Xt−1
and d(Xt) � Xt − Xt−1

By substituting these approximations in Eq. (9), an approximate estimator of the σ parameter between the latter
observations is found to be

σ̂(t−1,t) = |Xt − Xt−1|
√

Xt/Xt−1

For n + 1 observations of a sample paths of the process, the resulting approximate estimator has the following
expression:

σ̂ = 1

n

n∑
t=1

|Xt − Xt−1|
√

Xt/Xt−1 (10)
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4. Application and simulation

4.1. Application

The methodology presented in this paper was applied to study the data available on the evolution of the production
of thermal electricity in countries in the Maghreb region, during the period 1980–2002. These data are expressed in
billions of Kw-hours and may be consulted at http://www.eia.doe.gov/pub/international/iealf.

In the present study, we analyse the trend of the above-mentioned variable by fitting the observed data to the estimated
trend function (ETF) and the estimated conditional trend function (ECTF) of HSRDP. These estimated functions are
obtained by using Zehna’s theorem, replacing the parameters with the expressions given in expressions (7), (8) and
(10) in the expressions of the trend functions (4) and (5). The methodology can be summarised in the following two
phases:

• Step 1: Use the first 22 data in the series of observations considered to estimate the parameters of the model, using
expressions (7), (8) and (10). In addition, obtain the corresponding ETF and ECTF values for the given sub-series
and obtain the fit for the variable being analysed by means of these two trend functions.

• Step 2: For the year 2002, predict the corresponding values for “production of thermal electricity” using the ETF
and the ECTF, and compare the results with the corresponding observed data for the same year.

A Mathematical program was implemented to carry out the calculations required for the computational methodology
proposed in Section 3. The values of the corresponding estimators are: â = 64.41126, b̂ = 0.01627 and σ̂2 = 2.56820.

Table 1 summarizes the fit and prediction results, i.e. the observed data, and the values predicted by ETF and ECTF
respectively, and Fig. 1 shows the fits and the predictions made using the ETF and the ECTF, respectively.

Table 1
Observed values and predicted values

Years Data ETF ECTF

Observed values
1980 16.99 16.99 16.99
1981 19.71 20.741 20.741
1982 22.1 24.032 23.089
1983 25.34 27.022 25.223
1984 28.49 29.802 28.193
1985 32.01 32.427 31.143
1986 35.0 34.934 34.494
1987 38.25 37.348 37.373
1988 41.06 39.688 40.529
1989 41.53 41.969 43.276
1990 43.87 44.203 43.737
1991 44.72 46.398 46.036
1992 46.91 48.561 46.874
1993 48.67 50.700 49.035
1994 51.06 52.81 50.776
1995 53.11 54.921 53.145
1996 54.01 57.012 55.182
1997 56.53 59.095 56.077
1998 59.68 61.172 58.587
1999 63.22 63.246 61.730
2000 65.4 65.320 65.269
2001 68.08 67.396 67.451

Predicted values
2002 70.26 69.475 70.137

http://www.eia.doe.gov/pub/international/iealf
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Fig. 1. Fit and forecast using ETF and ECTF.

4.2. Simulation

Given the form of the SDE (3), it is not possible to obtain the explicit expression of its solution. By using known
general algorithms to simulate the SDEs, such as Taylor’s algorithm to the order of 1.5 (see Kloeden and Platen [13]
p. 351), an approximate solution can be found, from which we have

xn+1 = xn + h

(
a

xn

+ bxn

)
+ σW +

(
b − a

x2
n

)
σZ + h2

2

(
b2xn − a2 − σ2a

x3
n

)

Fig. 2. A simulation of path.



216 R. Gutiérrez et al. / Mathematics and Computers in Simulation 77 (2008) 209–217

where W = √
hU1 and Z = h3/2/2(U1 + U2/

√
3), where W = √

hU1 and Z = h3/2/2(U1 + U2/
√

3), with
U1 and U2 being two standard normal independent random variables, and where h is the discretization step.

Fig. 2 illustrates the response pattern of ten sample paths with respect to their corresponding trend functions. In
this simulation, we assumed h = 0.1 and for the values of the parameters, we used those of their estimators that were
obtained in the application.

In addition, a larger number (n = 100) of simulated trajectories have been obtained, which are not shown in the
Fig. 2. The corresponding mean trajectory of this simulation tends significantly to fit the estimated trend function shown
in Fig. 2. We do not yet possess measures of the accuracy of this fit, which will require a nonparametric methodology
to deal with the question in an adequate way.

5. Conclusion and discussion

In this study, we tested the suitability of the HSRDP model for modelling real phenomena in the fields of energy
and the environment. The possibilities of applying the HSRDP method considered here in other scientific fields have
been explored in other recent studies, and notably in Demography (see ref. [7]). Moreover, we compared the practical
possibilities of the estimation methodology proposed in Section 3. From the results obtained (Table 1 and Fig. 1), we
conclude that the modelling of the real case considered, using the HSRDP model and the estimation methodology
described in Section 3, provides a fit and a prediction, based on ETF and ECTF, that present a high degree of accuracy.

Another approach that was considered was to fit the case described in this paper using other diffusion models, such
as those based on lognormal or on Gompertz homogeneous stochastic diffusions (see for example refs. [2,11,9]). For
this purpose, a statistical-fit methodology was applied, but the fits achieved were unsatisfactory.

In the future, we shall address the (technically very complex) problem of obtaining results for a test of goodness
of fit, at least in the asymptotic case, to enable us to establish a measure of the degree of accuracy in the fit and in
the prediction and measures of estimation error. We shall also study the possibility of defining a nonhomogeneous
Rayleigh model, introducing exogenous factors into the drift, in a similar way to what has already been achieved for
other diffusions (see Gutiérrez et al. [11,10]). The authors are also currently investigating a statistical methodology for
HSRDP based on estimation with discrete sampling, as an alternative to the continuous sampling that is considered in
this paper.
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