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SUMMARY

The aim of this work is the study of a new stochastic diffusion model with a cubic-type drift coefficient. The model
is considered as the solution of an Ito stochastic differential equation. Using the Ito’s stochastic calculus and
properties of the Kummer function, the trend functions and steady-state distribution for the process are obtained.
Statistical estimation and corresponding computational methodology are established. Finally, the model is applied
to modelling and prediction of the global CO2 emission in Spain. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION: BACKGROUND AND AIMS OF THE STUDY

In this paper we propose a stochastic diffusion model with a cubic-type drift coefficient, containing

terms involving powers three and one of the process. This model is original and novel in comparison

with other cubic-type diffusions that have been suggested as theoretical models within the theory of

population growth. Among other advantages, this model can be statistically fitted to real cases of

growth within a stochastic environment. Moreover, it enables us to fit the underlying trends in the

phenomena being considered and to analyse possible anomalies affecting such trends. Below, we

examine in greater detail the context in which this model is proposed, its technical background and the

new possibilities it offers for application to real data.

1.1. Stochastic modelling of growth phenomena in a random environment

As is well known, various authors have introduced stochastic versions of classical deterministic

growth models (Gompertz, bass, logistic, etc.) that are used, among other purposes, for modelling
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secular trends in phenomena of interest in a wide variety of fields, including growth in animal or cell

populations, economics, energy, hydrology and environmental studies. In particular, stochastic

versions of lognormal, Gompertz and logistic models have been considered in Gutiérrez et al.,

(1991); Gutiérrez et al., (2005b, 2006a) and Skiadas and Giovani (1997).

The behaviour of growth phenomena, in general, is affected by environmental fluctuations that are

responsible for the discrepancies between experimental data and the corresponding theoretical

predictions. Different authors have introduced the idea of ‘growth in a random environment’. It has

been proposed, for example, by Capocelli et al. (1974) that such fluctuations could be taken

into account by replacing the ‘intrinsic fertility’ in the growth equation with a ‘Gaussian stationary

delta-correlated random process’, the mean of which is identified with the fertility of the population.

This situation leads, technically speaking, to describe the growth process in such a way that the

number of individuals present at each time is identified with a continuous Markov process, that is a

diffusion process.

From a technical point of view, the first step is to establish the stochastic versions of the

deterministic growth models. For this purpose, an interesting and technically appropriate approach

is to take the deterministic differential equations whose solution, under appropriate initial or boundary

conditions, is the growth curve being considered, and from these to construct the corresponding Ito or

Stratonovich stochastic differential equation (SDE) of the behaviour of the dynamic variable Xt under

the randomisation hypotheses of the characteristics of the phenomenon studied. For example, on the

basis of the logistic differential equation (DE) given in terms of the ‘intrinsic fertility’ of the

population, we can formulate the corresponding stochastic version, randomising this fertility, as

shown below.

After having determined the SDE of the randomised version of the behaviour of the variable Xt,

whose solution is a stochastic diffusion process under given technical hypotheses, the Ito or

Stratonovich stochastic calculus can be applied to the probabilistic analysis of the randomised model.

An alternative, complementary methodology is that of analysis based on the backward and forward

Kolmogorov equations corresponding to the SDE of the model. By means of either methodology we

may approach different problems of a probabilistic nature concerning the randomised growth model,

such as the obtention of the model transition density and moments, the density of first-passage time by

barriers of specific interest in practice, among other characteristics, as can be seen for example in

Gutiérrez et al. (1997), Ricciardi et al. (1999).

1.2. Technical background: logistic growth and cubic-type diffusion processes

As the stochastic process introduced in this paper is addressed in relation with other cubic-type

diffusion processes, which are generated in the context of the randomisation of deterministic logistic

curves, we shall limit ourselves, henceforth, to the logistic case.

When the logistic curve is used, for example, to describe secular trends in demography, economics

or environmental sciences, the continuous logistic curve is fitted with non-statistical or asymptotic

statistical criteria, based on data that are often recorded at equally spaced time intervals (months,

quarters, natural years). Various methods have been used to carry out these fits. A paradigmatic

example of application of the deterministic logistic model, extensions and chronological evolution of

the estimation methodology is the case of the ‘tractors in Spain’ introduced by Mar-Molinero (1980)

and continued by Oliver (1981), Harvey (1984), Meade (1985), Oliver (1987), Gamerman and Migon

(1991) and Franses (2002).
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When these fits are performed, often the fitted logistic curve does not reflect variations or certain

anomalies in the trends which may be present in the data observed due to the influence of exogenous

factors on the endogenous variable under consideration. As a consequence, there tend to occur hard-

to-explain discrepancies between the fitted model and the observed data.

For example, in Modis (1988), the three-parameter logistic model

PðtÞ ¼ M 1þ expð��ðt � t0ÞÞ½ ��1
t � t0 ð1Þ

where PðtÞ is the number of Nobel prizes accumulated during the year t in USA, is fitted by

nonlinear least squares and by using numerical computation methods. The methodology and

discussion of corresponding discrepancies between real and fitted data can be seen in Golden and

Zantek (2004).

In the same way that a continuous growth curve, a logistic one in the above case, is fitted to a

phenomenon in which the variable studied PðtÞ, obviously, takes only integer values, the stochastic

models of diffusion processes that are solutions to certain Ito or Stratonovich SDEs corresponding to

stochastic versions of growth phenomena, with such solutions having almost surely continuous sample

paths, are normally used in modelling growth phenomena that in many cases take integer values due to

the very nature of the variable under consideration.

In particular, Nobile and Ricciardi (1980) and Ricciardi et al. (1999) consider an extension of the

classical deterministic model of logistic growth proposed by Verhulst. Instead of considering that the

growth process x ¼ xðtÞ is the solution of the DE

dx

dt
¼ �x� �x2; xð0Þ ¼ x0 ð2Þ

where � and � > 0 are arbitrary parameters and x0 denotes the number of individuals present at the

initial time, the above-mentioned authors consider xðtÞ to be the solution to the DE

dx

dt
¼ ��x2ðx� �Þ; � > 0; � > 0 ð3Þ

In both models, � is the ‘intrinsic growth parameter’. Note that x ¼ � is a globally stable

equilibrium point.

Nobile et al. (1984a) consider different stochastic versions of model (3), based on SDEs obtained

by identifying the intrinsic growth rate � with the stochastic process �þ �ðtÞ, where �ðtÞ is white
noise, that is �ðtÞ is a stationary Gaussian process with zero mean and delta-type correlation function:

Eð�ðtÞÞ ¼ 0 and Eð�ðt1Þ�ðt2ÞÞ ¼ �2�ðt1 � t2Þ.
Under the latter hypothesis, in fact, these authors propose various SDEs whose solutions in Xt are

stochastic diffusion processes that can be characterised (see, for example, Wong and Hajek (1985)) by

their infinitesimal moments (the infinitesimal mean or drift and the diffusion parameter). Specifically,

they consider the diffusion for which the infinitesimal moments are of the following type:

A1ðxÞ ¼ �x2 � �x3; A2ðxÞ ¼ �2x4 ð4Þ

corresponding to the SDE
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dXt ¼ ð�X2
t � �X3

t Þdt þ X2
t d�ðtÞ ð5Þ

This cubic-type diffusion encounters a number of problems which are an important drawback in

relation to fitting and predicting the process. As observed by Nobile and Ricciardi (p. 184, 1984a,

1984b), it is not possible to calculate the transition density of the process, and neither are its moments

known, especially the trend function of the process and the conditional trend function. As these

expectations are the ones that, once estimated from observed data on the phenomenon studied,

constitute the basis for statistical fitting and for the prediction methodology, respectively, this cubic-

type diffusion model is not suitable for practical applications. On the other hand, it is possible to obtain

interesting theoretical results for this process, for instance, concerning first-passage time densities. In

the light of these considerations, we conclude the process to be mainly suited to theoretical modelling,

for example in neurology or theoretical biology.

To avoid the above-described problems, the present paper introduces a stochastic diffusion model

that is also of a cubic type (the infinitesimal mean is of cubic order), and such that it is possible to

explicitly obtain its stationary density and the expectation functions (see Section 2). In this situation,

hence, it is possible to obtain the maximum likelihood (MC) estimate of its parameters and therefore

obtain the estimated expectations (see Section 3). Consequently, we are able to establish a statistical

methodology for fitting and prediction on the basis of the observations made of the process Xt. This

statistical methodology is applied (see Section 4) to a real case in order to highlight the practical

possibilities of the diffusion model described in this paper.

2. THE STOCHASTIC CUBIC DIFFUSION MODEL

We consider a time-homogeneous diffusion process fXt; t 2 ½t0; T�g, with values in ð0;1Þ and

infinitesimal moments (drift and diffusion coefficient, respectively) given by

A1ðxÞ ¼ Ax3 þ Bx; A2ðxÞ ¼ c2x4 ð6Þ

It can be easily proved that the functions A1ðxÞ and A2ðxÞ, 0 < x < 1, are Borel measurables and

satisfies the uniform Lipschitz and the growth conditions (see, for example, Wong and Hajek (1985),

proposition 4.1). Consequently, exists a separable, measurable and almost surely sample continuous

process Xt; t 2 ½t0; T�f g which is the unique (a.s.) solution of the Ito differential equation

dXt ¼ AX3
t þ BXt

� �
dt þ cX2

t dWt ð7Þ

with the initial condition P½Xt0 ¼ xt0 � ¼ 1 and where Wt is a standard Wiener process.

By other hand, the functions (6) satisfies the growth and �-Holder conditions (see, for example,

Wong and Hajek (1985), proposition 7.1). Consequently, the transition density function f ðy; tjx; sÞ of
the homogeneous diffusion process unique solution of the equation (7), it is the unique fundamental

solution of the forward (Fokker–Planck) equation

@f

@t
¼ � @ A1ðyÞf½ �

@y
þ 1

2

@2 A2ðyÞf½ �
@y2

58 R. GUTIÉRREZ ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 55–69



with the initial condition f ðy; tjx; tÞ ¼ �ðy� xÞ.
Given the forms of the infinitesimal moments equation (6), the above-defined process is of

cubic type.

Furthermore, there is a relationship between this type of diffusion and Rayleigh’s homogeneous

diffusion process. Indeed (see Giorno et al. (1986), Gutiérrez et al. (2006b)) by taking Ito’s SDE for a

Rayleigh diffusion process Yt; t 2 ½t0; T �f g of the form

dYt ¼ a

Yt
þ bYt

� �
dt þ �dWt ð8Þ

with the initial condition P½Yt0 ¼ yt0 � ¼ 1.

We could consider the inverse process Xt ¼ 1
Yt
and, by applying Ito’s formula, show that the process

Xt is the stochastic cubic diffusion process (SCDP) defined in equation (7) and that the parameters of

this process are related to the Rayleigh ones by A ¼ �2 � a, B ¼ �b and c ¼ ��.

2.1. Theoretical trend functions of the SCDP model

It is not possible to obtain, in an explicit form, the transition density of the SCDP, as is also the case

with the Rayleigh process and with the cubic-type process introduced by Giorno et al. (1986). On the

other hand, we can calculate trend and conditional trend functions, that is the mathematical

expectations (CTFs) EðXtÞ and EðXtjXs ¼ xsÞ, respectively. The calculation of these trend functions

is fundamental for the analysis of the trends of real phenomena which are statistically fitted by the

SCDP model proposed in this paper (see Section 3).

Making use of the above transform, Xt ¼ 1
Yt
, we obtain

E XtjXs ¼ xsð Þ ¼ E 1=Ytj1=Ys ¼ 1=ysð Þ ¼ E 1=YtjYs ¼ ysð Þ ð9Þ

Additionally, taking conditional expectations in Equation (8), we obtain

d

dt
E YtjYs ¼ ysð Þ½ � ¼ aE 1=YtjYs ¼ ysð Þ þ bE YtjYs ¼ ysð Þ ð10Þ

From Equations (9) and (10), it is deduced that

E XtjXs ¼ xsð Þ ¼ 1

a

d

dt
E YtjYs ¼ ysð Þ½ � � b

a
E YtjYs ¼ ysð Þ ð11Þ

The expression of the CTF of the process Yt (see Gutiérrez et al., 2006) is given by

EðYtjYs ¼ ysÞ ¼ �ð�þ 3=2Þ
�ð�þ 1Þ

b

�2ðe2bðt�sÞ � 1Þ
� ��1=2

� � 1

2
; �þ 1;

�by2s
�2ð1� e�2bðt�sÞÞ

� �

where � is the Kummer function and � ¼ a
�2
� 1

2
¼ 1

2
� A

c2
.

To simplify computation of these trends, let us apply the following notations:
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kðtÞ ¼ b

�2
ðe2bðt�sÞ � 1Þ�1; and rð�Þ ¼ �ð�þ 3=2Þ

�ð�þ 1Þ

The above expression can then be rewritten as

EðYtjYs ¼ ysÞ ¼ rð�Þk�1=2ðtÞ� � 1

2
; �þ 1;�y2s zðtÞ

� �

where zðtÞ ¼ kðtÞ þ b=�2, and deriving this function with respect to t and using the relation (Lebedev,

1972, p. 261: 9.9.4), we obtain

d

dz
� �; �; zð Þ½ � ¼ �

�
� �þ 1; � þ 1; zð Þ½ �:

Thus, we have

d

dt
E YtjYs ¼ ysð Þ½ � ¼ � 1

2
rð�Þk0ðtÞk�3=2ðtÞ� � 1

2
; �þ 1;�y2s zðtÞ

� �

� y2s
2ð�þ 1Þ rð�Þk

0ðtÞk�1=2ðtÞ� 1

2
; �þ 2;�y2s zðtÞ

� �

Since k0ðtÞ ¼ �2�2kðtÞzðtÞ, we find that

d

dt
E YtjYs ¼ ysð Þ½ � ¼ �2rð�Þk�1=2ðtÞzðtÞ� � 1

2
; �þ 1;�y2s zðtÞ

� �

� �2y2s
ð�þ 1Þ rð�Þk

1=2ðtÞzðtÞ� 1

2
; �þ 2;�y2s zðtÞ

� �

By substitution in Equation (11), we obtain

E XtjXs ¼ xsð Þ ¼ �2

a
rð�Þk�1=2ðtÞzðtÞ� � 1

2
; �þ 1;� zðtÞ

x2s

� �

� �2y2s
að�þ 1Þ rð�Þk

1=2ðtÞzðtÞ� 1

2
; �þ 2;� zðtÞ

x2s

� �

� b

a
rð�Þk�1=2ðtÞ� � 1

2
; �þ 1;� zðtÞ

x2s

� �

¼ �2

a
rð�Þk1=2ðtÞ � � 1

2
; �þ 1;� zðtÞ

x2s

� ��

� zðtÞ=x2s
ð�þ 1Þ�

1

2
; �þ 2;� zðtÞ

x2s

� ��

By using the recurrence formula (Lebedev, 1972, p. 262: 9.9.12)
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� �; �; zð Þ ¼ � �þ 1; �; zð Þ � z

�
� �þ 1; � þ 1; zð Þ½ �

then

E XtjXs ¼ xsð Þ ¼ �2

a
rð�Þk1=2ðtÞ� 1

2
; �þ 1;�zðtÞ=x2s

� �

Finally, the CTF of the SCDP can be expressed as follows:

EðXtjXs ¼ xsÞ ¼ �ð�þ 1=2Þ
�ð�þ 1Þ

B

c2ð1� e�2Bðt�sÞÞ
� �1=2

��
1

2
; �þ 1;

�B=x2s
c2ðe2Bðt�sÞ � 1Þ

� � ð12Þ

With the initial distribution PðXt0 ¼ xt0Þ ¼ 1, the expression of the trend function of the

SCDP is

EðXtÞ ¼ �ð�þ 1=2Þ
�ð�þ 1Þ

B

c2ð1� e�2Bðt�t0ÞÞ
� �1=2

��
1

2
; �þ 1;

�B=x2t0
c2ðe2Bðt�t0Þ � 1Þ

 ! ð13Þ

The right-continuity of EðXtÞ at t0 can be proven as follows: from the Kummer transform,

� �; �; zð Þ ¼ ez� � � �; �; zð Þ, and the relationship 47-9.6 in Sepanier and Oldham (1987), for

very large, positive z and a 6¼ 0;�1;�2; . . ., the approximation �ða; b; zÞ � �ðbÞ
�ðaÞ z

a�bexpðzÞ holds,

and thus

lim
t!tþ

0

EðXtÞ ¼ xt0

2.2. Steady-state distribution of the process

We consider in this Section that the time-domain of the process fXt 2 ½t0; T�g, is t 2 ½t0;þ1Þ. The
steady-state distribution SðxÞ of the SCDP is given by

SðxÞ ¼ k

A2ðxÞ exp 2

Zx
z

A1ðyÞ
A2ðyÞ dy

2
4

3
5

where z is an arbitrary point in the interval ð0;þ1Þ, A1ðxÞ and A2ðxÞ are the drift and the diffusion

coefficient of the process (Equation (6)), and k is a normalising constant that is given by
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k ¼
Zþ1

0

1

A2ðxÞ exp 2

Zx
z

A1ðyÞ
A2ðyÞ dy

0
@

1
Adx

2
4

3
5
�1

:

One can show, using the identity (Gradshteyn and Ryzhik, 1988, p. 317)

Zþ1

0

x��1e��xdx ¼ ����ð�Þ;

for � > 0 and � > 0, that the steady-state distribution of the SCDP is

SðxÞ ¼ 2 B
c2

� ��þ1
x�2��3e�

B

c2x2

�ð�þ 1Þ , for B > 0 and �þ 1 > 0:

Let X be the random variable with density function SðxÞ. It can be easily proved that

the random variable Z ¼ X2 is distributed according to Gamma distribution with parameters

ð�þ 1; c2=BÞ.
The higher-order asymptotic moments of the SCDP can be proved to be expressed as

EðXj
1Þ ¼ �ð�þ 1� j

2
Þ

�ð�þ 1Þ
B

c2

� �j=2

; for B > 0 and j < 2�þ 2:

The asymptotic trend function of the model is

EðX1Þ ¼ �ð�þ 1
2
Þ

�ð�þ 1Þ
B

c2

� �1=2

; ð14Þ

for B > 0 and 2�þ 1 > 0, and the asymptotic variance is

Var½X1� ¼ B

c2
1

�
� �2ð�þ 1

2
Þ

�2ð�þ 1Þ
� �

; for B > 0 and � > 0:

It can be seen that the limit of the trend function in Equation (13) (when t tends to 1) coincides

with the asymptotic trend function in Equation (14).

3. ESTIMATION AND COMPUTATION OF PARAMETERS

We shall now obtain the ML estimators of the drift parameters (A and B) on the basis of a continuous

sampling of the SCDP, indicating the computational aspects involved in this calculation. The diffusion

parameter c is computed by an indirect method.
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3.1. Estimation of A and B

A similar proof to the one developed in Gutiérrez et al. (1991) allows us to ensure that the

process defined by Equation (7) satisfies the conditions (see Lipster and Shiryayev (1978) p. 202)

under which the measures corresponding to continuous observation of the solution of Equation (7) for

different values of the parameter ðA;BÞ are equivalent and then the continuous-time log-likelihood

function is

LðA;BÞ ¼ 1

c2

ZT
t0

AX3
t þ BXt

X4
t

dXt � 1

2c2

ZT
t0

AX3
t þ BXt

� �2
X4
t

dt

By applying the ML methodology, that is deriving with respect to the parameters and setting these

derivatives equal to zero, and after various operations, the resulting ML estimators are found to be

Â ¼

RT
t0

dt
X2
t

RT
t0

dXt

Xt
� ðT � t0Þ

RT
t0

dXt

X3
t

RT
t0

X2
t dt
RT
t0

dXt

X2
t
� ðT � t0Þ2

B̂ ¼

RT
t0

X2
t dt
RT
t0

dXt

X3
t
� ðT � t0Þ

RT
t0

dXt

Xt

RT
t0

X2
t dt
RT
t0

dXt

X2
t
� ðT � t0Þ2

From Ito’s formula, the stochastic integrals in the expressions of the parameters are transformable

into Riemann integrals, and thus we have

ZT
t0

dXt

Xt

¼ logðXTÞ � logðxt0Þ þ
c2

2

ZT
t0

X2
t dt

ZT
t0

dXt

X3
t

¼ 1

2x2t0
� 1

2X2
T

þ 3c2

2
ðT � t0Þ

From the above expressions, the MLM estimators are found to be

Â ¼
log XT

xt0

� �
þ c2

2

RT
t0

X2
t dt

 !RT
t0

dt
X2
t
� ðT�t0Þ

2
1
x2t0

� 1
X2
T

þ 3c2ðT � t0Þ
� �

RT
t0

X2
t dt
R T
t0

dXt

X2
t
� ðT � t0Þ2

ð15Þ
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B̂ ¼
1
2

1
x2t0

� 1
X2
T

þ 3c2ðT � t0Þ
� � RT

t0

X2
t dt � ðT � t0Þ log XT

x0

� �
þ c2

2

RT
t0

X2
t dt

 !

RT
t0

X2
t

 !
dt
RT
t0

dXt

X2
t
� ðT � t0Þ2

ð16Þ

In practice, as full observations of a continuous sample path of the process is not available, we must

consider approximations based on the discrete observations of the process at times tð0Þ ¼ t0; . . . ; tðnÞ ¼ T

(discrete sampling). A suitable computational method for this situation consists of approximating the

Riemann integrals in Equations (15) and (16) by, for example, the trapezoidal method.

3.2. Approximation of the parameter c

The parameter c in the diffusion coefficient A2ðxÞ of the model can be estimated by an indirect method

based on an extension of the procedure described by Chesney and Elliot (1995) for the case of an SDE

with linear drift and multiplicative noise (as previously used, for example, by Gutiérrez et al.(2006).

This extension is described as follows. From Ito’s formula, we have

d
1

Xt

� �
¼ � dXt

X2
t

þ c2Xtdt

Let us use the following approximations between t � 1 and t of these differentials:

d
1

Xt

� �
’ 1

Xt

� 1

Xt�1

; and dXt ’ Xt � Xt�1

Therefore, a first numerical approximation of c, based en the pair ðXt�1;XtÞ, is

ĉðt�1;tÞ ¼ jXt � Xt�1j
Xt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XtXt�1

p

We thus deduce that for nþ 1 observations of a given process sample path, an estimator of c is

given by the following expression:

ĉ ¼ 1

n

Xn
t¼1

jXt � Xt�1j
Xt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XtXt�1

p ð17Þ

4. SIMULATION AND APPLICATION

4.1. Simulation

The realisations of this process can be obtained by using Taylor’s algorithm in the order 1.5 strong

Taylor scheme in Kloeden and Platen (1992) (p. 351). In this case, the algorithm is given by
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xnþ1 ¼ xn þ ðA� c2Þx3n þ Bxn

 �

hþ h2

2
ðAx3n þ BxnÞð3Ax2n þ BÞ þ 3Ac2x5n

 �

þcx2n�W 1þ cxn�W þ c2x2nð�WÞ2
h i

þ cxn ðA� c2Þx3n � Bxn

 �

�Z

þ2cxn ðA� c2Þx3n þ Bxn

 �

h�W

where �W ¼ ffiffiffi
h

p
U1 and �Z ¼ h3=2

2
ðU1 þ U2=

ffiffiffi
3

p Þ, with U1 and U2 being two standard normal

independent random variables, and h is the step of discretisation.

4.2. Application to a real case: analysis of the trend of global CO2 emission in Spain

In this application, we examine the variable Xt defined by ‘global CO2 emission from fossil-fuel

burning, cement manufacture, and gas flaring in Spain’, in the period 1986–2002. The global data for

each year have been extracted from the historical series (1751–2002) available by year, country and

region. The methodological information on the estimation of these series can be consulted in Boden et

al. (1995) and Andres et al. (1999), among others.

In this study, we analyse the trend of the above-mentioned global CO2 emission in Spain, by fitting

the observed data to the trend function (TF) and the CTF of a cubic-type stochastic diffusion model, as

introduced in the above paragraphs.

The data in Table 1 are expressed in thousand millions of metric tons of carbon and are taken from

Marland et al. (2005); these data may be consulted at http://cdiac.esd.ornl.gov/ftp/ndp030/glo-

bal.1751–2002.ems.

Figure 1 shows the data corresponding to the period 1986–2002 of the variable Xt, together with the

observed data for gross domestic product (GDP) in Spain. The computation of the estimators of the

drift parameters given in Equations (15) and (16), together with the approximation of the estimator of

the diffusion coefficient given by Equation (17), was carried out using programs developed in

Table 1. Fit and prediction

Year Real value ETF ECTF

1986 4.7610 4.7610 4.7610
1987 4.8570 4.8690 4.8690
1988 4.9856 4.9837 4.9707
1989 5.6841 5.1058 5.1074
1990 5.7814 5.2362 5.8569
1991 5.9096 5.3760 5.9624
1992 6.1657 5.5264 6.1018
1993 5.6504 5.6891 6.3819
1994 5.9089 5.8660 5.8205
1995 6.3672 6.0593 6.1012
1996 6.3732 6.2723 6.6037
1997 6.6961 6.5090 6.6103
1998 6.8645 6.7749 6.9687
1999 7.5230 7.0779 7.1571
2000 7.7099 7.4282 7.9043
2001 7.7470 7.8336 8.1197
2002 8.2998 8.2811 8.1626
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Mathematica 5.1. The estimators calculated were as follows: Â ¼ 0:0007422, B̂ ¼ 0:0052121 and

ĉ ¼ 0:0053286.
Table 1 shows the observed values and those estimated for the TF and the CTF (i.e. the ETF and the

ECTF, respectively) for the corresponding years.

The original data and the corresponding data fitted by the ETF and the ECTF are shown in Figures 2

and 3, respectively.

Figure 1. GDP versus CO2 emission

Figure 2. Real data versus ETF
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Figure 4 shows:

(1) The simulation of 10 sample paths of the SCDP with parameters taken from the neighbourhood of
the estimators obtained for the real case studied, i.e. A ¼ 0:00074, B ¼ 0:0052, c ¼ 0:0053, with a
discretisation step of h ¼ 0:1 and an initial value x0 ¼ 4:7. This simulation was calculated
according to the procedure described in Section 4.1.

(2) The estimated trend function (ETF) fitted to the data for global CO2 emission in Spain.

Figure 3. Real data versus ECTF

Figure 4. Simulated sample paths
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5. DISCUSSION AND CONCLUSIONS

The SCDP model introduced in this paper is characterised, firstly, by its flexibility, in that its sample

paths may be increasing or decreasing, as are their corresponding trends (see Subsection 4.1). Growth,

for example, is at a more restrained rate than that of other increasing diffusions such as lognormal or

Gompertz. Secondly, the model makes it possible to calculate the steady-state distribution, and thus to

analyse the long-term behaviour of the trends (t tends to infinity). Moreover, it presents the particular

feature that the trend functions (TF and CTF) can be calculated either theoretically (Subsection 2.1),

estimated and computed in practice (Section 3).

The SCDP model introduced in this paper comprises a suitable alternative for real cases in which

lognormal or Gompertz diffusions do not provide a good fit to the observed trends. Indeed, the

respective fits performed for the global CO2 emission in Spain data, following the latter methodology

(see Gutiérrez et al. (1991, 2005a,b), Skiadas and Giovani (1997), are not acceptable. The SCDP

model, furthermore, enables us to highlight groups of outliers in the trend for CO2 emission in Spain,

which are explicable in terms of abnormally high annual increases in the GDP in Spain for the

corresponding years. This latter fact suggests that there is a high degree of correlation between the

GDP and the emission of CO2 in Spain.

The ECTF, which provides a fairly accurate fit to the real data (see Figure 3), constitutes an

appropriate mechanism for the short- and medium-term prediction of the values of global emission of

CO2 in Spain. Indeed, if the fit carried out in Section 4, which utilises all the data observed for the

period 1986–2002, was performed with the data for 1986–2001, a prediction for 2002 would be

obtained by the ECTF of X2002 ¼ 8:1626, while the real value observed for this year was 8.2998.

In principle, a nonparametric approach to the problem of statistical fitting of the model considered

in this work is also possible (see, Fan, 2005). The authors are currently investigating this alternative

methodology.
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