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In this paper, we propose a new study of a stochastic lognormal diffusion process (SLDP), with
three parameters, which can be considered as an extension of the bi-parametric lognormal process
with the addition of a threshold parameter. From the Kolmogorov equation, we obtain the probability
density function and the moments of this process. The statistical inference of the parameter is studied
by considering discrete sampling of the sample paths of the model and then using the maximum
likelihood (ML)method. The estimation of the threshold parameter requires the solution of a nonlinear
equation. To do so, we propose two methods: the classical Newton–Raphson (NR) method and one
based on simulated annealing (SA). This methodology is applied to an example with simulated data
corresponding to the process with known parameters. From this, we obtain the estimators of the
parameters by both methods (NR and SA). Finally, the methodology studied is applied to a real case
concerning the mean age of males in Spain at the date of their first wedding.

Keywords: Three-parameter lognormal diffusion process; Discrete sampling; Simulated annealing;
Fits and forecast; Mean age of males in Spain at the date of their first wedding

1. Introduction

In the context of three-parameter lognormal distributions, we discuss the original study of the
three-parameter lognormal diffusion process, which is one-dimensional in the endogenous
variable and has three parameters.
We seek to obtain a three-parameter univariate lognormal model, which is flexible and

broad enough to cover important fields of application that are currently not served by standard
models. Moreover, taking possible applications into account, the maximum likelihood (ML)
estimation is constructed on the basis of discrete sampling based on the conditioned likelihood
derived from the transitions that are the solutions to the corresponding Kolmogorov equations.
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2 R. Gutiérrez et al.

The importance of three-parameter lognormal distribution as a probability model has been
recognized in a wide range of scientific disciplines, including biology, geology, agricul-
tural science, statistics and economics. For example, Wicksell [1] and Guerrieri [2] applied
three-parameter distribution in a study of the age distribution of those marrying for the first
time, using the direct estimation method for the parameters ofWicksell [1]. In 1957,Aitchison
and Brown [3] applied all the methods available for 65 simulated samples. Royston [4] used
this process in a study of the concentration of antibodies in blood, and Crawford [5] applied
the same method to study the acidity of lakes. Given the importance of three-parameter log-
normal distribution, many studies have been aimed at the problems involved in estimating
the parameters of this distribution for data samples, particularly concerning the theoretical
and computational difficulties that may arise when applying the ML method. In response to
these difficulties, a considerable number of estimators and estimation methods have been
proposed. Cohen [6] and Harter and Moore [7] obtained local ML estimates, while Hill
[8] proposed Bayesian estimators. Calitz [9], on the other hand, used simulation proce-
dures to compare likelihoods, percentiles and estimators of the moments. More recently,
Giesbrecht and Kempthorne [10] obtained ML estimators for discrete models, considering
grouped intervals, and Wingo [11] introduced penalty and barrier functions to increase con-
vergence when calculating local ML estimators. Cohen and Witten [12], Cohen et al. [13]
and Crow and Shimizu [14] proposed various modifications for ML estimators and for esti-
mators of the moments. Lifson and Bhattacharyya [15] used a regression method to estimate
the percentiles. Wingo [11] worked using a computational algorithm to maximize the like-
lihood function (as a function of the third parameter). Kappenman [16] estimated the three
parameters by using iterative procedures and comparing the results with the likelihood esti-
mators. Finally, Royston [4] estimated the threshold parameter using the properties of the
median of the lognormal distribution, designing a test to compare hypotheses, based on the
median.
An important theoretical difficulty that must be overcome is that the likelihood function is

maximumwhere the parameters present unacceptable values. In this respect, Hill [8] obtained
Bayesian arguments to justify the use of parametric estimators, which correspond to large local
maxima.Moreover, Heyde [17] showed that the three-parameter lognormal distribution cannot
be determined solely from its moments, as various problems arise concerning the estimation
by the method of moments. From a non-Bayesian standpoint, Griffiths [18] showed that the
ML method can be considered a reasonably reliable approach to the problem.
The main computational difficulty lies in the fact that the estimation of the parameters

complicates the precautions that must be taken (in computational terms) when obtaining the
estimators using iterative numerical methods. Many of these methods have been discussed, for
example, by Cohen in refs. [6], [12] and [13] and Crow and Shimizu [14], Lambert [19], Harter
andMoore [7] andCalitz [9]. If thesemethods are usedwithout avoiding the region of attraction
of infiniteML, then convergence difficulties will be encountered. To avoid such difficulties and
to increase the convergence in the estimators of local ML estimators, Wingo [11] introduced
frontier function methods with mobile cut-offs.
Themain objective of this study is to add a threshold parameter to the biparameter stochastic

lognormal diffusion process (SLDP), as studied by Gutiérrez et al. [20–22]. This work is
structured as follows: in section 2, we describe the model using Kolmogorov equations and
calculate the probability density function (pdf) and the moments of the model. In section 3,
we estimate the parameters of the model by ML method using discrete sampling. In order
to estimate the new parameter, we obtain a nonlinear equation, which we propose to solve
using NR and SA, reducing the interval of the parameter search by means of Wingo’s [11]
reparametrization. In section 4,we simulate the trajectory of the process from the exact solution
of Itô’s stochastic differential equation (SDE) and estimate the parameters by the MLmethod.
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Three-parameter stochastic lognormal diffusion model 3

In the last section, we apply the model to real data for the mean age of males in Spain at their
first wedding.

2. The model and its basic probabilistic characteristics

2.1 The model

The one-dimensional lognormal diffusion process with three parameters can be introduced
by means of the Kolmogorov backward and forward equation as a Markov process {X(t),
t0 ≤ t ≤ T } with values in ]γ, +∞[, with almost-certainly continuous trajectories and with
a distribution function for the process transition that is given by P(y, t |x, s) = P [X(t) ≤
y|X(s) = x], x > γ , y > γ and γ ∈ R.
And by assuming the following conditions:

• limh→0 1/h
∫

|y−x|>ǫ
P(dy, t + h|x, t) = 0,

• limh→0 1/h
∫

|y−x|≤ǫ
(y − x)P (dy, t + h|x, t) = A1(x, t; γ ) = µ(x − γ ),

• limh→0 1/h
∫

|y−x|≤ǫ
(y − x)2P(dy, t + h|x, t) = A2(x, t; γ ) = σ 2(x − γ )2 > 0,

• the higher-order infinitesimal moments are null,

where µ > 0, σ > 0, µ, σ ∈ R, the infinitesimal moments of the process are

A1(x, t; γ ) = µ(x − γ ),

A2(x, t; γ ) = σ 2(x − γ )2,

and the corresponding Kolmogorov backward and forward equation are

∂p

∂s
+ 1

2
σ 2(x − γ )2

∂2p

∂x2
+ µ(x − γ )

∂p

∂x
= 0,

−∂p

∂t
+ 1

2
σ 2 ∂2(y − γ )2p

∂y2
− µ

∂(y − µ)p

∂y
= 0,

where p denotes the transition pdf, p(y, t |x, s), corresponding to the transition distribution
function P(y, t |x, s).
The common solution to these equations, which can be obtained using Ricciardi’s theorem

(see [23]), is

p(y, t |x, s) = 1

(y − γ )σ

1√
2π(t − s)

exp

{

− 1

2σ 2(t − s)
(ln(y − γ )

− ln(x − γ ) − a(t − s))2
}

, (1)

with the initial condition p(y, s|x, s) = δ(y − x), where a = µ − σ 2/2.
The distribution of the random variable X(t)|X(s) = x is the one-dimensional three-

parameter lognormal distribution

31
[

γ + ln(x − γ ) + a(t − s); σ 2(t − s)
]

,

31[α; β] denotes the one-dimensional three-parameter lognormal distributionwith parameters
α and β.



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

4 R. Gutiérrez et al.

Alternatively, the above-defined process can be considered as the solution of the following
Itô’s SDE

dX(t) = µ(X(t) − γ )dt + σ(X(t) − γ )dW(t), X(t0) = x0, (2)

where W(t) represents the Wiener process with independent increments W(t) − W(s)

distributed according to N (0, t − s) for t > s.

2.2 Moments of the process

The different moments of the process are obtained from the following expression,

E[(X(t) − γ )k|X(s) = xs] = (xs − γ )k exp

{(

ka + 1

2
k2σ 2

)

(t − s)

}

·

Then the conditioned trend function of the process is

E[X(t)|X(s) = xs] = γ + (xs − γ ) exp{µ(t − s)}· (3)

Taking into account the initial condition P [X(t0) = x0] = 1, the trend function is given by

E[X(t)] = γ + (x0 − γ ) exp{µ(t − t0)}· (4)

The covariance function has the following form

Cov[X(t)X(s)] = (x0 − γ )2 exp{µ((t − t0) + (s − t0))}[exp{σ 2((t ∧ s) − t0)} − 1],
with t ∧ s = min(t, s).

3. Estimation of the parameters

3.1 Maximum likelihood estimation

We shall now estimate the parameters of the model using the ML method. Let us consider a
discrete sampling of the process

{X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn}
for the instants t1, . . . , tn, with the initial condition P [X(t1) = x1] = 1. The associated ML
function is thus

L(x1, . . . , xn; a, σ 2, γ ) =
n

∏

i=2
P(xi, ti |xi−1, ti−1).

This function tends to infinity when γ tends to x(1), where x(1) = inf0≤j≤n(xj ).
By using equation (1), the log-likelihood function is then

ln[L(x1, . . . , xn; a, σ 2, γ )] = −n − 1

2
ln(2πσ 2)

n
∑

i=2
ln(xi − γ ) − 1

2

n
∑

i=2
ln(ti − ti−1)

− 1

2σ 2

n
∑

i=2

1

(ti − ti−1)
[ln(xi − γ ) − ln(xi−1 − γ )

− a(ti − ti−1)]2· (5)

From equation (5), differentiating with respect to each of the parameters and setting the
results equal to zero, we obtain the likelihood equations for a, σ 2 and γ . By performing some
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Three-parameter stochastic lognormal diffusion model 5

calculations, we obtain the following expressions for the estimators â, σ̂ 2 and γ̂ ,

â = [ln(xn − γ̂ ) − ln(x1 − γ̂ )]
tn − t1

, (6)

σ̂ 2 = 1

n − 1

n
∑

i=2

[ln(xi − γ̂ ) − ln(xi−1 − γ̂ ) − â(ti − ti−1)]2
ti − ti−1

, (7)

λ(γ̂ ) = σ̂ 2
n

∑

i=2

1

(xi − γ̂ )
−

n
∑

i=2

(xi − xi−1)[ln(xi − γ̂ ) − ln(xi−1 − γ̂ )]
(xi − γ̂ )(xi−1 − γ̂ )(ti − ti−1)

+ â
xn − x1

(xn − γ̂ )(x1 − γ̂ )
, (8)

where λ(γ̂ ) = 0 and γ < x(1).

3.2 Reparametrization of the process, according to Wingo

Estimating the third parameter that is to be introduced into the three-parameter lognormal
distribution is well known to be problematic.
The main theoretical difficulty is that the likelihood function reaches global maxima at

points where the parameters present unacceptable values and where the global maximum
value of the likelihood function is +∞.
The main computational difficulty encountered is that the iterative numerical methods used

for ML estimation must be employed with great care, as these methods do not avoid the region
of attraction of infinite ML, and so problems of convergence arise. In other words, when
we seek to find a solution to the equation (8) by means of a numerical approach, and as the
initial estimate of γ is not close enough to the solution, this method will converge toward
the degenerate solution γ = −∞. Thus, we require an algorithm that is both computationally
efficient and definitely convergent. In an attempt to resolve this problem, Wingo [11], for the
case of three-parameter lognormal distribution, proposed a computational algorithm based on
the reparametrization of the likelihood function, using a parametric transform, to reduce the
interval of the real slope on which many finite local maxima of the log-likelihood function
are located. This function is globally maximized by means of numerical methods within the
reduced interval that has been found. The upper part of the search interval can be chosen
depending on the precision of the data that are observed.
Let us now describe the algorithm used byWingo and consider the same reparametrization

for the case of the one-dimensional lognormal diffusion process with three parameters.
Consider the following transform

γ (θ) = x1 − exp(−θ), ] − ∞, +∞[, (9)

where x1 is the minimum of the values in the sample.
It can be shown that γ −→ x1 when θ −→ +∞ and that γ −→ −∞when θ −→ −∞, and

substituting in equation (5),weobtain ln[L(x1, . . . , xn; a, σ 2, γ (θ))], denotedbyL
∗(a, σ 2, θ).

The computational algorithm is straightforward.

• Globally maximize L
∗(a, σ 2, θ) in a compact interval on the real slope to obtain a global

maximum θ̂ .
• The local ML estimator, γ̂ , is then calculated by means of

γ̂ (θ) = x1 − exp(−θ̂ ). (10)
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6 R. Gutiérrez et al.

• The remaining ML estimators are calculated by substituting the value γ̂ in the
equations (6) and (7).

The transform (9) can be seen, approximately, as a compression of the range of values over
which the conditioned log-likelihood function must be maximized to find γ̂ . Obviously, this
compression is computationally advantageous; it can be shown that maximizing equation (5)
over γ may require up to 10 more evaluations of the objective function than when it is
maximized over θ .
In the numerical data presented in ref. [11], the search interval chosen for θ was [−10, 10].

This choice of search range for θ has the advantage of being wide enough to cover the area
in which the real value of the threshold parameter γ may be found, yet small enough as to
exclude the infinite maximum of the log-likelihood function given in θ = +∞. This interval
corresponds approximately to [−20.000; x1 − ǫ] in γ -space, where ǫ ≃ 4× 10−5, a choice
that may be useful for most of the samples likely to be found in practice.
Sometimes, it is useful to express the right-hand side of the search interval for θ as a function

of the precision of the data. For example, if each of the observations xi is fitted to three decimal
places and the log-likelihood function has to bemaximized over the interval [−20.000, x1 − ǫ]
of γ , then ǫ < 10−3 cannot be chosen, as the probability of the finite maximum of the log-
likelihood function for γ belonging to the interval x1 − ǫ < γ < x1 for ǫ < 10−3 is extremely
remote. To reflect the precision of the data, we could choose e < 10−d or ǫ = |x1| × 10−10,
where d ≥ 1 is the number of decimal places of precision in the data. The corresponding upper
limit of the search interval for θ could be θ = − ln(10−d) or θ = − ln(|x1| × 10−10).
By applying this transform to our process, the log-likelihood function would then be

L
∗(a, σ 2, θ) = −n − 1

2
ln(2πσ 2) −

n
∑

i=2
ln(xi − [x1 − exp(−θ)])

− 1

2

n
∑

i=2
ln(ti − ti−1) −

n
∑

i=2

1

2σ 2(ti − ti−1)
[ln(xi − [x1 − exp(−θ)])

− ln(xi−1 − [x1 − exp(−θ)]) − a(ti − ti−1)]2· (11)

By differentiating equation (11) with respect to θ and setting the result equal to zero, we obtain
the following expression that provides an estimator for θ . By substituting this expression in the
other likelihood equations, we obtain the estimators for the remaining parameters, as described
above.

â

(

1

(xn − γ̂ (θ))
− 1

(x1 − γ̂ (θ))

)

=
n

∑

i=2

e−θ σ̂ 2

(xi − γ̂ (θ))

−
n

∑

i=2

(xi − xi−1)[ln(xi − γ̂ (θ)) ln(xi−1 − γ̂ (θ))]
(xi − γ̂ (θ))(xi−1 − γ̂ (θ))(ti − ti−1)

·

(12)

3.3 Simulated annealing optimization method

The simulatedannealing (SA)or simulatedoverheatingmethod is a technique that has attracted
considerable attention in large-scale optimization problems. It originated in the study by
Metropolis et al. [24] aimed at minimizing a function on a very large finite set, although it
could also be applied to optimization on a continuous set (see [25]). Various authors, such as
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Three-parameter stochastic lognormal diffusion model 7

Kirkpatrick et al. [26], have demonstrated the utility of this method for finding global solutions
to combinatory optimization problems.
The problem we address is

max
θ∈2

h(θ) (13)

or equivalently

min
θ∈2

−h(θ). (14)

The fundamental idea of the method is that a change of scale, called the temperature, allows
faster movements over the surface of the function h to be maximized, the negative of which is
termed energy (see [27, 28]). The optimum state, therefore, is achieved if T decreases slowly
and well under control. The change in the partial scale avoids the attraction of local maxima.
To simulate the evolution of a physical system, we introduce the iterative method known as

the Metropolis acceptance rule, which induces a change in the current state of the system in
the following terms:

• If the system energy S decreases, the modification is accepted.
• If the energy increases by 1S, the modification may be accepted with a probability of
exp{−1S/T }, where T is the temperature and 1 the increase in h.

The implementation of the SA algorithm is remarkably easy. The following elements must
be provided:

(i) a representation of possible solutions,
(ii) a generator of random changes in solutions,
(iii) a means of evaluating the problem functions,
(iv) an annealing schedule (an initial temperature an rules for lowering it as the search

progresses).

In practice, the temperature parameter decreases by levels, generating a succession of states,
enabling the system to approximate the equilibrium for each level. The algorithm stops for a
small value of T , such that virtually no new generation is accepted. Thus, what is chosen as
the solution to the problem is the state that optimizes the objective function among the states
of the succession that is generated.
Various studies have shown that the asymptotic convergence of SA is guaranteed, but in

practice it is necessary to implement the algorithm within a finite time. To do so, we define a
finite succession of truncated Markov chains, associated with decreasing temperature values.
The basic structure of SA algorithm is presented in table 1. The following notations are

used:

θ = the current solution,
θ∗ = the best solution,
θn = neighboring solution,
h(θ) = the value of objective function at solution θ ,
n = repetition counter,
T0 = initial temperature,
Tf = final temperature,
L = number of repetition allowed at each temperature level,
p = probability of accepting θn when it is not better than θ .

The algorithm starts with an initial solution for the problem. As we can see in table 1, SA
has two cycles, inner and outer. In the inner cycle, SA is repeated while n < L, a neighboring
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8 R. Gutiérrez et al.

Table 1. SA algorithm for minimization problem.

Initialize the SA control parameter (T0, L)
Select an initial solution, θ0
Set T = T0; Set θ = θ0; Set θ∗ = θ0; Calculate h(θ0);
While the stop cirterion is not reached do:

Set n = 1
While n < L do:

Generate solution θn in the neighborhood of θ0; Calculate 1 = h(θn) − h(θ);
If 1 ≤ 0

θ = θn

else
generate a random number, r ∈ (0, 1)
if (r ≤ p = e−1/T );

θ = θn; n = n + 1;
end

end
if (h(θ) < h(θ∗))

θ∗ = θn;
end

end
reduce the temperature T ;

end

solution θn of the current solution, θ is generated. If 1 ≤ 0 (θn is better than θ ), then the
generated solution replaces the current solution, otherwise the solution is accepted with the
criterion probability p = e−1/T . The value of the temperature, T , decreases in each iteration
of the outer cycle of the algorithm. The performance of SA depends on the definition of the
several control parameters:

(i) The initial temperature should be high enough that, in the first iteration of the algorithm,
the probability of accepting a worse solution is, at least, 80%.

(ii) We shall nowdetermine all the initial values required by the algorithmand the temperature
reduction rate. In the particular case in question, it is determined bymeans of the following
expression:

Ti = T0

i + 1
,

where T0 is the initial temperature fixed. This rate ensures that the cooling is slow enough
for the optimum value to be reached.

(iii) The stopping criterion defines when the system has reached a desired energy level.

3.4 Application of the simulated annealing optimization method

The function to be minimized in the case in question is

− ln[L(x1, . . . , xn; a, σ 2, γ )] = n − 1

2
ln(2πσ 2) +

n
∑

i=2
ln(xi − γ ) + 1

2

n
∑

i=2
ln(ti − ti−1)

+ 1

2σ 2

n
∑

i=2

1

(ti − ti−1)
[ln(xi − γ ) − ln(xi−1 − γ )

− a(ti − ti−1)]2 (15)



401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

Three-parameter stochastic lognormal diffusion model 9

By applying the reparametrization proposed by Wingo [11] to the above function, we obtain

− ln[L(x1, . . . , xn; a, σ 2, θ)] = n − 1

2
ln(2πσ 2) +

n
∑

i=2
ln(xi − [x1 − exp(−θ)])

+ 1

2

n
∑

i=2
ln(ti − ti−1) +

n
∑

i=2

1

2σ 2(ti − ti−1)

× [ln(xi − [x1 − exp(−θ)]) − ln(xi−1 − [x1 − exp(−θ)])
− a(ti − ti−1)]2,

where x1 is the minimum of the sample values.
There now arises the problem of deciding upon the new neighbor, i.e. how we are to choose

a new value for the parameters. To do this, we generate the value of a distribution uniform,
which is added to the previous value of the parameter, provided that always the new value is
located within an appropriate range of possible values for the parameters. To ensure this, we
must decide as to which range is acceptable for each parameter. In the present case, various
graphic procedures are used, based on likelihood equations, so that wemay bound the possible
optimum values of the parameters.

4. Simulation studies

The stochastic differential equation (2) has a single continuous solution in the interval [t0, T ],
which corresponds to the three-parameter lognormal diffusion process, the explicit expression
of which can be obtained by means of Itô’s formula, applied to the transform ln(X(t) − γ ),
and which has the following form

X(t) = γ + (x0 − γ ) exp

{(

µ − σ 2

2

)

(t − t0) + σ(W(t) − W(t0))

}

· (16)

From this explicit solution, we can obtain the simulated trajectories of the process by
discretizing the time interval [t0, T ], with the initial conditionW(t0) = 0. TheWiener process
is obtained as the sum of the distributions N (0, h), where h = ti − ti−1.
From this simulated process sample, we estimate the parameters by ML, first using the

Newton–Raphson (NR) nonlinear approach to approximate the value of γ̂ . Secondly, we
discuss the problems that occur in estimating the parameters of the three-parameter lognormal
diffusion process. We propose SA optimization to the estimation of the paremeters, by which
some of the above-discussed problems may be overcome.
The process is reparametrized, as described in section 3.2, in order to perform a compression

of the range of values over which the conditioned log-likelihood function must be maximized
to find γ̂ .
The parameters of the process are estimated by applying the method to the simulated data

set described previously, which enable us to test the effectiveness of the method.
Table 2 shows the values used in the simulation and the results obtained by estimating the

parameters, using themethods described above, implemented using theMathematica packages
by considering h = 1, n = 25 and an initial value x0 = 1.22139.
These results clearly show that the SA algorithm is a good estimation method and that it

enables us to eliminate many of the difficulties encountered with ML estimation.
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Table 2. Starting values used in the simulation and
estimation of the parameters.

γ µ σ

Simulation 1 0.2 0.00010
Estimation NR 1.00006 0.200006 0.00008
Estimation SA 1.00483 0.214715 0.00091

5. Application to real data

5.1 Description of the methodology

We studied the evolution of a basic demographic indicator, that of the weddings taking place
in a society and, specifically, the time-dependent stochastic variable:

Y (t) = mean age of males in Spain at the date of their first wedding.

The following steps were performed in the statistical methodology:

• Values were observed for the period 1982–2001 for the estimation of the parameters, reserv-
ing the values observed for the years 2002 and 2003 for comparison with the corresponding
prediction by the model. The values observed correspond to observations over time inter-
vals equal to 1 year. The source for the data was the Spanish National Institute of Statistics
(INE).

• The estimations of the parameters were calculated by ML, using the expressions obtained
in equations (6)–(8). The expression (8) was approximated numerically using the NR and
SA methods.

Table 3. Observed values, MLCTF estimated trends for NR and SA
and predicted value.

Years Observed Y (t) MLCTF-NR MLCTF-SA

1982 26.70 26.7000 26.7000
1983 26.76 26.8303 26.7939
1984 26.90 26.8929 26.8556
1985 27.03 27.0389 26.9996
1986 27.15 27.1745 27.1333
1987 27.23 27.2997 27.2567
1988 27.39 27.3832 27.3389
1989 27.56 27.5501 27.5035
1990 27.81 27.7275 27.6783
1991 28.09 27.9883 27.9354
1992 28.35 28.2804 28.2233
1993 28.66 28.5517 28.4907
1994 28.92 28.8751 28.8095
1995 29.16 29.1464 29.0769
1996 29.46 29.3968 29.3237
1997 29.69 29.7097 29.6322
1998 29.85 29.9497 29.8687
1999 30.01 30.1166 30.0333
2000 30.16 30.2836 30.1978
2001 30.41 30.4400 30.3521

Prediction

2002 30.63 30.7009 30.6092
2003 30.89 30.9304 30.8354
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Figure 1. Fit and prediction based on MLCTF-NR.

• The ML conditional trend function of the process (MLCTF) can be obtained using Zehna’s
theorem (see [29]), replacing the parameter with the estimators in equation (3). Thus, we
obtain two MLCTF, the first when γ̂ is obtained by NR, which we denote as MLCTF-NR,
and the second when γ̂ is obtained by SA, which is denoted as MLCTF-SA. These two
functions are used to fit and predict.

5.2 Fitting the model using ML

The expression (8) is approximated numerically using NR and we thus obtain the following
ML estimates γ̂ = 23.6911, µ̂ = 0.042381 and σ̂ = 0.0140717.
After estimating the parameters for the variable considered using SA, the results achieved

are as follows: γ̂ = 23.3911, µ̂ = 0.027979, σ̂ = 0.0007018.
Table 3 shows the observed values of the variable and those of the estimatedML conditioned

trend functions using NR and SA.

Figure 2. Fit and prediction based on MLCTF-SA.
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Figure 1 shows the fit and the prediction for Y (t) using the MLCTF-NR. Figure 2 shows
the fit and the prediction for Y (t) using the MLCTF-SA.

6. Conclusions

The fundamental goal of this study is to introduce and examine a stochastic three-parameter
lognormal diffusion process. To do this, we determine the basic probabilistic results (section 2)
and inferential results, in particular estimation based on discrete sampling of the process
using ML (section 3). The problems that arise in applying ML estimation with a thresh-
old parameter are addressed via an extension of Wingo’s reparametrization technique in the
case of a three-parameter lognormal distribution to the process proposed in this study. The
main conclusion reached, from a computational standpoint is that when this reparametriza-
tion method is used, calculating the estimator of the theshold parameter of the process
using numerical methods based on the reparametrized equation (12) and obtaining it by
the alternative SA methodology produce similar results, regarding both simulated and
real data.
The tables 4 and 5 show the results obtained using the two estimation methods described;

table 4 shows the process parameters from the simulation of X(t) and table 5 shows those
estimated from the observed data of process Y (t).
The small discrepancies observed between the two methods could be reduced by adjusting

the precision and number of iterations when using the SA algorithm.
We calculated a global descriptive measure of the discrepancy between the adjusted values

and those observed, using the sampling variance; in the case of NR estimation, the value was
0.003, and for estimation by the SA method it was 0.004, thus confirming the similarity of the
two methodologies.
Although the proposed method is still being refined, the results obtained lead us to believe

that it constitutes a good alternative to existing methods, as both its theoretical basis and
its implementation or adaptation to any type of problem are much more straightforward.
Moreover, most existing methods depend to a large extent on the initial solution. With the
proposed method, however, if the Markov chain lengths produced are long enough, there is no
such dependence, although this fact does mean that more time must be applied in searching
for the solution.

Table 4. Estimation of the parameters for the set of
simulated data.

γ̂ µ̂ σ̂

Estimation NR 1.00006 0.200006 0.00008
Estimation SA 1.00483 0.214715 0.00091

Table 5. Estimation of the parameters for the observed Y (t).

γ̂ µ̂ σ̂

Estimation NR 23.6911 0.042381 0.0140717
Estimation SA 23.3911 0.027979 0.0007018
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