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SUMMARY

In this study, carried out on the basis of the conclusions and methodological recommendations of the Fourth
Assessment Report (2007) of the International Panel on Climate Change (IPCC), we consider the emissions of
greenhouse gases (GHG), and particularly those of CO2, attributable to the activities of land transport, for all sectors
of the economy, as these constitute a significant proportion of total GHG emissions. In particular, the case of Spain is
an example of a worrying situation in this respect, both in itself and in the context of the European Union. To analyse
the evolution, in this case, of such emissions, to enable medium-term forecasts to be made and to obtain a model
that will enable us to analyse the effects of possible corrector mechanisms, we have statistically fitted a inverse
Cox–Ingersoll–Ross (I-CIR) type nonlinear stochastic diffusion process, on the basis of the real data measured for
the period 1990–2004, during which the Kyoto protocol has been applicable. We have studied the evolution of the
trend of these emissions using estimated trend functions, for which purpose probabilistic complements such as trend
functions and stationary distribution are incorporated, and a statistical methodology (estimation and asymptotic
inference) for this diffusion, these tools being necessary for the application of the analytical methodology proposed.
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND AIMS OF THE STUDY

In order to identify the aims of this study and the results to be obtained, let us now consider some
general aspects of climate change, in the context of previous studies and of the present situation, thus
constituting the scenario in which appropriate action must be taken, in the near future, to mitigate the
negative consequences of this phenomenon.
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1.1. Climate change according to the Fourth Assessment Report of the International Panel on
Climate Change, as part of the UN Environment Programme

The IV Assessment Report of the International Panel on Climate Change (IPCC), as part of the UN
Environment Programme, was recently presented at the international conference ‘Citizens of the Earth’
(Paris, February 2007), as a continuation of the Reports published in 1990, 1996 and 2001. The latest
report has aroused enormous interest in the world’s media, throughout society and at all political levels,
and it has had an immediate effect on social and governmental awareness of the far-reaching changes and
consequences that will be caused by climate change during the 21st century. Among other political and
governmental repercussions, it has inspired the proposal that the work carried out by the UN through
the IPCC should be transferred to a UN body for the environment with greater power and institutional
weight than the current programme.

The most startling conclusion of this Fourth Report is that, at a worldwide scale, the earth’s
temperature will rise by between 1.8 and 4◦C during the present century, and that in the most unfavourable
scenario, this rise could be as much as 6◦C.

With respect to the causes of this change, the report concludes that ‘human responsibility’ exceeds
90%, a significant increase on the 66% reported in the Third Report IPCC (2001). This conclusion, in
the words of the IPCC President, R. Pachauri, is to some extent now irrelevant, because ‘the debate on
the link between human actions and climate change should really be over. Henceforth, the debate should
only consider the measures that must be taken’. Furthermore, the final text of the report, agreed upon
by 500 scientists from 113 countries, sets out its most significant conclusions in terms of what is ‘very
likely’, what is ‘virtually certain’ and what is ‘probable’. On this scale, the IPCC assumes, respectively, a
likelihood of over 90%, a degree of certainty of 99% and a probability of 66%. Thus, the final conclusion
referred to above would mean that it is ‘very likely’ (>90% certainty) that the increase in worldwide
mean temperatures observed since the mid-20th century is the result of the increase in concentrations of
greenhouse gases (GHG), due to mankind’s use of fossil fuels. According to the IV Report, the global
warming caused by human activities will continue for centuries, even if concentrations of GHG in the
atmosphere become stabilised. Past and future emissions of CO2 (and of GHG in general) will continue
contributing to global warming and their consequences will last for over a millennium. Thus, it becomes a
matter of urgent priority to seek to control the greenhouse effect, reducing CO2 emissions by at least 50%.

Nevertheless, not all governments and scientific debates around the world are in agreement in
identifying human activities as the basic cause of climate change. There are also disagreements
concerning the methodology to be adopted by the IPCC Work Group (I Summary, II Impacts,
III Response Strategies) and the terminology used by experts, depending on whether they work in
Experimental Sciences or in Social and Human Sciences. In some scientific circles, while acknowledging
the important role played by the reports in stimulating interest in climate change and in research into
Environmental Sciences in general, questions have been raised that will contribute to a greater rigor
and precision in the conclusions reached concerning causes, impacts and the measures to be adopted
in response to climate change. The paper-editorial by Ha-Duong et al. (2007) provides a general
perspective, and a very lucid one from the standpoint of experimental science, on the improvements that
have been made to the methodology used by the Working Groups, in the respective reports. Moreover,
a classification is made of the terminology used by each Working Group in their application of the
concepts underlying the different types of probability (classical, frequentist, Popper’s, views, e.g. Fine
(1973)) or degrees of belief in subjective (Bayesian) theories. Also discussed are issues concerning
uncertainly in natural systems and in human and social systems, in contrast to the concept of risk (using
precise probabilities).
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In view of the IPCC Reports, in the coming years it is foreseeable that more studies will be made to
objectively determine reality and to control local, national and transnational situations, as far as possible,
taking into account the feasibility of joint actions, especially in sectors such as energy, transport, house
construction and urban development in general. Moreover, the IPCC methodology will be particularised
to specific geographic systems. For example to cite just a few recent studies in the above fields, taking
as a starting point four emission scenarios defined and recommended by the IPCC in 2001 (Special
Report on Emissions Scenarios—AOGCM), together with five Atmosphere Ocean General Circulation
Models, Nogues-Bravo et al. (2007) studied the global climate warming of mountain systems during
the 21st century. Such systems are highly sensitive to climate change. This study provides results that
are coherent with those expressed in the Conclusions of the IV IPCC Report (2007), referred to above.
For example, in the A1F1 IPCC scenario (global economics), characterised by intensive use of fossil
fuels (high rate of emission of GHG), rapid economic growth, low population growth and the rapid
introduction of new and more efficient technologies, the most pessimistic of the possible situations, the
authors estimate projected average temperature changes of +3.2◦C for 2055 and of 5.3◦C for 2085. The
methodology by which these projected temperature increases are obtained for the different scenarios
proposed in this paper, followed by their statistical analysis (fundamentally based on ANOVA), is
paradigmatic of the way global studies of climate change are structured and applied.

On the subject of studies focused on control, also paradigmatic is a recent paper by Den Elzen
et al. (2007), which addresses general aspects concerning the control and the costs of emissions of
GHG (the Kyoto Protocol), from the quantitative standpoint and within the framework of the IPCC
methodologies, taking into consideration probabilistic aspects of the question, with particular reference
to the lognormal distribution, among others, which has been shown to play an influential role in the
corresponding statistical analysis.

1.2. The emission of greenhouse gases attributable to land transport in the EU and in Spain

In order to be able to make an objective analysis of given policies concerning the control and reduction
of CO2 emissions, we require statistical models that are appropriate to the observed trends, enabling
us to make short, medium and long-term predictions. It is also desirable that such models should have
the capability to be affected, especially as regards the trend, by exogenous dynamic variables, so that
we may study the effect of policies modelled by these variables on the response of the respective trend
function.

In such a complex global economy, which is strongly interrelated with social, political and geographic
aspects, etc., and in the context of which control policies are of necessity sectoral, what is required is
models of CO2 emission classified by emission sources or by geopolitical areas (such as the EU), taken
as ambits for common policies for controlling the sources of CO2 emission.

Such is the case, for example of CO2 emissions resulting from land transport, which is one of the
heaviest producers of these emissions. It would be very useful to have a model of growth trends of CO2
in this sector, for specific countries or geopolitical areas, because exogenous control policies could then
be applied to land transport. The effectiveness of such policies could be studied if a good model were
available, especially if it enabled the inclusion of exogenous factors to model policies for restricting or
reducing the growth of the endogenous variable (i.e. the emissions of CO2).

The land transport constitutes an important source of total emissions of GHG (and of CO2 in
particular), at a world scale, in the EU and in Spain (this latter case is analysed in detail in Subsection 4.1).
Let us now summarise the evolution of these emissions in the U.S.A., the EU and Spain, during the
period 1990–2004. Table 1 presents data for the U.S.A. and the EU, for the above period, for the total
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Table 1. Total GHG emission and GHG emission by land transport in EU and U.S.A.

UE U.S.A.

Year Total GHG % GHG Total GHG % GHG
GHG transport transport GHG transport transport

emission emission emission emission emission emission

1990 4 252 461 701 677 16.50 6 103 283 1 459 958 23.92
1991 4 264 805 717 344 16.82 6 066 323 1 434 327 23.64
1992 4 176 880 743 302 17.80 6 140 485 1 483 212 24.15
1993 4 108 108 751 339 18.29 6 327 120 1 534 976 24.26
1994 4 106 695 754 993 18.38 6 370 859 1 575 141 24.72
1995 4 144 433 765 900 18.48 6 477 148 1 604 637 24.77
1996 4 231 297 783 983 18.53 6 678 309 1 641 105 24.57
1997 4 171 982 794 082 19.03 6 703 780 1 658 937 24.75
1998 4 184 732 819 371 19.58 6 767 132 1 686 776 24.93
1999 4 119 135 839 625 20.38 6 808 241 1 749 538 25.70
2000 4 129 317 841 976 20.39 6 975 929 1 794 114 25.72
2001 4 174 119 852 575 20.43 6 886 890 1 777 223 25.81
2002 4 155 328 863 585 20.78 6 909 407 1 820 865 26.35
2003 4 216 469 870 033 20.63 6 952 561 1 818 396 26.15
2004 4 228 006 884 432 20.92 7 067 570 1 869 641 26.45

Data in Gg CO2 eq.

GHG and the total GHG attributable to the transport sector. Table 2 shows the corresponding data for
Spain, together with the total emission of CO2 with respect to total emissions of GHG.

In this case, the variable considered (with respect to total emission of GHG attributable to the
transport sector) is ‘Emissions from the combustion and evaporation of fuel for all transport activity,
regardless of the sector. Emissions from fuel sold to any air or marine vessel engaged in international
transport (international bunker fuels) are not included’. The global emission value is taken to be ‘the

Table 2. Total GHG emissions, total CO2 emissions and GHG emissions by land transport in Spain

Year Total emission CO2 % CO2 GHG emission % GHG emission
GHG emissions emissions transport transport

1990 287 152 205 535 71.58 57 536 20.04
1991 293 134 211 251 72.07 59 849 20.42
1992 300 912 217 612 72.32 63 690 21.17
1993 289 550 207 015 71.50 63 011 21.76
1994 305 784 220 052 71.96 65 985 21.58
1995 317 941 230 977 72.65 67 028 21.08
1996 310 540 216 991 69.88 71 735 23.10
1997 331 324 235 215 70.99 72 498 21.88
1998 341 618 243 047 71.15 79 485 23.27
1999 369 927 267 744 72.38 84 273 22.78
2000 384 246 277 453 72.21 87 002 22.64
2001 384 552 279 792 72.76 91 277 23.74
2002 402 060 299 128 74.40 93 462 23.25
2003 408 169 303 602 74.38 98 045 24.02
2004 427 905 324 020 75.72 102 011 23.84

Data in Gg CO2 eq.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 137–161
DOI: 10.1002/env



EMISSIONS OF GREENHOUSE GASES 141

global emission of GHG from all sources’. The data were obtained from the United Nations Framework
Convention on Climate Change (http:www.ufccc.int).

From the data presented, we may draw the following conclusions:

1. The total emission of GHG in 2004, with respect to 2004, has increased in the U.S.A. by 15.8%, in
the EU by −0.58% and in Spain by 49%.

2. The total emission of GHG attributable to the transport sector in 2004, with respect to 1990, has
increased in the U.S.A. by 28%, in the EU by 26% and in Spain by 77.3%.

3. The proportion of emissions of GHG by the transport sector in 2004, with respect to total GHG
emissions, was 26.4% in the U.S.A., 20.92% in the EU and 23.64% in Spain.

4. During the period 1990–2005, the above proportion ranged as follows: in the U.S.A. between 23.64
and 26.45%; in the EU, between 16.5 and 20.92%; and in Spain, between 20 and 24.62%. In all three
cases, the trend was a continuously rising one.

1.3. Aims and background of this study

The scenario described in the preceding Subsections (1.1, 1.2) can be summarised as follows:

1. The emission of GHG is the cause of global warming, with a probability of 90% (according to the
Fourth IPCC Assessment Report, 2007).

2. At a worldwide scale, especially in geopolitical spaces or countries classified as belonging to the
A1F1 scenario of the IPCC Assessment Reports, in the EU and in Spain in particular, the emission of
GHG attributable to the land transport sector contributes significantly to the total emission of GHG.
This sectoral emission, moreover, tends to increase in many cases (e.g. Spain) and is, in the best of
cases, only lightly regulated (e.g. the EU).

3. CO2 constitutes the main component of the total emission of GHG within these countries and areas.
4. It is essential to adopt control measures so that, in the medium–long term, emission levels may be

achieved that are compatible with sustainable socio-economic development. Moreover, we require
mathematical–statistical models that will enable us to objectively study the effects of specific sectoral
policies on the levels of emissions of different sources of GHG.

5. The case of Spain is particularly serious both in general and within the particular context of the EU.
This country, as a signatory to the Kyoto Protocol in 1997, was assigned, on the basis of its total GHG
emissions in 1990, an increase of 15% by the year 2010. In fact, however, from the trend observed
during the period 1990–2005, it is estimated that the corresponding increase for this period will be
51.3%. Under the same circumstances, the total increase in GHG emissions in the EU as a whole is
forecast to be −4.6%. This situation has been examined in greater detail in Gutiérrez et al. (2007a,
2007b). From the above analysis, it is evident that a fundamental cause of Spain’s poor performance
is the effect on the emission of GHG attributable to the land transport sector.

6. The latest studies carried out within the EU and in Spain in particular conclude that the annual mean
temperature in Spain rose by 1.53◦C between 1971 and 2000, and that in the last 100 years, it has
risen by 1.5◦C. The corresponding values for the EU and for the Earth as a whole are 0.95◦C and
0.65◦C, respectively (Source: Spanish Ministry of the Environment, and the United Nations).

We see, thus, from Scenarios 1–6, that the present study responds to well-founded concerns. It seeks
to contribute to our knowledge of the patterns of GHG emissions attributable to the land transport sector
in a country that is representative of Scenario A1F1 (see Subsection 1.1).
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The main aim of this study, from the applied standpoint, is to model the secular trend that is present
in the evolution of the emission of GHG attributable to the land transport sector in Spain, on the basis
of observations made during the period 1990–2004, which covers a period of 15 years during which
the Kyoto Protocol (1997) was in force. This study then seeks to predict the future development of this
trend in the medium term (2005–2008). This goal is further discussed in Sections 4 and 5.

From a technical standpoint, we propose to carry out stochastic modelling, and to apply a statistical
analysis methodology based on using the data observed to fit the trend and the conditioned trend
functions corresponding to a (homogeneous) inverse Cox–Ingersoll–Ross (I-CIR) diffusion process.
This stochastic model was selected from various possible stochastic diffusion processes (including
Gompertz, Rayleigh, Lognormal and cubic processes) as being the most suitable for the situation to be
studied. An original contribution of the present study is the explicit calculation, for the above purposes,
of the trend functions, the EMV methodology, based on continuous sampling of its parameters (the drift
and the coefficient of volatility of the diffusion coefficient), the stationary distribution and some results
concerning asymptotic inference that enable us to establish confidence regions for the drift estimators
of the process being considered, as well as the corresponding trend functions.

As concerns the immediate background to this study, let us cite the following: for the case of Spain,
Gutiérrez et al. (2007a) examined the emission of CO2, a fundamental component of GHG, in a one-
dimensional way, modelling the evolution of this variable using a cubic-type homogeneous diffusion
process. Gutiérrez et al. (2007b) studied the evolution of CO2 emissions in relation to changes in the
GDP. In this case, the most appropriate modelling instrument was found to be that based on a non-
homogeneous Gompertz diffusion process, originally proposed by the authors (see too, e.g. Gutiérrez
et al., 2006b, in which the interrelation of CO2 emissions and GDP was studied in order to determine the
extent to which an increase in the latter variable affected these emissions). In both studies, the specific
variable examined was ‘CO2 emissions from fossil-fuel burning, cement manufacture and gas flaring’. In
both cases, the trend functions were analysed by means of a statistical methodology originally proposed
by the authors (see, e.g. Gutiérrez et al., 1999, 2001, 2005a, 2005b, 2006a, 2006b), subsequently cited
in Meade and Islam (2006). Unlike these forerunners, the present study examines the variable emission
of GHG (including CO2) and, in addition, this variable is broken down in order to analyse the proportion
of GHG emission that is caused by the activities of the land transport sector. Comments on this question
are given in Section 5, in the Discussion and in the Conclusions.

2. PROBABILISTIC CHARACTERISTICS OF THE MODEL

The Feller diffusion process has constituted the basis for numerous others, both linear and nonlinear,
and these have been the object of particular attention in the field of stochastic finance, for example
interest rate models. Many of these models can be included within certain families of diffusions, such
as that considered by Chan et al. (1992), which covers the diffusions corresponding to Ito’s SDE, as
follows:

dXt = (α + βXt)dt + σX
γ
t dWt (1)

among which are diffusions such as those of Merton, Vasicek, Brenann–Schwartz, CIR-SR, CIR-
VR and the CEV subfamily (see e.g. Davidov and Linetsky, 2001). The above-cited paper by Chan
et al. (1992) considers the estimation of parameters belonging to the family Equation (1), using
econometric methods based on the Generalised Method of Moments technique, and on the basis of
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an appropriate example, empirically compares the particular features of each diffusion type in this
family.

In particular, Cox–Ingersoll–Ross (CIR) investigated and applied the CIR-SR and CIR-VR models
with SDE given, respectively, by

dXt = (α + βXt)dt + σX
1/2
t dWt (2)

dXt = σX
3/2
t dWt (3)

Subsequently, Ahn and Gao (1998) and Ait-Sahalia (1999), among others, considered, together with
other diffusions, a type of nonlinear diffusion with an SDE expressed as

dXt = Xt(κ − (σ2 − κα)Xt)dt + σX
3/2
t dWt (4)

which is empirically compared, using a financial example, with other diffusions, both linear and
nonlinear.

This diffusion, Equation (4), has a diffusion coefficient which is similar to that of CIR-VR diffusion
except that unlike the latter, which has no drift, it possesses a drift coefficient, and moreover, one that
is nonlinear. With respect to CIR-SR, the above diffusion is more general, in two ways: it contains a
nonlinear drift, rather than the linear one found in CIR-SR, and its coefficient of diffusion is different
(γ = 3/2 and Equation (1)). This diffusion, suitably reparametrised, is the one we consider in the
present paper for modelling GHG emissions. In the first place, we studied probabilistic and statistical
questions concerning the diffusion process we denominate I-CIR. These issues are fundamental in the
trend analysis methodology proposed in this paper for the case of GHG emissions attributable to the
land transport.

2.1. The proposed model

Let {Xt ; t ∈ [0, T ]} be the one-dimensional diffusion process taking values on (0, ∞) and with
infinitesimal moments

A1(x) = ax − bx2, A2(x) = σ2x3 (5)

where σ > 0, a and b are real parameters.
Alternatively, the above process can be defined by the following Itô’s SDE

dXt =
(
aXt − bX2

t

)
dt + σX

3/2
t dWt, X0 = x0 (6)

where Wt is a standard Wiener process and x0 is fixed in R
∗+.

2.2. The TPDF of the model

The Transition Probability Density Function (TPDF) of the model can be obtained by using the Theorem
2.1 of Karlin and Taylor (see Karlin and Taylor, 1981; p. 173). In this result, we consider the function
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g(x) = 1/x; then, the process proposed in Equation (5) can be transformed into the diffusion process
Yt = g(Xt) whose infinitesimal moments are given by

Ã1(y) = (σ2 + b) − ay, Ã2(x) = σ2y

Given the form of these infinitesimal moments, the Yt process is of the CIR type (see e.g. Chan et al.,
1992; Eugen and Manfredi, 1999), and if we denote the TPDF of the Xt and Yt processes by f and f ∗,
respectively, then these two TPDF are related by

f (y, t | x, s) = |ϕ′(y)| f ∗ (ϕ(y), t | ϕ(x), s)

Using the closed form of TPDF of the process Yt (see e.g. Going-Jaeschke, 1998) and the homogeneity
of this (i.e. f ∗(y, t | x, s) = f ∗(y, t − s | x, 0)) and after some calculations (omitted here), we can deduce
that the TPDF of our original process is for σ2 ≥ −b

f (y, t | x, s) = 2ay− α
2 −2 (

xea(t−s)
) α

2

σ2
(
1 − e−a(t−s)

) exp

(
−2a

(
x−1e−a(t−s) + y−1

)
σ2

(
1 − e−a(t−s)

)
)

× Iα

(
4ae− a

2 (t−s)

σ2
(
1 − e−a(t−s)

) √
xy

)
(7)

In this expression Iα denotes the modified Bessel function of the first kind and α = 2b

σ2 + 1.

2.3. The conditional moments

The k-order of conditional moment of the model is given by:

mk(t | s) = E
(
Xk

t | Xs = xs

)
=

∞∫
0

ykf (y, t | xs, s)dy

To simplify the calculations involved in the above, the following notation is used:

λ(s, t) = λ = 2a/σ2(1 − e−a(t−s)) and ξ(s, t) = ξ = λ
(
xse

a(t−s))− 1
2 .

Then, in terms of λ and ξ, this conditional moment is

mk(t | s) = λα+1ξ−αe− ξ2

λ

∞∫
0

yk− α
2 +1e−λ/yIα

(
2ξ/

√
y
)

dy
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With the change variable z = 1/y, we obtain

mk(t | s) = λα+1ξ−αe− ξ2

λ

∞∫
0

z
α
2 −ke−λzIα

(
2ξ

√
z
)

dz

then, by the relation (see Gradshteyn and Ryzhik, 1979; p. 720: 6.643): forRe(µ + ν + 1/2) > 0

∞∫
0

yµ−1/2e−βyI2ν(2γ
√

y)dy =



(
µ + ν + 1

2

)

(2ν + 1)

γ−1β−µ exp

(
γ2

2β

)
M−µ,ν

(
γ2

β

)

where M·,· is a Whittaker function; from this, we have for α > k − 1

mk(t | s) = 
(α − k + 1)


(α + 1)
λ

α
2 +k+ 1

2 ξ−α−1e− ξ2

2λ M
k− α

2 − 1
2 , α

2

(
ξ2

λ

)

by means of the relation (see Gradshteyn and Ryzhik, 1979; p. 1059: 9.220) with the confluent
hypergeometric function � (Kummer function):

Mν,µ(x) = xµ+1/2e−x/2� (µ − ν + 1/2, 2µ + 1, x)

We have

mk(t|s) = 
(α − k + 1)


(α + 1)
λke− ξ2

λ �

(
α − k + 1, α + 1,

ξ2

λ

)

Finally, by the Kummer transformation (see Gradshteyn and Ryzhik, 1979; p. 1058: 9.212)
�(β, γ, z) = ez�(γ − β, γ, −z), we deduce that, for α > k − 1

mk(t | s) = 
(α − k + 1)


(α + 1)
λk�

(
k, α + 1, −ξ2

λ

)

Then, by substituting λ and ξ, the final form of the conditional moment of the kth order of the model
takes the following form:

E
(
Xk

t | Xs = xs

)
= 
(α − k + 1)


(α + 1)

(
2a

σ2
(
1 − e−a(t−s)

)
)k

× �

(
k, α + 1,

−2ae−a(t−s)/xs

σ2
(
1 − e−a(t−s)

)
)

for α > k − 1.
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From this expression, we deduce the conditional trend function of the process the expression of
which is for α > 0

E(Xt | Xs = xs) = 2a/α

σ2(1 − e−a(t−s))
�

(
1, α + 1,

−2ae−a(t−s)/xs

σ2(1 − e−a(t−s))

)
(8)

From Equation (8) and under the initial distribution P(X0 = x0) = 1, the trend function of the process
takes the following form (for α > 0)

E(Xt) = 2a/α

σ2(1 − e−at)
�

(
1, α + 1,

−2ae−at/x0

σ2(1 − e−at)

)
(9)

Equations (8) and (9) play a fundamental role in constituting the estimated trend functions (see
following section), which enable us to fit and to predict the future evolution of the stochastic variable
under consideration.

2.4. Stationary distribution of the process

Let us now analyse the existence of the stationary distribution and obtain the explicit expression for its
density. In general (see Nobile and Ricciardi, 1984; Ricciardi, 1977) the density function of stationary
distribution, S(x), in a diffusion can be expressed, under specific conditions that satisfy the inverse CIR,
as

S(x) = c

A2(x)
exp


2

x∫
z

A1(y)

A2(y)
dy




where z is an arbitrary point in the interval ]0, +∞[, and c is a constant to be determined by the following
normalisation condition:

c =

 +∞∫

0

1

A2(x)
exp


2

x∫
z

A1(y)

A2(y)
dy


 dx




−1

By applying the above results, we can deduce that for a > 0 and α > −1 (i.e. a > 0 and b > −σ2),
the density function of the stationary distribution of the process exists, and takes the form

S(x) =
(

2a

σ2

)α+1
x−α−2e−2a/σ2x


(α + 1)
(10)

S is the density function of inverse Gamma distribution.
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From the above expression we can calculate the asymptotic moment of order k, and then we have
for a > 0 and α > k − 1

E[Xk(∞)] =
∞∫

0

xkS(x)dx = 
(α − k + 1)


(α + 1)

(
2a

σ2

)k

The asymptotic trend function of the process is, for a > 0 and α > 0

E[X(∞)] = 2a

ασ2
= a

b + σ2/2
(11)

It can be seen that the limit of the trend function in Equation (9) (when t tends to ∞) coincides with the
asymptotic trend function in Equation (11).

The asymptotic variance function of the process is, for a > 0 and α > 1

Var[X(∞)] = 4a2

σ4α2(α − 1)

3. STATISTICAL METHODOLOGY

For the drift parameters, since the PDFT of the process is known (the inverse of non-central chi-
square distribution with non-integer parameters), likelihood inference with discrete sampling is, in
principle, possible, but it is extremely complicated to calculate. As an alternative, one might apply
maximum likelihood using continuous sampling, after transforming the stochastic integrals that relate
the likelihood estimators to Riemann integrals, the latter being approximated by the trapezoid method.
On the other hand, the parameter in coefficient diffusion can be approximated using an extension of the
procedure described by Chesney and Elliot (1995); this extension has been considered by Skiadas and
Giovani (1997), Gutiérrez et al. (2006a) and Gutiérrez et al. (2007a).

3.1. Likelihood estimation of drift parameters

Let us consider the one-dimensional diffusion process defined by the following SDE

dXt = A(Xt)· � dt + B(Xt) dWt ; 0 ≤ t ≤ T (12)

where the parameter θ ∈ Rk, A is a k-dimensional vector and B is R-valued depending only on the
sample path up to the given instant. We assume that Equation (12) has a unique solution for every θ.
The maximum likelihood estimator of the vector � is given by (see, e.g. Kloeden et al., 1992; Prakasa
Rao, 1999)

θ̂T = ST
−1HT (13)
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where HT is the following k-dimensional vector:

HT =
T∫

0

A∗
t (Xt)

(
B∗

t (Xt)Bt(Xt)
)−1dXt (14)

ST is the k × k matrix:

ST =
T∫

0

A∗
t (Xt)

(
B∗

t (Xt)Bt(Xt)
)−1At(Xt)dt (15)

and the asterisk denotes the transpose.
The SDE of the proposed model Equation (6) can be written in the vector form [Equation (12)], with:

A(Xt) =
(
Xt, −X2

t

)
; θ∗ = (a, b) and B(Xt) = σX

3/2
t

The corresponding vector HT in Equation (14) in this case leads us to

H∗
T = 1

σ2


∫

0

T dXt

X2
t

, −
∫
0

T dXt

Xt




ST is the following square matrix

ST = 1

σ2




T∫
0

dt
Xt

−T

−T
T∫
0

Xtdt


 (16)

Using Equation (13) and after some calculation (not shown), we obtain the expressions of the
estimators

â =

(
T∫
0

Xtdt

) (
T∫
0

dXt

X2
t

)
− T

T∫
0

dXt

Xt(
T∫
0

dt
Xt

) (
T∫
0

Xtdt

)
− T 2

b̂ =
T

(
T∫
0

dXt

X2
t

)
−

(
T∫
0

dt
Xt

) (
T∫
0

dXt

Xt

)
(

T∫
0

dt
Xt

) (
T∫
0

Xtdt

)
− T 2
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The stochastic integrals in the latter expressions can be transformed into Riemann–Stieltjes integrals
by using the Itô formula, hence

T∫
0

dXt

Xt

= log(XT ) − log(x0) + σ2

2

T∫
0

Xtdt

T∫
0

dXt

X2
t

= 1

x0
− 1

XT

+ σ2T

Therefore, the resulting maximum likelihood estimators are

â =

T∫
0

Xtdt
(

XT −X0
x0XT

+ Tσ2
)

− T

(
log(XT /x0) + σ2

2

T∫
0

Xtdt

)
(

T∫
0

dt
Xt

) (
T∫
0

Xtdt

)
− T 2

(17)

b̂ =
T

(
XT −X0
XT X0

+ Tσ2
)

−
T∫
0

dt
Xt

(
log(XT /x0) + σ2

2

T∫
0

Xtdt

)
(

T∫
0

dt
Xt

) (
T∫
0

Xtdt

)
− T 2

(18)

3.2. Estimation of the noise coefficient

As mentioned above, the coefficient of diffusion is estimated using an approximative method similar to
that described by Chesney and Elliot (1995) and by Skiadas and Giovani (1997). This method can be
summarised in the following steps:

By applying the Itô formula, we have

d

(
1

Xt

)
= −dXt

X2
t

+ σ2dt (19)

The differentials shown in Equation (19) can be approximated by consecutive observations of a
sample path of the process in t − 1 and t, as follows:

d

(
1

Xt

)
	 1

Xt

− 1

Xt−1
and d(Xt) 	 Xt − Xt−1
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By inserting these approximations in Equation (19), an approximate estimator of the σ parameter
between the latter observations is found to be

σ̂(t−1,t) = |Xt − Xt−1|
Xt

√
Xt−1

For n observations of a sample path of the process, the resulting approximate estimator has the
following expression:

σ̂ = 1

n − 1

n∑
t=1

|Xt − Xt−1|
Xt

√
Xt−1

(20)

Remarks.
� In order to use the above expressions, Equations (17) and (18), to estimate the parameters, we must

have continuous observations. In practice, continuous sample path processes cannot be monitored
in continuous time, but only at sequences of discrete instants (0 = t0 < t1 < · · · < tn = T ). By the
Markov properties, the likelihood function corresponding to such data is the product of transition
densities (in the present case, it has a complicated form, see Equation (7)) and it is very difficult
to find the estimators explicitly. An alternative estimation procedure that is frequently utilised (see
e.g. Giovanis and Skiadas, 1999; Gutiérrez et al., 2007a) for such data is to use the continuous
time maximum likelihood estimators with suitable approximations of the integrals that appear in the
Equations (17) and (18); specifically, the Riemann–Stieltjes integrals are approximated by means of
the trapezoidal formula.

� An approximation of the standard error of the estimator of σ̂ is given by

es(σ̂) = 1

n − 1

n∑
t=1

(
σ̂(t−1,t) − σ̂

)2 (21)

� By using Zehna’s theorem, the estimated trend function (ETF) and estimated conditional trend
function (ECTF) of the process are obtained by replacing the parameters in Equations (8) and (9) by
their estimators given in Equations (17), (18) and (20). Then the ETF and ECTF are given by the
following expression:

Ê(Xt) = 2â/α̂

σ̂2(1 − e−ât)
�

(
1, α̂ + 1,

−2âe−ât/x0

σ̂2(1 − e−ât)

)
(22)

Ê(Xt/Xs = xs) = 2â/α̂

σ̂2(1 − e−â(t−s))
�

(
1, α̂ + 1,

−2âe−â(t−s)/xs

σ̂2(1 − e−â(t−s))

)
(23)

where α̂ = 2b̂/σ̂2 + 1.

3.3. Asymptotic normality of likelihood estimators

For a > 0 and α > 0, we confirm the conditions of ergodicity (see Kutoyants Yu, 2004) and that the
process has ergodic properties. If we denote by X the random variable with density function S in
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Equation (10), then 1/X has a Gamma(α + 1, σ2/2a) distribution and we have, for a known σ and for
θ ∈ (a1, a2) × (b1, b2), with a1 > 0 and b1 > −σ2/2,

Lθ

(√
T (θ̂ − θ)

)
→ N2

(
0, I

−1(θ)
)

; when T → ∞ (24)

where

I(θ) = Eθ

(
Ȧ1(X)Ȧ∗

1(X)

A2(X)

)
and Ȧ1(x) =

(
∂A1(x, θ)

∂a
;
∂A1(x, θ)

∂b

)∗

Then, by calculation, we obtain

I(θ) = 1

σ2
Eθ

(
1
X

−1

−1 X

)
=

(
α+1
2a

−1
σ2

−1
σ2

2a

ασ4

)
(25)

and their inverse is

I
−1(θ) =

(
2a ασ2

ασ2 α(α+1)σ4

2a

)
(26)

An approximated and asymptotic confidence region of θ and an approximated and asymptotic
marginal confidence intervals of â and b̂ can be obtained by substitution of Equation (25) in (24).
The above mentioned region is given, for a large T, by

P
[
T

(
θ − θ̂

)∗
Î(θ)

(
θ − θ̂

) ≤ χ2
2,γ

]
= 1 − γ (27)

where Î(θ) is obtained by replacing the parameters by their estimators in the Equation (25) and χ2
2,γ is

the upper 100γ per cent points of the chi-squared distribution with two degrees of freedom.
The γ% confidence (marginal) intervals for the parameters a and b are given, for a large T, by

P
(
a ∈

[
â ± λγ

√
2â/T

])
= 1 − γ (28)

P

(
b ∈

[
b̂ ± λγσ2

(
α̂(α̂ + 1)

2T â

)1/2
])

= 1 − γ (29)

where λγ is the 100γ per cent points of the normal standard distribution.
In Equations (27)–(29) we have supposed that σ is known with value σ = σ̂.
By using those results, we could also obtain an approximated and asymptotic confidence interval of

the ETF and ECTF.
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4. APPLICATION AND SIMULATION

4.1. Application: land transport as a source of emission of greenhouse gases in Spain

In recent years, policies to reduce GHG (particulary, CO2) emissions from cars have been contradictory:
on the one hand, significant efforts have been made in technological innovation in the sector, with more
efficient engines producing lower levels of CO2, in relation to the power provided (by means of diesel
and petrol engines with direct injection, and by the better use of compressors and turbo compressors,
among other advances).

However, there has been a growth in the market for high-powered vehicles, which are very
large and heavy, consume more fuel and in some cases produce over 250 g of CO2 per km. In
1998, the European Automobile Manufacturers Association (ACEA) committed its members to
reducing car emissions of CO2 to 140 g/km by 2008, a target that is in fact impossible for most
to meet.

The situation varies widely throughout Europe, with Germany being the most affected country.
Manufacturers, for their part, demand that a more global policy be established, involving other factors
that influence fuel consumption, such as improvements in road infrastructures and changes in drivers’
behaviour.

At present, the maximum permitted emission rate for cars is 160 g of CO2 per km travelled, and the
European Commissioner for the Environment has proposed that this limit should be reduced to 120 g/km
for all new cars from the year 2012.

All the above should be considered in the context of the relative failure of the Kyoto Protocol; in
general, the targets established have not been met, with this non-compliance being particularly severe
in the case of Spain (see Gutiérrez et al., 2007a, 2007b).

We shall now summarise the situation in the land transport sector in Spain, for the period 1996–2005,
in accordance with the following criteria:

1. Type of vehicle (cars; lorries, vans and buses; industrial tractors; other types).
2. Type of fuel (petrol; diesel) used.
3. Age of vehicle.

The data are classified using the above factors (type of vehicle; type of fuel; age of vehicle) because
these are crucial in determining levels of emission of CO2 and of other GHG. The data thus classified
are of interest with respect to the application of certain, more restrictive, policies for the control and
reduction of vehicle emissions.

Table 3 describes the evolution of the total stock of vehicles in Spain; in 2005, there were
a total of 27 657 276 vehicles, which can be classified by vehicle and fuel type. This figure is
41.5% higher than the corresponding one for 1996. In 2005, the total stock of petrol-driven cars
was 0.24% higher than in 1996, with a relatively stable trend being observed for the period 1996–
2005. In contrast, the stock of diesel-driven cars in 2005 was 168.5% higher than in 1996. For
cars, these increases were—4.43 and 252.7%, respectively. These cars made up 76.5% of the total
vehicle stock in 1996, and 73.2% in 2005, with a relatively stable evolution over the period in
question.

Table 4 shows the age of the stock of vehicles, by type and by fuel, taking as a baseline the total
stock recorded in 2005. Thus we see that 38.4% of the total stock of vehicles is aged over 10 years. In
the case of cars, the corresponding figure is 36.7%. The cars that were 10 or more years old in 2005
constituted 70% of the total stock of vehicles of this age.
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Table 3. Vehicles by category and fuel consumption in Spain

Cars Lorries, vans and buses Industrial tractors

Petrol Diesel Petrol Diesel Petrol Diesel

1996 12 362 457 2 391 352 906 848 2 198 904 1694 92 863
1997 12 490 612 2 806 754 891 999 2 364 010 1845 102 276
1998 12 681 210 3 368 847 879 072 2 566 179 2050 114 255
1999 12 802 978 4 044 419 859 384 2 799 128 2233 127 983
2000 12 746 971 4 702 264 832 348 3 002 605 2367 140 588
2001 12 795 735 5 355 145 813 409 3 191 738 2453 153 504
2002 12 728 713 6 003 919 790 179 3 358 649 2486 164 528
2003 12 095 876 6 592 444 750 494 3 494 409 2410 172 097
2004 12 035 097 7 506 821 738 030 3 736 966 2426 182 953
2005 11 815 652 8 434 725 716 421 3 997 240 2396 191 810

Other types Total

Petrol Diesel Petrol Diesel Total

1996 1 478 386 109 600 14 749 385 4 792 719 19 542 104
1997 1 511 961 116 951 14 896 417 5 389 991 20 286 408
1998 1 566 510 128 370 15 128 842 6 177 651 21 306 493
1999 1 631 559 143 510 15 296 154 7 115 040 22 411 194
2000 1 699 018 158 054 15 280 704 8 003 511 23 284 215
2001 1 763 857 174 030 15 375 454 8 874 417 24 249 871
2002 1 825 903 191 355 15 347 281 9 718 451 25 065 732
2003 1 854 709 207 013 14 703 489 10 465 963 25 169 452
2004 2 003 188 227 160 14 778 741 11 653 900 26 432 641
2005 2 250 348 248 684 14 784 817 12 872 459 27 657 276

Table 4. Vehicles by category, fuel consumption and age. Spain, 2005

Cars Lorries, vans and buses Industrial tractors

Petrol Diesel Petrol Diesel Petrol Diesel

0–5 2 781 162 4 433 287 85 782 1 491 588 768 95 154
6–10 2 838 566 2 756 807 94 536 1 141 784 849 57 683
11–15 2 470 138 761 269 171 283 610 557 276 15 764
>15 3 725 786 483 362 364 820 753 311 503 23 209

Total 11 815 652 8 434 725 716 421 3 997 240 2396 191 810

Other types Total

Petrol Diesel Petrol Diesel Total

0–5 747 825 106 412 3 615 537 6 126 441 9 741 978
6–10 345 522 58 546 3 279 473 4 014 820 7 294 293
11–15 330 232 29 110 2 971 929 1 416 700 4 388 629
>15 826 769 54 616 4 917 878 1 314 498 232 376

Total 2 250 348 248 684 14 784 817 12 872 459 27 657 276
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Table 5. Car engine size, by year of first registration

<1199 1200–1599 1600–1999 >2000 Total

1996 76 399 282 688 363 152 77 844 800 083
1997 89 430 323 409 437 187 97 120 947 146
1998 88 227 370 593 573 490 115 259 1 147 569
1999 103 021 413 859 737 776 111 247 1 365 903
2000 79 170 399 552 739 377 116 573 1 334 672
2001 87 114 423 999 724 897 138 503 1 374 513
2002 80 533 394 871 664 206 137 835 1 277 445
2003 81 888 447 566 692 129 157 667 1 379 250
2004 81 764 547 021 752 571 173 333 1 554 689
2005 69 827 669 972 713 183 175 570 1 628 552

Total 837 373 4 273 530 6 397 968 1 300 951 12 809 822

Table 5 describes the variation of the stock of vehicles, by engine size, between 1996 and 2005.
In 2005, 10.8% of all new cars registered had an engine size of over 2000 cm3, while in 1996 the
corresponding figure was 9.72%. In 2005, 43.8% of the new cars registered had an engine size of
1600–1999 cm3, while in 1996 the corresponding figure was 45.4%; thus, there has been a change in
motorists’ preferences, with larger, more powerful cars being bought than 10 years ago. Of all cars
registered during the period 1996–2005, 9.84% were ‘up-market’ models (engine size over 2000 cm3).

In summary, the stock of vehicles in Spain is as follows:

(i) The tendency is for high, sustained rates of growth.
(ii) A large proportion of the vehicles are significantly old, which contributes to a high degree of global

emission of GHG, and in particular of CO2.
(iii) There is a growing trend towards more powerful cars, with the corresponding increase in fuel

consumption.
(iv) There has been a marked growth in the number of cars using diesel fuel, versus petrol-driven

vehicles, especially as concerns cars; this also contributes to the increased emission of GHG.

In summary, the stock of vehicles in Spain constitutes an important source of the emission of GHG
and the trend is for this emission to increase.

4.2. Application to analysis of the trend of emissions of GHG attributable to transport activities in
Spain

In this application, we consider ‘Emissions from the combustion and evaporation of fuel for all transport
activity, regardless of the sector’, with the qualifications and sources mentioned in Subsection 1.2. We
examine the variable Xt that at each instant of time t corresponds to the total annual amount of GHG
emitted during the year ending at t. For instants coinciding with the end of each natural year, we possess
data provided by the above-mentioned sources; these, therefore, constitute discrete time sampling at
equally spaced intervals.

In the present study, we shall analyse the results obtained from modelling the stochastic process Xt

by the SDE (Equation (6)) corresponding to I-CIR diffusion and by applying the statistical methodology
described in Section 3. Specifically, we fit the trend functions (ETF and ECTF) given by Equations (22)
and (23), respectively. Prior to this, we calculate the estimators of the drift coefficient parameters for
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Table 6. Fit (1990–2003) and forecasts (2004)

Years Real Data ETF ECTF

1990 57.536 57.536 57.536
1991 59.849 60.242 60.242
1992 63.691 63.032 62.628
1993 63.011 65.905 66.586
1994 65.986 68.859 65.886
1995 67.028 71.890 68.947
1996 71.735 74.996 70.017
1997 72.498 78.175 74.848
1998 79.485 81.421 75.630
1999 84.274 84.731 82.777
2000 87.003 88.101 87.662
2001 91.278 91.525 90.441
2002 93.463 94.997 94.786
2003 98.045 98.512 97.003
2004 102.011 102.064 101.646

Data in Tg CO2 eq.

the diffusion, given by Equations (17) and (18), and the estimator of the σ parameter (volatility) of the
diffusion coefficient, given by Equation (20). To perform these calculations, programs were developed
in Mathematica 5.1, including the numerical calculus subroutines necessary to approximate the integers
in Equations (17) and (18), and to calculate the confluent hypergeometric functions involved in the
utilisation of I-CIR diffusion.

Different fits were achieved, corresponding to the following situations: (i) As baseline values for the
fit, the data observed for the entire period considered, 1990–2004; (ii) Data for the subperiod 1990–2003
were used for the fit, and the forecast for 2004 was obtained by means of the ETF and ECTF and then
compared with the real data for this year; (iii) The same process was performed for the subperiod 1990–
2002 and with forecasts for 2003 and 2004; (iv) Finally, the entire period 1990–2004 was considered
and medium-term forecasts (2005–2008) made.

In every case, the values fitted in accordance with the ETF and ECTF of the I-CIR model present
a high degree of accuracy with respect to the observed values. Below, we describe just the results
corresponding to the above situations (ii) and (iv).

Table 6 shows the values observed for the period 1990–2004, together with the fitted values,
taking the subperiod 1990–2003 as the basis for fitting, by application of the ETF and the ECTF.
The datum corresponding to 2004 is the forecast made by applying these trend functions. Figure 1
shows the real data observed and the respective values fitted using the ECTF. The estimated values for
the three parameters of the I-CIR Model are, in this case, as follows: a = 0.060176, b = 0.000241,
σ = 0.005292.

Table 7 shows the values that correspond to the case in which the entire period considered, 1990–
2004, is taken as the basis for fitting the data, and in which forecasts are made for 2005–2008. We show
the values fitted both by the ETF and by the ECTF. In this case, the estimations of the I-CIR parameters
are: a = 0.058573, b = 0.000216, σ = 0.005187.

Finally, Figure 2 shows the values fitted by the ECTF, together with the forecasts made; in this
case, the latter are not strictly comparable with the respective real values observed, as they are, in fact,
unknown.
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Figure 1. Estimated conditioned trend function (ECTF) versus data

Table 7. Fit (1990–2004) and forecasts (2005–2008)

Years Real Data ETF ECTF

1990 57.536 57.536 57.536
1991 59.849 60.234 60.234
1992 63.691 63.020 62.624
1993 63.011 65.894 66.5879
1994 65.986 68.853 65.886
1995 67.028 71.896 68.952
1996 71.735 75.021 70.025
1997 72.498 78.226 74.865
1998 79.485 81.507 75.648
1999 84.274 84.862 82.812
2000 87.003 88.286 87.710
2001 91.278 91.775 90.496
2002 93.463 95.325 94.854
2003 98.045 98.930 97.078
2004 102.011 102.585 101.735
2005 106.284 100.753
2006 110.022 105.479
2007 113.791 104.484
2008 117.586 109.272

Data in Tg CO2 eq.
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Figure 2. Estimated trend function (ETF) and ECTF

In every case, we may apply the approximate, asymptotic confidence intervals that can be calculated
from Equations (28) and (29).

4.3. Simulation

For the simulation of the sample paths, we have used the procedure proposed by Kloeden and Platen
(1992). Derivation of this algorithm involves the approximate discretisation of the Itô integral equation
in time intervals of length h. The algorithm is given by

xn+1 = xn

{
1 +

[
a −

(
b + 3σ2

4

)]
h

}
+ xn

{
a2 − 3abxn + 2b

(
b − σ2

2

)
x2
n

}
h2

2

− σ

2
x3/2
n

{
a +

(
b + 3σ2

4

)
xn

}
�Z + 3

2
σx3/2

n

{
a −

(
b + 3σ2

4

)
xn

}
h.�W

+ σx3/2
n �W

{
1 + 3

4
σx1/2

n �W + σ2

2
xn(�W)2

}

where �W = √
hU1 and �Z = h3/2

2 (U1 + U2/
√

3), with U1 and U2 being two standard normal
independent random variables, and h is the discretisation step.
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Figure 3. Simulated sample paths

Figure 3, shows the simulation of 10 sample paths of the I-CIR with parameters taken from the
neighbourhood of the estimators obtained for real case studied, that is a = 0.0601762, b = 0.0002411,
σ = 0.0052926 and with an initial value x0 = 57.536 and using a discretisation step of h = 0.1. This
simulation was calculated according to the above mentioned algorithm.

Also, Figure 3 shows the estimated conditioned trend function (ECTF) fitted to the considered data
for GHG emission in Spain.

5. CONCLUSIONS AND DISCUSSION

One of the conclusions reached in the present study is that, whilst the Gompertz diffusion model
performs optimally when total CO2 emissions in all sectors are considered (see Gutiérrez et al., 2007a),
the inverse-CIR diffusion provides a better statistical fitting for the case of emissions of greenhouse
gasses attributable to the land transport sector. As the different sources of CO2 emissions are studied
individually, we find that some of them, and specifically that of land transport, perform better with
respect to a diffusion type such as inverse CIR than a diffusion of the same type as that of the global
emissions. This is somewhat surprising, because the different sources making up global emissions have
not behaved in the same way over recent decades, that is the CO2 corresponding to land transport, for
example does not present the same diffusion as that emitted by electricity generating plants.
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The principal technical conclusion is that I-CIR diffusion constitutes a suitable model for the
description and analysis of the evolution of the variable considered, in the case of Spain. This means
that the diffusion coefficient fitted to the data is of the type σ2X

2γ
t ; γ > 1, which according to Chan

et al. (1992) enables us to better express the fact that the volatility of the process is sensitive to the
values of the process itself. Moreover, the fitted trend corresponds to a quadratic-type drift coefficient
in the variable. Note that in the study by Gutiérrez et al. (2007a), limited to the emission of CO2 in
Spain, attributable to various sources including transport, the most appropriate model was found to be
that of cubic drift diffusion.

According to the I-CIR model, adjusted on the basis of real observations for the period 1990–2004, the
emission of GHG in Spain attributable to the transport sector will increase during the period 2005–2008
by 7.41% with respect to 2004, and by 2008 will have increased by 89.9% with respect to 1990.

This emission is, thus, a fundamental part of the 52% by which total emissions of GHG in Spain are
expected to increase for all activity sectors with respect to 1990.

By applying the results obtained in Subsection 3.3, the approximate, asymptotic interval for the 2008
forecast, using the ECTF given by Equation (23) is found to be [99.05; 117.56] (on the 1990 basal value)
at 95% confidence.

The causes of this large increase are assumed to be those described in Subsection 4.1 of this
paper, which details the profile of the stock of vehicles in Spain. Policies to control the variables
that constitute this profile are essential if we are to reduce, or at least stabilise the sharp increase
in the emissions in question. In this respect, we should consider with interest the proposal by the
EU Council (20 February 2007, Brussels) to carry out studies to evaluate the potential impact on
the transport sector and on the economy and industry, in general, of a reduction to a maximum of
130 g/km travelled.

Thus, future research could be done into the influence of the above factors on the pattern of vehicle
emissions. For this purpose, the inverse-CIR model proposed in the present paper would have to be
extended to non-homogeneous versions, as has been done for other diffusion types that have been
studied and applied by the authors with respect to the energy sector, for example Gompertz diffusion
(see Gutiérrez et al., 2005a).

Like any type of activity that is analysed with respect to GHG emissions (and particularly, those of
CO2), the land transport sector (in any area of economic activity) presents special difficulties due to
the fact that the level of emissions depends on a broad group of ‘regressor’ variables (factors that are
exogenous to the variable, Xt , that is being modelled). From Subsection 4.1, we deduce some variables
that are assumed to influence the evolution of emission levels. But the latter may also be affected by social
variables or by regional ones, if the problem is being analysed within a local context. The modelling
techniques proposed in this paper enable us to address the evolution of the endogenous variable, Xt , in
itself, within a national or transnational macro-context, in which broad political decisions may be taken.
Statistical means can be employed to perform analyses for more restricted contexts (micro-contexts),
with particular socio-economic situations (demographic variables, unemployment rates, etc.). In such
cases, see for example Paravantis and Georgakellos (2007), econometric models could be applied, with
forecasts based on techniques of the Box-Jenkins type; these describe the evolution of variables like
CO2 emissions or the energy consumption of certain types of transport (like buses or private cars) by
means of known, observed ‘regressor’ variables.

We believe the methodology proposed for fitting the diffusion process (continuous EMV for the
drift parameters and by means of Chesney-Elliot for the diffusion coefficient, and especially as regards
volatility) is more suitable for the situations that are discussed than that based on fitting by econometric
approximation (General Linear Model), in view of the fitting results obtained. Nevertheless, further
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empirical studies should be carried out, examining different subject areas and with real, observed data,
fitted using the two methodologies.
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