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SUMMARY

In this paper we propose a bivariate stochastic Gompertz diffusion model as the solution for a system of two
Itô stochastic differential equations (SDE) that are similar as regards the drift and diffusion coefficients to those
considered in the univariate Gompertz diffusion model, which has been the object of much study in recent years. We
establish the probabilistic characteristics of this model, such as the bivariate transition density, the bidimensional
moment functions, the conditioned trend functions and in particular, the correlation function between each of the
components of the model. We then go on to study the maximum likelihood estimation of the bidimensional drift
and the diffusion matrix of the diffusion in question, proposing a computational statistical methodology for this
purpose based on discrete observations over time, for both components of the model. By these means we are able
to achieve the maximum likelihood estimation of the trend and correlation functions and thus establish a method
for trend analysis, which we apply to the real case of two dependent variables, Gross Domestic Product (GDP) and
CO2 emission in Spain, the joint dynamic evolution of which is modeled by the proposed Gompertz bidimensional
model. This implementation is carried out on the basis of annual observations of the variables over the period
1986–2003. The application is a new methodology in environmental and climate change studies, and provides an
alternative to other approaches of a more econometric nature, or those corresponding to the methodology of secular
trends in Time Series. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background: the univariate stochastic Gompertz diffusion model

Stochastic diffusion processes are of great interest to investigators in many fields, such as biology,
physics, demography, economics and environmental sciences, and these processes are generally defined
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by means of stochastic differential equations. The problem of estimating the parameters of the drift
coefficient has received considerable attention in recent years, especially in situations in which the
process is observed continuously. In most cases, the statistical inference is based on approximating the
maximum likelihood methodology, an extensive review of which can be found in Rao (1999), while new
studies have been published by Bibby and Sorensen (1995), Kloeden et al. (1996), and Singer (2002).

In recent decades, various diffusion-type stochastic models have been developed and successfully
applied to the fitting and prediction of real phenomena. These models include stochastic diffusion
processes such as lognormal (Gutiérrez et al., 1991, 1997), Bass (Skiadas and Giovani, 1997), Rayleigh
(Gutiérrez et al., 2006c), Gompertz (Gutiérrez et al., 2006a, 2005b), Logistic (Giovanis and Skiadas,
1999), cubic (Gutiérrez et al., 2007a) and inverse CIR (Gutiérrez et al., in press b), among others. In the
present paper, we examine, in particular, the stochastic Gompertz case. The deterministic case of this
process (the Gompertz growth curve) has been the object of many studies and applications. A stochastic
version, as a birth and death process, was introduced by Prajneshu (1980) and Tan (1986), and applied
by Troynikov et al. (1998) and by Miller et al. (2000).

From the point of view of stochastic differential equations, the homogeneous stochastic Gompertz
diffusion process (SGDP) was introduced by Ricciardi (1977) in a theoretical form, and then applied
to the question of population growth by adding white noise fluctuation to the intrinsic fertility of a
population. Subsequently, this diffusion was also considered by Ferrante et al. (2000) (growth of cancer
cells) and by Gutiérrez et al. (2005a) (consumption of natural gas in Spain). From the perspective of
the Kolmogorov equations, the model was defined by Nafidi (1997) in a general form, and later applied
by Gutiérrez et al. (2004b) in a study of the stock of motor vehicles in Spain. The non-homogeneous
form of the process (with exogenous factors) has been addressed by Nafidi (1997) in a very general
context. Later, Gutiérrez et al. (2006a, 2005b) studied the case in which only the growth rate in the
drift is affected by exogenous factors in a linear way, and applied this both to the increase in the price
of new housing in Spain and to the consumption of electricity in Morocco. Also, Ferrante et al. (2005)
considered a non-homogeneous version in which the growth rate is the rate, which is the sum of two
exponential functions that are exogenous factors.

More recently, Albano and Giorno (2006) considered a stochastic model of solid tumor growth, of a
univariate Gompertz type, generalizing the deterministic Gompertz growth models that are widely used
in cell growth studies. The drift of the basic stochastic Gompertz model they propose is considered to
be affected by a deterministic time function that models the therapeutic effect (reduction of growth)
achieved by a given treatment. This model is a particular case of the non-homogeneous univariate
Gompertz models (with exogenous factors) discussed in Gutiérrez et al. (2006a, 2005b). Albano and
Giorno (2006) expressly cite the statistical methodology established for the stochastic Gompertz process
by Gutiérrez et al. in their studies.

Other recent contributions concerning the univariate Gompertz process include a probabilistic and
statistical study of a Gompertz model with a threshold parameter (see Gutiérrez et al., 2006b) and
its application to occupational data. See also Frank (2002), who considered a Gompertz process with
delay, modeling typical situations in population theory, which was studied using a methodology based
on multidimensional Kolmogorov (Fokker–Planck) equations associated with a process with delay,
such that the cited univariate Gompertz case was found to be one of the few cases of diffusions for
which the methodology proposed produces explicit results. Subsequently, Patanarapeelert et al. (2005)
expanded the results of Frank (2002), expressly citing the contributions of statistical inference to the
non-homogeneous Gompertz made by Gutiérrez et al. (2005b). Finally, let us also acknowledge the
recent study of a type of Gompertz diffusion in which the bound can depend on the initial value, a
situation that is not provided by the models considered to date (see Gutiérrez et al., 2007b).
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Statistical inference for the (stochastic diffusion) univariate Gompertz model has been
comprehensively studied in Gutiérrez et al. (2008), with a discrete and continuous sampling. Various
extensions of univariate Gompertz diffusion, to the non-homogeneouscase, have been discussed (see
Gutiérrez et al., 2005a, 2005b). These results concerning inference and its application to real cases are
discussed in the study by Meade and Islam (2006).

1.2. Gross Domestic Product and CO2 emissions: the case of Spain

In recent years, many papers on climate change have been published, discussing the relation between
economic growth (measured in terms of Gross Domestic Product—GDP) and either CO2 emissions
or energy consumption. Recent investigations have been made into the relations, at a worldwide level,
between the three factors: CO2 emissions, GDP, and energy consumption. For example, Ramanathan
(2006), with data for the period 1980–2001, and using Data Envelopment Analysis (DEA) methodology,
made a macrolevel analysis of the interrelations between these three variables. In this respect, the
following comment by this author (work cited, p. 492) is noteworthy: “While the analysis at the world
level will be of interest to research bodies such as the United Nations or the IPCC (Intergovernmental
Panel on Climate Change), analysis at various geographic levels could provide information of interest
to individual nations/regions.” Such is the case of Spain, as addressed in the present paper. Spain is
the EU country that fails by the greatest margin to comply with the Kyoto Protocol, while with respect
to economic growth, as a developed country (in the EU, it has recorded the highest sustained rate of
growth in recent years, with 3.9% in 2006 and a forecast of 4% for 2007), this country constitutes a
paradigmatic case for examining the relation between GDP and emissions of CO2 (and of greenhouse
gases in general). A more detailed description of the particular features of the situation of Spain, in this
respect, can be found in Gutiérrez et al. (in press a, b).

There is an undeniable correlation between economic development and CO2 emission (see, e.g.,
Aldy, 2006, p. 534). One of the questions we address is whether it is possible to quantify the dynamic
correlation between GDP and CO2 emission in Spain, on the basis of prior modeling, and using a
stochastic two-dimensional model (GDP–CO2 emission).

The problem of the possible interdependence between the global emission of CO2 and GDP in
Spain was recently addressed, to some extent, in Gutiérrez et al. (in press a) and the case of the
variable CO2, considered alone, also in Gutiérrez et al. (in press b), by using a cubic diffusion process.
In the first of these references, the two dynamic variables are considered, with the study focusing
on modeling the variable CO2, taken as an endogenous variable, by means of a non-homogeneous
univariate Gompertz model, such that the GDP acts as an exogenous variable that varies outside the
system defined by the endogenous variable CO2 which it, in turn, affects in the course of its own
evolution over time. Technically, the above-mentioned effect is modeled via the inclusion in the drift
of the baseline endogenous diffusion of a deterministic function that describes the evolution in time of
the exogenous variable in question. This leads us to consider a stochastic, non-homogeneous diffusion
model (the drift being affected by a time function), which in Gutiérrez et al. (in press a) is, in particular,
taken as a Gompertz-type model. For this non-homogeneous Gompertz model, Gutiérrez et al. (in
press a) established results based on statistical inference that were based, in particular, on time-discrete
observations, both of CO2 emission (the exogenous variable) and of GDP (the endogenous variable).
These results enabled us to obtain maximum likelihood estimators of the parameters of this diffusion,
together with a com, and as suggested in the above-mentioned studies, it is necessary to carry out a
two-dimensional analysis of the joint evolution, within a random environment, of the GDP and the CO2
emissions, considering both of these as endogenous variables. This constitutes a more realistic approach
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to the situation, because in the above study, the evolution of CO2 emissions is modeled with respect to
the dynamic behavior of GDP. One might, on the contrary, propose modeling GDP in terms of CO2. In
our opinion, each of these possibilities only represents a partial view of reality. Therefore, we propose a
joint, bidimensional modeling, addressing the two variables as interrelated components, such that they
vary in a correlated way in their stochastic evolution.

1.3. Aims of the study

In the theoretical–practical context defined in Subsections 1.1 and 1.2, we may stipulate the fundamental
goal of the present paper, which is to propose a homogeneous bivariate Gompertz diffusion model and
to determine the corresponding results on statistical inference to enable it to be fitted to real data,
particularly to CO2–GDP bidimensional data. In the case of lognormal diffusion, which is technically a
special case of the Gompertz model, we have made an extensive study of the multivariate version and of
the corresponding statistical inference (estimation and test of hypotheses), see, for example, Gutiérrez
et al. (1991, 1997, 2004a). As regards the multivariate Gompertz model, we are unaware of any such
theoretical studies, or of applications to real cases.

2. BIVARIATE STOCHASTIC GOMPERTZ DIFFUSION PROCESS AND ITS
CHARACTERISTICS

2.1. The model and its analytical expression

Let {x(t) = (x1(t), x2(t))′; t ∈ [t0, T ]; t0 ≥ 0} be a two-dimensional stochastic process that satisfies the
following Ito’s SDE:

dx(t) = a(t, x(t))dt + b(t, x(t))dw(t); P
[
x(t0) = xt0

] = 1 (1)

where {w(t); t ∈ [t0, T ]} is a two-dimensional standard Wiener process, xt0 is a fixed vector belonging
to (0,∞)2, and for x = (x1, x2)′ ∈ (0,∞)2, the vector a(t, x) and the matrix b(t, x) are given as follows:

a(t, x) = (a1x1 − βx1 log(x1); a2x2 − βx2 log(x2))′ (2)

b(t, x) = D(x)B1/2

in which D(x) is a diagonal matrix where the elements of the principal diagonal are x1 and x2 and where
B = (bij)i,j is a 2 × 2 symmetric non negative definite matrix. The parameters a1, a2, β, and bi,j for
1 ≤ i, j ≤ 2 are real and to be estimated.

The existence and the uniqueness of the strong solution of the SDE (1) (for a discussion on strong
and weak solutions, see, e.g., Chung and Willians, 1990 pp. 243–246) with the infinitesimal moments
specified in Equation (2) can be justified as follows: by a state transform of the proposed process, the
SDE given can be transformed into one that confirms the conditions of existence and of uniqueness
of the strong solution to the SDE (see, e.g., Arnold, 1973) and the sole strong solution to which is
the two-dimensional Wiener process. Specifically, this is a transform of the type y(t) = eβt log(x(t)),
and therefore the SDE (1) (with moments given in Equation (2)) has a unique strong solution x(t) =
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exp(e−βtY (t)) and is a bivariate Gompertz diffusion process with a drift vector A(x) that is given by

A(x) = (a1x1 − βx1 log(x1); a2x2 − βx2 log(x2))′

and the matrix diffusion B(x) is given by

B(x) =
(
D(x)B1/2

) (
D(x)B1/2

)′ = D(x)BD(x) =
(

b11x
2
1 b12x1x2

b12x1x2 b22x
2
2

)

The analytical expression of the process {x(t), t ∈ [t0, T ]} can be obtained by using Ito’s formula
and which we present below for the multidimensional case (see, e.g., Arnold, 1973 and Lamberton and
Lapeyre, 2007).

Letu = u(t, x) denote a continuous function on [t0, T ] × R
m with values in R

k and with the following
continuous partial derivatives:

∂u(t, x)

∂t
= ut,

∂u(t, x)

∂xi
= uxi , and

∂2u(t, x)

∂xixj
= uxixj for 1 ≤ i, j ≤ m.

If the m-dimensional stochastic process {Xt ; t ∈ [t0, T ]} defined by the stochastic differential

dXt = A(t, Xt)dt + B(t, Xt)dWt ; Wt q-dimensional Wiener process

where A(t, x) is an m × 1 and B(t, x) is an m × q matrix.
Then the k-dimensional process Yt = u(t, Xt) also possesses a stochastic differential with respect to

the same Wiener process, and we have

dYt =
ut(t, Xt) + 1

2

m∑
i=1

m∑
j=1

uxixj (t, Xt)(B(t, Xt)B
′(t, Xt))ij + ux(t, Xt)A(t, Xt)

 dt

+ ux(t, Xt)B(t, Xt) dWt

where ux = (uxi )1≤i≤k is a (k × m) matrix.
By applying this formula in the particular bivariate case to a transform of the type y(t) =

eβt log(x(t)) = (eβt log(x1(t), eβt log(x2(t))))′, we obtain

dy(t) = eβt
(
a − b

2

)
dt + eβtB1/2dw(t), P

[
y(t0) = eβt0 log(xt0 )

] = 1

where a = (a1, a2)′ and b = (b11, b22)′, and then by integration we have

y(t) = y(t0) +
(∫ t

t0

eβθdθ

)
(a − b/2) + B1/2

(∫ t

t0

eβθdw(θ)

)
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from which we can deduce the strong solution of our original SDE Equation (1) with the coefficient
given in Equation (2) being

x(t) = exp

(
e−β(t−t0) log(xt0 ) + 1 − e−β(t−t0)

β
(a − b/2)

)
exp

(
e−βtB1/2

∫ t

t0

eβθdWθ

)

2.2. The ptdf and moments of the model

Taking into account that the random vector
∫ t
s

eβθdWθ has a bivariate normal distribution
N2(0,

∫ t
s

e2βθdθI2) (where I2 denotes the 2 × 2 identity matrix), we can deduce that x(t) | x(s) = xs
has a bivariate lognormal distribution �2(µ(s, t, xs), �(s, t)) with

µ(s, t, x) = e−β(t−s) log(x) + 1 − e−β(t−s)

β
(a − b/2) (3)

�(s, t) = 1

2β

(
1 − e−2β(t−s)

)
B (4)

and therefore the transition density function of the process f (y, t | x, s) (for y = (y1, y2)′ and x =
(x1, x2)′) has the form

f (y, t | x, s) = [2π]−1|�(s, t)|− 1
2 (y1y2)−1 exp

{
−Q

2

}
(5)

where |�(s, t)| is the determinant of the matrix �(s, t), and Q is a quadratic form that is given by

Q = (log(y) − µ(s, t, x))′ [�(s, t)]−1 (log(y) − µ(s, t, x))

where µ(s, t, x) and �(s, t) are given respectively in Equations (3) and (4).
The marginal conditional and non-conditional moments of order r (r is a non negative integer) are

obtained from the function generating of the random vector Z(t) = log[x(t) | x(s) = xs], which follows
the law N2(µ(s, t, xs);�(s, t)), and is expressed as follows, for λ ∈ R

2

E

(
eλ

′Z(t)
)

= exp

{
λ′µ(s, t, xs) + 1

2
λ′�(s, t)λ

}
For particular values of the vector λ = (r, 0)′ or λ = (0, r)′ ( r ∈ N

∗ ), we obtain, for example, the
marginal conditional trend functions of order r of the process and which have the following form, for
i = 1, 2

E
(
xri (t) | xi(s) = xs,i

) = exp

(
rµi(s, t, xs) + r2

4β
(1 − e−2β(t−s))bii

)
(6)
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and for λ = (r1, r2)′ (r1, r2 ∈ N
∗), we obtain the joint conditional trend of the process:

E
(
x
r1
1 (t)xr2

2 (t) | x(s) = xs
) = exp

(
r1µ1(s, t, xs) + r2µ2(s, t, xs) + 1

4β

(
1 − e−2β(t−s))

(
r2

1b11 + r2
2b22 + 2r1r2b12

))
(7)

Using Equation (6) in the particular case r = 1, we obtain the marginal conditional trend function
of the process:

E
(
xi(t) | xi(s) = xs,i

) = exp

(
µi(s, t, xs) + 1

4β

(
1 − e−2β(t−s))bii) (8)

By assuming the initial condition P(x(t) = xt0 ) = 1, and using Equation (8) then the non-conditional
marginal trend functions are

E [xi(t)] = exp

(
µi(t0, t, xt0 ) + 1

4β

(
1 − e−2β(t−t0))bii) (9)

From Equations (6) and (8), we can deduce that the marginal variance function of the process, for
i = 1, 2 is

Var (xi(t)) = exp

(
2µi(t0, t; xt0 ) + bii

2β

(
1 − e−2β(t−t0)))

(
exp

[
bii

2β

(
1 − e−2β(t−t0))]− 1

)
and the covariance function at the same instant is

Cov (x1(t), x2(t)) = exp

(
µ1(t0, t; xt0 ) + µ2(t0, t; xt0 ) + 1

4β

(
1 − e−2β(t−t0))(b11 + b22)

)
(

exp

[
b12

2β
(1 − e−2β(t−t0))

]
− 1

)
The correlation function of the process at the same instant &(x1(t), x2(t)) ≡ &(t) is given by

&(t) =
(

exp

[
b12

2β

(
1 − e−2β(t−t0)

)]
− 1

)(
exp

[
b11

2β

(
1 − e−2β(t−t0)

)]
− 1

)−1/2

(
exp

[
b22

2β

(
1 − e−2β(t−t0)

)]
− 1

)−1/2

(10)
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3. STATISTICAL INFERENCE ON THE MODEL

3.1. Parameter likelihood estimation

Let us now obtain the maximum likelihood estimators of the parameters corresponding to the model β, a,
andB, using discrete sampling. To construct the likelihood function associated with the process, we used
the following discrete sampling: {x(t1) = xt1 ; x(t2) = xt2 ; . . . , x(tn) = xtn} at the instants t1, t2; . . . ; tn
(with ti − ti−1 = 1 for i = 2, . . . , n), in which each x(tα) represents the bidimensional vector x(tα) =
(x1(tα), x2(tα))′, which for the sake of simplicity we shall denote as xtα = xα. We also considered the
initial condition P[x(t1) = x1] = 1; by applying the Markov property and making use of Equation (5),
the likelihood function associated with the sample considered, of size (n − 1) is given by

L(x1, . . . , xn;β; γ;B) = (2π)−(n−1)νβ
−(n−1)|B|− (n−1)

2

n∏
α=2

(xα,1xα,2)−1

exp

{
−1

2

[
log(xα) − e−β log(xα−1) − (

1 − e−β
)γ
β

]′

ν−2
β B−1

[
log(xα) − e−β log(xα−1) − (

1 − e−β
)γ
β

]}

where ν2
β = 1−e−2β

2β and γ = a − b
2 .

By carrying out the following change of variable v1 = x1 and vα(β) ≡ vα = νβ
−1(log(xα) −

e−β log(xα−1)) for α = 2, . . . , n, in terms of vα, the likelihood function is given by

Lv1,...,vn (β; γ;B) ≡ L = (2π)−(n−1)ν
−(n−1)
β |B|− (n−1)

2

exp

{
−1

2

n∑
α=2

(
vα − ξβγ

)′
B−1 (vα − ξβγ

)}

where ξβ = ν−1
β

(1−e−β)
β

.
By taking the logarithm, we obtain

log(L) = −(n − 1) log(2π) − (n − 1) log(νβ) − n − 1

2
log |B|

−1

2

n∑
α=2

(
vα − ξβγ

)′
B−1 (vα − ξβγ

)
Then, calculating the differential of this function, and making use of the fact that d(tr(B)) = tr(dB)

and d(log |B|) = tr(B−1dB), we have

d log(L) = −(n − 1)ν−1
β

∂νβ

∂β
dβ − n − 1

2
tr
(
B−1dB

)
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− 1

2

n∑
α=2

[
− (vα − ξβγ

)′
B−1(dB)B−1 (vα − ξβγ

)]

+ ξβ

n∑
α=2

(
vα − ξβγ

)′
B−1(dγ)

−
n∑

α=2

(
vα − ξβγ

)′
B−1

(
∂vα
∂β

− ∂ξβ

∂β
γ

)
dβ

And as vα = ν−1
β (log(xα) − e−β log(xα−1)), then

∂vα
∂β

=
(

−ν−1
β

∂νβ

∂β
vα + ν−1

β e−β log(xα−1)

)

By applying trace properties, the above differential can be written as follows:

d log(L) = 1

2
tr

{
n∑

α=2

[
B−1 (vα − ξβγ

) (
vα − ξβγ

)′ − I2

]
B−1dB

}

+ ξβtr

{
n∑

α=2

(
vα − ξβγ

)′
B−1(dγ)

}

+
{
ν−1
β

∂νβ

∂β

[
−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα

]

− νβ
−1e−β

n∑
α=2

(
vα − ξβγ

)′
B−1 log(xα−1)

+ ∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ

}
dβ

From the relations tr(AB) = Vec′(A′)Vec(B) and d Vec(A) = Vec(dA), where Vec denotes the matrix
vectorization (given an n × m matrix X, the Vec(X) is the vector of dimension nm × 1 that stacks the
columns of X), we obtain

d log(L) = Vec′
{

n∑
α=2

[
B−1 (vα − ξβγ

) (
vα − ξβγ

)′ − I2

]
B−1

}
d Vec(B)

+ ξβVec′
{
B−1

n∑
α=2

(
vα − ξβγ

)}
d Vec(γ)
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+
{
ν−1
β

∂νβ

∂β

[
−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα

]

− νβ
−1e−β

n∑
α=2

(
vα − ξβγ

)′
B−1 log(xα−1)

+ ∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ

}
dβ

Then, making this differential equal to zero, with respect to the estimators of B and γ , we obtain

B−1
n∑

α=2

(
vα − ξβγ

) = 0 (11)

n∑
α=2

[
B−1 (vα − ξβγ

) (
vα − ξβγ

)′ − I2

]
B−1 = 0 (12)

The estimator of the parameter β is given by

ν−1
β

∂νβ

∂β

[
−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα

]

− ν−1
β e−β

n∑
α=2

(
vα − ξβγ

)′
B−1 log(xα−1)

+ ∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ = 0 (13)

From Equations (11) and (12), we obtain the maximum likelihood estimators of the vector γ and of
the diffusion matrix B, given by

γ̂ = 1

(n − 1)ξβ̂

n∑
α=2

vα (14)

B̂ = 1

n − 1

n∑
α=2

(
vα − ξβ̂γ̂

) (
vα − ξβ̂γ̂

)′
(15)

Taking into account Equations (14) and (15) and after various operations in Equation (13) (not
shown), the estimator of β is given by

n∑
α=2

log(xα−1)′
(
vα − ξβγ

) = 0
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From the latter equation, we conclude that the estimator of β is given by the following expression:

β̂ = log

{(∑n
α=2 y

′
α−1

) (∑n
α=2 yα−1

)− (n − 1)
∑n

α=2 y
′
α−1yα−1(∑n

α=2 y
′
α−1

) (∑n
α=2 yα

)− (n − 1)
∑n

α=2 y
′
α−1yα

}
(16)

where y. = log(x.).

3.2. Estimated trend and correlation functions

We shall now define some functions that enable us to fit real data; making use of the model described
in this paper, we consider the estimated marginal trend function (EMTF) and the estimated conditional
marginal trend function (EMCTF), together with the estimated correlation function (ECF). Thus we
are able to analyze the correlations between the components of the vector process in question. These
functions can be obtained by Zehna’s theorem (see Zehna, 1966 and corollary 3.2.1 in Anderson, 1984);
the EMTF and EMCTF of the process are obtained by replacing the parameters in Equations (8) and (9)
by their estimators given in Equations (14), (15), and (16). The EMCTF is then given by the following
expression:

Ê (xi(t) | xi(s) = xs) = exp

(
µ̂i(s, t, xs,i) + 1

4β̂

(
1 − e−2β̂(t−t0))b̂ii) (17)

and the resulting EMTF in this case has the following form:

Ê [xi(t)] = exp

(
µ̂i(t0, t, xt0 ) + 1

4β̂

(
1 − e−2β̂(t−s))b̂ii) (18)

We obtain the ECF by replacing the parameters in Equation (10) by their estimators, and thus

&̂(t) =
(

exp

[
b̂12

2β̂

(
1 − e−2β̂(t−t0)

)]
− 1

)(
exp

[
b̂11

2β̂

(
1 − e−2β̂(t−t0)

)]
− 1

)−1/2

(
exp

[
b̂12

2β

(
1 − e−2β̂(t−t0)

)]
− 1

)−1/2

(19)

4. APPLICATION TO THE JOINT MODELING OF THE GDP AND CO2 EMISSIONS IN SPAIN

We applied the methodology presented in this paper to the random vector x(t) = (x1(t), x2(t))′, where

� “x1(t)” is the global CO2 emission in Spain observed annually for the period 1986–2003, measured
in metric tons of carbon; this may be consulted at http://www.ediac.esd.orl.gov.

� “x2(t)” is the gross domestic product in Spain observed annually for the period 1986–2003, measured
in 106; it may be consulted at http://www.ine.es (National Statistic Institute of Spain).
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Table 1. The ECF versus time

Time 1986 1987 1988 1989 1990 1991 1992 1993 1994

ECF 0 0.7023 0.7021 0.7018 0.7016 0.7014 0.7012 0.7010 0.7009

Time 1995 1996 1997 1998 1999 2000 2001 2002 2003

ECF 0.7008 0.7006 0.7005 0.7004 0.7003 0.7002 0.7001 0.7000 0.6999

The data set of observations considered are used to estimate the parameters of the model, using
Equations (14), (15) and (16).

A MatLab program was implemented to carry out the calculation required for this study. The value
of the likelihood estimator of β is β̂ = 0.03435 and the estimators of the vector γ and of the matrix
diffusion are

γ̂ =
(

0.17317

0.23640

)
and B̂ =

(
0.00286 0.00169

0.00169 0.00202

)

Table 1 shows the ECF between the global CO2 and GDP in Spain.
Table 2 summarizes the results of this application, that is, the observed data vector (CO2,DGP)′, the

EMTF and EMCTF, respectively.
Figure 1 shows the fit of global CO2 emissions in Spain using the EMCTF of the proposed process.
Figure 2 shows the fit of GDP in Spain using the EMCTF of the proposed process.

Table 2. CO2, GDP, EMTF, and EMCTF

Years Real data EMTF EMCTF

CO2 GDP CO2 GDP CO2 GDP

1986 47.610 336.643 47.610 336.643 47.610 336.643
1987 48.570 355.317 49.611 349.288 49.611 349.288
1988 49.856 373.418 51.622 361.945 50.577 367.992
1989 56.841 391.443 53.640 374.599 51.871 386.090
1990 57.814 406.245 55.662 387.235 58.876 404.083
1991 59.096 416.588 57.687 399.838 59.850 418.838
1992 61.657 420.459 59.712 412.396 61.132 429.137
1993 56.504 416.122 61.732 424.895 63.690 432.990
1994 59.090 426.036 63.748 437.322 58.539 428.673
1995 63.672 437.792 65.757 449.665 61.126 438.537
1996 63.732 448.456 67.756 461.914 65.700 450.224
1997 66.961 466.513 69.744 474.059 65.760 460.816
1998 68.645 486.742 71.718 486.088 68.977 478.732
1999 75.230 506.849 73.677 497.994 70.652 498.776
2000 77.099 527.613 75.620 509.768 77.190 518.671
2001 77.470 542.166 77.544 521.401 79.042 539.187
2002 82.998 556.651 79.448 532.888 79.410 553.551
2003 84.340 570.556 81.331 544.220 84.878 567.834
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Figure 1. CO2 emission versus the ECTF

Figure 2. GDP versus the ECTF

5. CONCLUSIONS AND DISCUSSION

� The bidimensional structure (the bivariate Gompertz diffusion process), statistically fitted to the
evolution of the pair of dynamic variables, that is, CO2 emission and GDP in Spain, on the basis
of observations for the period 1986–2003, enables us, for the first time, to evaluate the dynamic
correlation between the two variables in Spain, using Equation (10), of the correlation function of
the Gompertz bivariate process; this was found to be of the order of 0.7, which is clearly significant
with respect to the corresponding degree of dependence.
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� The bidimensional approach applied for the CO2-GDP relationship, based on the Gompertz
bidimensional process, enables us to obtain more precise statistical fits of the marginal trends, both
of CO2 and of the GDP, than does the method consisting of modeling the variable CO2 with GDP
as an exogenous variable (as was adopted in Gutiérrez et al., in press a). In terms of econometric
regression, an analogous interpretation would be that the random regression of the CO2–GDP pair is
better suited for modeling the joint evolution of the two variables than is a CO2 regression in terms
of the GDP regressor.

� Both the CO2 variable and the GDP, considered marginally, are well modeled by means of a Gompertz-
type stochastic growth process, with finite asymptotes, which can indeed be calculated, using a
methodology very similar to that used by Gutiérrez et al. (2007a).

� In forthcoming years, the situated of the Spanish case considered in the present study will have to
be adapted to polities in which the percentage of GDP dedicated to controlling CO2 emissions is
increased.

� Other possible bidimensional stochastic models have also been fitted to the CO2–GDP pair on the basis
of the same data observed (for the period 1986–2003), for example a bivariate lognormal diffusion
model, following the methodology described in Gutiérrez et al. (1991). The fits obtained are less
accurate than those corresponding to the Gompertz model. Taking into account that, technically,
the lognormal case is the particular case of the bidimensional Gompertz with a null β parameter in
Equation (2), it is proven, indirectly, that the effect of this parameter on Ito’s stochastic Equation (1)
is significant; this effect has been estimated as taking the following form: β̂ = 0.03435, calculated
using Equation (16).

� In the present study we propose a method for analyzing the bidimensional trends present in a
real phenomenon that evolves stochastically following a Gompertz model described by Itô’s SDE
Equation (1). This methodology provides a viable alternative, in both statistical and computational
terms, to other possible methodological approaches (e.g., models of bivariate chronological series
with nonlinear trends) that are of little on no practical viability regarding the continuous stochastic
phenomena observed discretely in time, as is the case of CO2–GDP.

Indeed, by adopting the Gompertz bivariate model and calculating the trend and conditional
trend functions (see Equations (8) and (9)), both marginal in CO2 and GDP, and joint (surface
trend), it is possible to estimate them using the maximum likelihood method we propose.
Moreover, this methodology is computationally viable, as shown by the results presented in
Section 3.
When these trends have been fitted, we calculate the fitted values at the same instants of time in
which the two variables have been observed. These variables of t coincide with the annual data (taken
on 31 December each year) for the CO2 and GDP variables considered, being “natural” values of
generalized consideration (thus, nobody considers CO2 and GDP values at other instants of time,
such as 7 September of each year). So, we have a methodology describing the evolution of the two
variables that, moreover, enables us to obtain the least squares statistical prediction associated with
the bivariate lognormal defined in Equations (3) and (4), which is valid for predicting annual values
according to the fitted trends.
In the future, the fitted model could be used for the statistical prediction phase, with a methodology
similar to that established for the univariate Gompertz model (both the homogeneous and the non-
homogeneous types), see the Gutiérrez et al. (2005b). For this purpose, it is necessary to establish
the exact or asymptotic distributions of the two-dimensional parameters of the bivariate Gompertz
process introduced in the present study.
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