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The main aim of this study is to model the trend of the evolution of the total stock of private petrol-driven
cars. In Spain, as in other EU countries, this trend between 2000 and 2005 differed significantly from that
observed from 1986 to 1999. Moreover, it varies greatly from that corresponding to the stock of diesel-
driven cars, which consistently presents an exponential Gompertz-type increase. Spain constitutes a typ-
ical example of a failure to observe the maximum CO2 emission levels assigned to it by 2012 under the
Kyoto Protocol (1992); a significant percentage of these excess emissions is accounted for by the land
transport sector, in general, and by the private cars subsector, in particular. This paper proposes a sto-
chastic model based on a new non homogeneous stochastic gamma-type diffusion process which it is
a stochastic version of a Gamma function type deterministic growth model considered in Skiadas [Skiadas
CH. Methods of growth functions formulation. In: Gutiérrez R, Valderrama M, editors. Selected topics on
stochastic modelling. World Scientific; 1994. p. 296–310]. We describe its main probabilistic character-
istics and establish a statistical methodology by which it can be fitted to real data and obtain medium-
term forecasts that, in statistical terms, are quite accurate.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades important advances have been made in mod-
elling based on stochastic diffusion processes; these have been ap-
plied in many scientific fields such as the environment, energy,
stochastic economics, tumour growth and that of populations in
general. Various authors have studied these diffusion processes
from the standpoint of the corresponding Ito SDEs, and most suc-
cessful predictive models have been based on forms of the deter-
ministic diffusion process extended to the corresponding
stochastic version, for example Katsamaki and Skiadas [2] in the
case of the exponential model, Skiadas and Giovanis [3] in the case
of the Bass model and Giovanis and Skiadas [4] in the case of the
logistic model.

The question of statistical inference and the problem of param-
eter estimation in these processes have received considerable
attention in recent years, in situations in which the process is ob-
served continuously or discretely. In most cases, the parameter
estimation is based on approximating the maximum likelihood
(ML) methodology. A large body of literature has addressed this
question; important research on the topic, both in general and in
particular cases includes, for example, Bibby and Sorensen [5];
ll rights reserved.
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Ait Sahalia [6], Durham and Gallant [7], Eugene [8] and the exten-
sive review given in Prakasa-Rao [9] and Kutoyants [10], without
forgetting the early works focused on other methodologies, such
as the generalized method of moments by Chan et al. [11]; the
non parametric method described by Arapis and Gao [12], and a
method based on Bayesian analysis reported by Elerian et al. [13].

Another way of defining and studying stochastic diffusion pro-
cesses is based on Kolmogorov equations (backwards and for-
wards, or Fokker–Plank) associated with the corresponding
infinitesimal moments (drift and diffusion coefficients). This meth-
od of approaching and studying the topic is particularly interesting
when we wish to construct non homogeneous versions of a diffu-
sion by introducing just time functions (exogenous factors) into
the infinitesimal moments. These exogenous factors or variables
evolve in time externally to the evolution that corresponds to the
endogenous variable that is being modelled in each case. Thus,
we may obtain various non homogeneous extensions of the homo-
geneous stochastic diffusion processes, which are based on the
incorporation of certain exogenous factors that affect the drift of
the basic homogeneous diffusion under consideration. The exoge-
nous factors that are considered may be of diverse characteristics,
with or without external information.

In the case in which external information is present, the exoge-
nous factors are completely defined by their observed values, such
as monthly or annual data. This case has been considered by
otal stock of the private car-petrol in Spain: ..., Appl Energ (2008),
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Fig. 1. Real data.
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Gutiérrez et al. [14,15] for the lognormal process, by Gutiérrez
et al. [16,17] for the Gompertz process, and by Gutiérrez et al.
[18] for the Vasicek process. These latter studies consider non
homogenous models whose drifts are linear combinations of exog-
enous factors of the present type.

In the second case (lacking external information), exogenous
factors are functions of time and no observed values are available
for these factors. This case has been studied by Gutiérrez et al.
[19] for the lognormal process, considering an exogenous factor gi-
ven by a time polynomial; Ferrante et al. [20] considered a Gom-
pertz process with an exogenous factor given by the sum of two
exponential functions. Another case involving the Gompertz pro-
cess was examined by Albano and Giorno [21], who took an exog-
enous factor that was defined by a logarithmic function. Finally,
Gutiérrez et al. [22] considered an exogenous factor of an exponen-
tial type within the homogeneous lognormal process; the resultant
process is a Gompertz diffusion type process that depends on the
initial value of the process.

This method for obtaining non homogeneous versions of uni-
variate diffusion processes by introducing exogenous factors has
also been studied in some cases of multivariate diffusion processes,
for example by Gutiérrez et al. [23] in the case of multivariate log-
normal diffusion and by Gutiérrez et al. [24] in the case of the
bivariate Gompertz diffusion process.

The statistically adjusted trend of the stochastic diffusion pro-
cess used in modelling sometimes presents divergences from the
behaviour of the real data, which in the first place leads to the
search for exogenous variables, i.e. those external to the process,
to achieve a suitable correction of the modelling. In other words,
the model is corrected in order to consider a non homogeneous
version of the model such that the new non homogeneous trend,
which is affected by such exogenous variables, provides a better
description of the real behaviour of the phenomenon.

However, there are sometimes found to be discrepancies be-
tween the values adjusted by the diffusion that is being used for
modelling and the observed values, in such a way that it is not pos-
sible to correct these discrepancies by the mere fact of introducing
exogenous factors into the baseline diffusion. This statement is
based on the fact that, structurally, the real phenomenon that is
being studied does not correspond to the model that is utilized
even when the latter is extended to a non homogeneous version.
Hence, we must find another model, one that is fundamentally dif-
ferent from the one initially taken, one that provides an appropri-
ate modelling of the phenomenon and that better fits the
behaviour of the real data. One example of such a situation is that
described in the study and prediction of the evolution of the total
stock of private cars-petrol in Spain, taking as a basis for analysis
the real data for this total stock of private cars-petrol, for the per-
iod 1986–2005, as shown in Fig. 1. Obviously, the exponential
trend of the lognormal stochastic diffusion process is not suitable;
neither are the trends of the logistic or the Gompertz processes, or
the trends of other models that have been studied for example, of
Rayleigh-type diffusion process (see Gutiérrez et al. [25]), cubic
model diffusion (see Gutiérrez et al. [26]) or inverse CIR model
(Gutiérrez et al. [27]). A rapid examination of Fig. 1 suggests that
a gamma function might be appropriate for describing the trend
of the behaviour of the real data concerning the total stock of pet-
rol-driven vehicles. For this reason, defining a diffusion process
whose trend was proportional to a Gamma-type function was set
as the technical objective of the present study.

In this paper, therefore, we propose a new stochastic type gam-
ma diffusion process (SGDP). The paper is structured as follows: in
Section 2, we identify the main characteristics of the proposed pro-
cess, namely the analytical expression, the probability transition
density function (ptdf) and the trend functions. In Section 3, the
parameter estimators are derived by the maximum likelihood
Please cite this article in press as: Gutiérrez R et al., The trend of the t
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method, based on the discrete sampling of the process, after which
the distributions of the likelihood estimators are obtained. Thus,
we obtain the confidence intervals of the parameters and of the
trend functions. In the final section, the process is applied to time
series data on the total stock of petrol-driven private cars in Spain.

2. The model and its characteristics

2.1. Formulation of the model

Stochastic diffusion processes may be generated in various
ways; one is to begin with a discrete probabilistic model and, by
limit steps, then obtain a continuous time-series diffusion model.
Following this approach, Ricciardi [28] for example, derived a log-
normal, logistic diffusion process, while Albano and Giorno [21]
obtained a Gompertz diffusion process.

Another way of arriving at stochastic diffusion processes is to
use the mechanism of the regulation function introduced by Ricc-
iardi [28], and which consists in including a regulatory random
function that depends on a stationary Gaussian process KðtÞ with
a zero mean and a delta-type correlation function: E½KðtÞ� ¼ 0;
E½Kðt1Þ � Kðt2Þ� ¼ r2dðt2 � t1Þ, in the Malthusian model; we then ob-
tain the well known regulated growth process that is given by the
following equation

dxðtÞ
dt
¼ axðtÞ½1� Uðt; xÞ�;

where Uðt; xÞ is the regulation function that involves a change in the
growth rate with the population size and with time.

By using this mechanism, various diffusion processes have been
obtained, considering particular cases of Uðt; xÞ. Thus, for example,
Ricciardi [28] studied the case in which Uðt; xÞ ¼ b

a x� 1
a KðtÞ and so

the resulting process is one of logistic diffusion; by assuming
Uðt; xÞ ¼ b

a logðxÞ � 1
a KðtÞ, we obtain the Gompertz diffusion process

in which the bounds do not depend on the initial value; while for
Uðt; xÞ ¼ 1� e�bðt�t1Þ � 1

a KðtÞwe obtain the Gompertz diffusion pro-
cess that depends on the initial value (see Gutiérrez et al. [22]).

In this study, the above methodology has been adapted to de-
fine a new gamma-type stochastic diffusion process. To do so, we
took the function Uðt; xÞ in the following form:

Uðt; xÞ ¼ 1� 1
t
þ b

a
� 1

a
KðtÞ:
otal stock of the private car-petrol in Spain: ..., Appl Energ (2008),
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Thus, the following equation was obtained:
dxðtÞ

dt
¼ a

t
� b

� �
xðtÞ þ xðtÞKðtÞ;

given that KðtÞdt ¼ rdwðtÞ, where wðtÞ is a standard Wiener pro-
cess. This equation can be expressed in the normal SDE form as
follows:

dxðtÞ ¼ a
t
� b

� �
xðtÞdt þ rxðtÞdwðtÞ: ð1Þ

We shall now consider the process fxðtÞ; t 2 ½t1; T�g defined in Eq.
(1), with value in ð0;1Þ and the initial condition P½xðt1Þ ¼ xt1 � ¼ 1,
where t1 > 0 and xt1 is a positive real value.

2.2. Analytical expression, ptdf and moments of the SGDP

It can be proved that the functionals coefficients in Eq. (1) are
non-anticipative and satisfy the Lipschitz and the growth conditions
and consequently, that there exists a unique, strong solution to Eq.
(1) [see, for example, Liptser and Shiryayev [29], Theorem 4.6].

Furthermore, it is straightforward to show that these function-
als are Borel measurable and satisfy the uniform Lipschitz condi-
tion and the c-Holder, in particular order 1 Holder, conditions
(see, for example, Wong and Hajek [30], Propositions 4.1 and
7.1]. Consequently, there exists a separable, measurable and al-
most surely (as) sample continuous diffusion process
fxðtÞ; t 2 ½t1; T�g which is the unique (as) solution to Ito’s differen-
tial equation Eq. (1) with infinitesimal moments (drift and diffu-
sion coefficients) given, respectively, by

aðx; tÞ ¼ a
t
� b

� �
x and bðx; tÞ ¼ r2x2:

The strong solution to Eq. (1) can be obtained by Ito’s formula,
transforming the latter using the function yðtÞ ¼ logðxðtÞÞ to the fol-
lowing SDE

dyðtÞ ¼ a
t
� b� r2

2

� �
dt þ rdwðtÞ; yðt1Þ ¼ logðxt1 Þ:

From which we deduce that the analytical expression of the solu-
tion to the SDE Eq. (1) is

xðtÞ ¼ xt1

t
t1

� �a

e�ðbþr2=2Þðt�t1Þ exp½rðwðtÞ �wðt1ÞÞ�

then, the random variable xðtÞjxðt1Þ ¼ xt1 has a one-dimensional
lognormal distribution K1½lðt1; t; xt1 Þ;r2ðt � t1Þ�, where lðs; t; xÞ is gi-
ven by

lðs; t; xÞ ¼ logðxÞ þ a logðt=sÞ � ðbþ r2=2Þðt � sÞ:

From which, we deduce that the tpdf of the process is

f ðy; tjx; sÞ ¼ ½2pr2ðt � sÞ��1=2 exp � ½logðyÞ � lðs; t; xÞ�2

2r2ðt � sÞ

 !
: ð2Þ

Taking into account that the random variable xðtÞ j xðsÞ ¼ xs is dis-
tributed as K1½lðs; t; xsÞ;r2ðt � sÞ� and bearing in mind the properties
of this distribution, the rth conditional moment of the process is ex-
pressed by

E½xrðtÞjxðsÞ ¼ xs� ¼ exp rlðs; t; xsÞ þ
rr2

2
ðt � sÞ

� �
¼ xs

t
s

� �ra

e�rbðt�sÞ exp
rðr � 1Þ

2
r2ðt � sÞ

� �
:

Then, the conditional trend function of the process is

E½xðtÞjxðsÞ ¼ xs� ¼ xs
t
s

� �a

e�bðt�sÞ: ð3Þ

Assuming the initial condition Pðxðt1Þ ¼ x1Þ ¼ 1, the trend function
of the process is
Please cite this article in press as: Gutiérrez R et al., The trend of the t
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E½xðtÞ� ¼ xt1 ebt1

ta
1

tae�bt : ð4Þ

Remarks

� Note that in the absence of white noise (i.e. r ¼ 0), the solution
of the ordinary differential equation associated with the SDE Eq.
(1) is xðtÞ ¼ ktae�bt , which is proportional to the Gamma density
function. We can see that the trend function given in Eq. (4) is
also proportional to the density function of the gamma
distribution.

� For a ¼ 0 and b < 0, we find the stochastic homogeneous lognor-
mal diffusion process studied by Tintner and Sengupta [31].

3. Statistical inference on the model

3.1. Maximum likelihood parameter estimation

As the tpdf of the process is known (lognormal distribution), we
can estimate the parameters involved in the process, making use of
discrete sampling, based on the conditioned likelihood function
obtained as the product of the corresponding process transitions
(given by Eq. (2)). Let us examine the following process sample,
x1; . . . ; xn at the instants t1; t2; . . . ; tn. Assuming the initial distribu-
tion P½xðt1Þ ¼ x1� ¼ 1, the conditioned likelihood function associ-
ated with the process and with the above sample is given as
follows:

Lðx1; . . . ; xn; a; b; r
2Þ ¼

Yn

i¼2

f ðxi; tijxi�1; ti�1Þ:

Let us now perform a change of variable, in order to work with a
known likelihood function and to calculate the maximum likelihood
estimators in a simpler way. Consider the following transform:
vi ¼ ðti � ti�1Þ�1=2ðlogðxiÞ � logðxi�1ÞÞ, i ¼ 2; . . . ; n, then, with the
reparametrization a ¼ ða;�ðbþ r2=2ÞÞ0 and if we denote by
ui ¼ ðti � ti�1Þ�1=2ðlogðti=tt�1Þ; ti � ti�1Þ0, the likelihood function for
the transformed sample is

Lv2 ;...;vn ða; r2Þ ¼ 2pr2� ��ðn�1Þ=2
exp � 1

2r2

Xn

i¼2

ðvi � u0iaÞ
2

 !
:

Let be V ¼ ðv2; . . . ; vnÞ0 and U is the 2� ðn� 1Þmatrix, whose rank is
2, and given by U ¼ ðu2; . . . ;unÞ, then, the likelihood function can be
rewrite in the following form

LVða; r2Þ ¼ ½2pr2��ðn�1Þ=2 exp � 1
2r2 ðV � U0aÞ0ðV � U0aÞ

� �
: ð5Þ

After calculating the derivatives of the log-likelihood function with
respect to a and r2, the likelihood equations are

UðV � U0âÞ ¼ 0;

ðn� 1Þr̂2 ¼ ðV � U0âÞ0ðV � U0âÞ:

From which, the likelihood estimators of the parameters are

â ¼ ðUU0Þ�1UV; ð6Þ
ðn� 1Þr̂2 ¼ V0HUV; ð7Þ

where HU ¼ In�1 � U0ðUU0Þ�1U

3.2. Properties of maximum likelihood estimators

3.2.1. Distribution of maximum likelihood estimators
Noting that the Eq. (5) is also the density function of the random

vector V, this latter density can be rewritten in the following form
otal stock of the private car-petrol in Spain: ..., Appl Energ (2008),
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LVða; r2Þ ¼ 1

ð2pÞðn�1Þ=2jr2In�1j1=2

� exp �1
2
ðV � U0aÞ0ðr2In�1Þ�1ðV � U0aÞ

� �
:

From which, we deduce that V �Nn�1½U0a;r2In�1Þ.
The rank of U is 2, Then, ðUU0Þ�1U has the same rank, and we

have

ðUU0Þ�1UV �N2½ðUU0Þ�1UU0a; r2ðUU0Þ�1ðUU0ÞUU0Þ�1Þ

and therefore, we have

â �N2½a; r2ðUU0Þ�1�:

To obtain the distribution of r̂2, we make use of the following result
(see for example [32], corollary 2.11.2):

Corollary 1. If Z �Np½l;R�;R non singular and Bp�p symmetric,
then, Z0BZ � v2

kðdÞ, where k ¼ rankðBÞ and d ¼ l0Bl if and only if BR is
idempotent.

As HU is symmetric and idempotent, then, rankðHUÞ ¼ trðHUÞ
¼ n� 3, then using the last result in the particular case:
Z ¼ r�1V;R ¼ In�1;B ¼ HU and l ¼ U0a, we have

V
r

0
HU

V
r
� v2

n�3ðdÞ; with d ¼ a0UHUU0a ¼ 0

and therefore

ðn� 1Þr̂2

r2 � v2
ðn�3Þ:
3.2.2. Independence of maximum likelihood estimators
To show that â and r̂2 are independently distributed, we may

make use of the following independence result between linear
and quadratic forms (see for example [32] corollary 2.11.4):

Corollary 2. Let Z �Np½l;R�, with R > 0. Then, yj ¼ Z0AjZ þ 2b0jZþ
cj; j ¼ 1;2 are independently distributed if and only if A1RA2 ¼
0;A2Rb1 ¼ 0;A1Rb2 ¼ 0, and b01Rb2 ¼ 0.

Let B ¼ ðUU0Þ�1U. Then, by decomposing the matrices B and HU

as follows: B ¼ B1

B2

� �
and HU ¼ ðHU;1;HU;2; . . . ;HU;n�1Þ, where B1

and B2 are 1� ðn� 1Þ-vector and HU;i is the column of HU

(ðn� 1Þ � 1-vector for i ¼ 1; . . . ;n� 1). We have: â ¼ BV
¼ ðB1V;B2VÞ0. Then, to show that r̂2 and â are independently dis-
tributed we need only show that r̂2 is distributed independently
of each component of the vector â, that is, of B1V and of B2V.

On the one hand, we have: BHU ¼ ðUU0Þ�1UðIn�1 � U0ðUU0Þ�1UÞ

¼ 0. While on the other hand we have BHU ¼
B1HU

B2HU

� �
. From

which, we deduce that

B1HU ¼ 0; ð8Þ
B2HU ¼ 0: ð9Þ

Considering the particular case Z ¼ r�1V and R ¼ In�1, for
A1 ¼ HU; b1 ¼ 0 and c1 ¼ 0, we have y1 ¼ r�2V0HUV and for
A2 ¼ 0; b2 ¼ 1

2 B01 and c2 ¼ 0, we have y2 ¼ r�1B1V. Then, according
to the corollary, a necessary and sufficient condition for y1 and y2

to be independently distributed is HUB01 ¼ 0.
As HU is symmetric, then HUB01 ¼ ðB1HUÞ0, and using equation Eq.

(8), we obtain that HUB01 ¼ 0 and therefore y1 and y2 are indepen-
dently distributed.

By applying repeatedly the corollary for A2 ¼ 0, b2 ¼ 1
2 B02 and

c2 ¼ 0, from which y2 ¼ r�1B2V, and then the condition of indepen-
dence between y1 and y2 is HUB02 ¼ 0 and by similar reasoning,
using Eq. (9), we can show that HUB02 ¼ 0 and therefore y1 and y2

are independently distributed.
Please cite this article in press as: Gutiérrez R et al., The trend of the t
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Finally, we deduce that â and r̂2 are independently distributed.

3.2.3. Sufficiency and completeness
By subtracting and adding U0â to V � U0a, the expression Eq. (5)

becomes

LVða; r2Þ ¼ 1

ð2pr2Þ
n�1

2
exp � 1

2r2 ½ðn� 1Þr̂2 þ ðâ� aÞ0UU0ðâ� aÞÞ�
� �

;

which means that ðâ; r̂2Þ is conjointly sufficient for ða;r2Þ.
The completeness follows by means of a similar reasoning to

that established for the maximum likelihood estimators of the
parameters of the multivariate normal distribution (see, for exam-
ple, Anderson [33]).

And so the estimators â and ðn�1Þr̂2

ðn�3Þr2 are the UMVUE for a; r2,
respectively.

3.3. Parameter confidence intervals

The c% confidence interval for the parameter r2 is given, by

ðn� 1Þr̂2

v2
n�3;c2

;
ðn� 1Þr̂2

v2
n�3;1�c

2

 !
ð10Þ

and the c% confidence interval for the parameter a is given, by

P a 2 â� r̂
n� 1
n� 3

A11F1;n�3;c

� �1=2
" # !

¼ 1� c; ð11Þ

where v2
n;c and Fm;n;c are the upper 100c per cent points of the v2 with

n degrees of freedom and the F-distribution with m and n degrees of
freedom, respectively, and A11 is the first elements of the principal
diagonal of the matrix ðUU0Þ�1 and where UU0 is

UU0 ¼
Pn

i¼2log2ðti=ti�1Þ logðtn=t1Þ
logðtn=t1Þ n� 1

 !
:

According to the reparametrization a ¼ ða;�ðbþ r2=2ÞÞ0, it is not
possible to obtain confidence interval for the parameter b.

3.4. Approximate confidence intervals of the estimated trend functions

On the one hand, from Zehna’s theorem [34], we can obtain the
estimated trend function (ETF) and the conditional trend function
(ECTF) of the process, by substituting the parameters by their esti-
mators, given in Eqs. (6) and (7), in expressions (3) and Eq. (4).
Then the ECTF is given by

bE½xðtÞ j xðsÞ ¼ xs� ¼ xs
t
s

� �â

e�b̂ðt�sÞ: ð12Þ

The ETF of the process is

bE½xðtÞ� ¼ x1
t
t1

� �â

e�b̂ðt�t1Þ: ð13Þ

On the other hand, we still lack a confidence interval for the param-
eter b. It is possible to obtain approximate confidence intervals of
the ETF and ECTF of the model; these consist in replacing in equa-
tions Eqs. (3 and 4) the parameter a by the extreme values of its
confidence interval: the lower limit of a ðallÞ and the upper limit
of aðaulÞ which are given in expression (11). For the parameter b,
as we do not have a confidence interval for it, we assume the upper
and lower limits of the parameter b to be equal to b̂. Then, the lower
limit of the ECTF ðECTFllÞ is given by

bEll½xðtÞ j xðsÞ ¼ xs� ¼ xs
t
s

� �âll

e�b̂ðt�sÞ ð14Þ

and the upper limit of the ECTF ðECTFulÞ is
otal stock of the private car-petrol in Spain: ..., Appl Energ (2008),



Table 1
Estimators and their confidence intervals

Estimator Confidence interval

â 17245.122886 (17238.198158; 17252.047614)
r̂2 0.001287 (0.000803; 0.003354)
b̂ 8.627309 –

Table 2
Real data vs. ETF; ETFl and ETFu

Year Real data ETF ETFlow ETFupp

1986 0.888525 0.888525 0.888525 0.888525
1987 0.934703 0.937685 0.934422 0.940959
1988 0.980033 0.985251 0.978408 0.992142
1989 1.036063 1.030723 1.020006 1.041553
1990 1.077489 1.073604 1.058749 1.088667
1991 1.121962 1.113409 1.094190 1.132965
1992 1.164066 1.149678 1.125911 1.173946
1993 1.183863 1.181980 1.153529 1.211132
1994 1.192754 1.209925 1.176707 1.244080
1995 1.215313 1.233171 1.195158 1.272392
1996 1.236245 1.251428 1.208652 1.295720
1997 1.249061 1.264472 1.217021 1.313774
1998 1.268121 1.272139 1.220163 1.326329
1999 1.280297 1.274335 1.218041 1.333230
2000 1.274697 1.271037 1.210689 1.334394
2001 1.279573 1.262295 1.198207 1.329810
2002 1.272871 1.248224 1.180759 1.319545
2003 1.209587 1.229011 1.158571 1.303735
2004 1.203509 1.204904 1.131926 1.282587

Prediction 2005 1.181565 1.176208 1.101157 1.256373
Prediction 2006 1.136270 1.143280 1.066641 1.225425
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bEul½xðtÞjxðsÞ ¼ xs� ¼ xs
t
s

� �âul

e�b̂ðt�sÞ: ð15Þ

In the same way, we obtain the lower limit of the ETF ðETFllÞ and
this latter has the following form

bEll xðtÞ½ � ¼ x1
t
t1

� �âll

e�b̂ðt�t1Þ ð16Þ

and the lower limit of the ETF ðETFulÞ is

bEul½xðtÞ� ¼ x1
t
t1

� �âul

e�b̂ðt�t1Þ: ð17Þ

These functions are used in the last Section to fit and predict the fu-
ture evolution of the stochastic diffusion process under
consideration.

4. Application to modelling the total stock of private cars-petrol
in Spain

The land transport sector is an important source of emission of
greenhouse gases, and in particular of CO2, which is why this sector
is currently the object of particular attention with respect to, by
example, the dynamic evolution of its size (total number of units),
the energy consumption corresponding to the type of fuel utilized,
and the fiscal policy corresponding to the level of greenhouse gas
emissions, among other aspects. Such studies are particularly rele-
vant taking into account the severe problems currently being ad-
dressed (especially as of the signing of the Kyoto Protocol in
1992) with respect to the environment and climate change.

Numerous studies have been made of the land transport sector,
normally concerning specific countries or geopolitical areas (such
as the EU, the USA or the UK). These studies are mainly of an
econometric nature, seeking to explain the evolution of the sector
or of given subsectors by means of economic variables (for exam-
ple, GDP, prices, energy costs).

At present, Spain constitutes a flagrant example of violation of
the maximum annual quantities of CO2 assigned under the Kyoto
agreement (see Gutiérrez et al. [17]), and studies are being made
of the land transport sector using a modelling procedure based
on stochastic diffusions (for example, Gutiérrez et al. [24]). In this
line of investigation, the present study uses gamma diffusion to
model the total stock of private cars-petrol in Spain. This is a sub-
sector that makes a notable contribution to the total emission of
CO2 in Spain and to that made by the land transport sector, in
particular.

This modelling is based on fitting the gamma diffusion process
examined in the present study. Statistical fitting is performed by
applying statistical inference (estimating the parameters and trend
functions, and testing different hypotheses) as described in Section
3, and on the basis of real observations corresponding to the period
1986–2006. These data consist of the total stock of private cars-pet-
rol in Spain, at 31 December of each year, and are published as official
statistics in the National Transport Yearbook of the Spanish Ministry
of Finance; they can be consulted at http:www.ine.es. These data are
expressed in 109 cars-petrol and are included in Table 2.

The process to be modelled corresponds to the stochastic dy-
namic variable X(t), which for each instant of time t takes the value
of the total stock of private cars-petrol in Spain during the annual
period that ends at this instant of time. The above-mentioned real
observed values constitute a set of observations of X(t) in discrete
time at the end of each natural year.

The first 19 data of the above time series (i.e. up to 2004) are
employed to estimate the parameters of the process, using the
methods described in Section 3. The data corresponding to 2005
and 2006 are reserved for later comparison with the value pre-
dicted using the fitted SGDP.
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The trend functions (ETF and ECTF) given by Eqs. (12) and (13)
are fitted to their confidence intervals given by Eqs. (14)–(17). Prior
to this, we calculate the estimators of the parameters, given by Eqs.
(6) and (7) and their confidence intervals given by Eqs. (10) and
(11). The related results are summarized in Table 1.

Table 2 summarizes the fit and the forecast obtained using the
ETF with its ETFll and ETFul. Table 3 summarizes the fit and the fore-
cast obtained using the ECTF with its ECTFll and ECTFul.

Fig. 2 shows the pattern of the real data with respect to the fit
and the forecast obtained using the ECT with ETFll and ETFul.
Fig. 3 shows the fit and the forecast obtained using the ECTT of
the model with respect to the real data.

All calculations were performed using MATLAB 7.0.1 mathe-
matical software.

Remarks
In the trend analysis methodology based on fitting stochastic

diffusion processes that the present authors have been develop-
ing in recent years (see References), the ECTF has been used as
an instrument for detecting and analyzing possible trend
changes. Indeed, a significant discrepancy between the fitted val-
ues and those predicted by the ETF and the ECTF would imply an
instability in the trend. It is noteworthy that the ECTF values
incorporate, step-by-step, the values observed after the fitting
process. Therefore, and to the extent that, in fact, the ECTF val-
ues do not significantly improve those given by the ETF, we con-
firm the goodness of the fit and forecast. Such is the case in the
present study.

5. Comments and conclusions

(1) Specifically, the statistically fitted model is expressed as
follows:
otal stock of the private car-petrol in Spain: ..., Appl Energ (2008),
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Fig. 3. Real data vs. ECTF.

Table 3
Real data vs. ECTF ECTFl and ECTFu

Year Real data ECTF ECTFlow ECTFupp

1986 0.888525 0.888525 0.888525 0.888525
1987 0.934703 0.937685 0.934422 0.940959
1988 0.980033 0.982182 0.978702 0.985546
1989 1.036063 1.025264 1.021700 1.028841
1990 1.077489 1.079166 1.075416 1.082928
1991 1.121962 1.117438 1.113558 1.121333
1992 1.164066 1.158509 1.154488 1.162545
1993 1.183863 1.196772 1.192620 1.200939
1994 1.192754 1.211853 1.207651 1.216070
1995 1.215313 1.215670 1.211457 1.219898
1996 1.236245 1.233307 1.229035 1.237594
1997 1.249061 1.249130 1.244805 1.253470
1998 1.268121 1.256634 1.252285 1.260998
1999 1.280297 1.270310 1.265916 1.274719
2000 1.274697 1.276984 1.272569 1.281414
2001 1.279573 1.265929 1.261555 1.270319
2002 1.272871 1.265310 1.260940 1.269695
2003 1.209587 1.253279 1.248952 1.257620
2004 1.203509 1.185860 1.181769 1.189966

Prediction 2005 1.181565 1.174846 1.170795 1.178912
Prediction 2006 1.136270 1.148487 1.144528 1.152459
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Fig. 2. Real data vs. ETF.

6 R. Gutiérrez et al. / Applied Energy xxx (2008) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Gutiérrez R et al., The trend of the t
doi:10.1016/j.apenergy.2008.03.016
dxðtÞ ¼ 17245:122
t

� 8:627
� �

xðtÞdt þ 0:035xðtÞdwðtÞ:
otal st
This is obtained from Eq. (1), substituting the estimators of
the parameters (see Table 1). Note that the slowdown esti-
mated by the fitted model for the total stock of private pet-
rol-driven cars in Spain (2000–2006), measured in terms of
the estimated value of the coefficient b̂ has a value of 8.627.
(2) From a theoretical point of view, we conclude that the
gamma process presented, which is of a non homogeneous
nature, is such that we can explicitly establish its probability
transition density function in terms of a lognormal distribu-
tion Eq. (2) together with its moment functions, and in par-
ticular its trend functions Eq. (4). We can also establish
parameter estimation results using the maximum likelihood
method and construct approximated confidence intervals,
on the basis of discrete sampling. Therefore, the gamma pro-
cess we describe is accompanied by a set of statistical results
that enable it to be applied to real data.

(3) Concerning the developed application, we conclude that the
gamma model proposed is adequate both for modelling the
phenomenon under consideration and for forecasting pur-
poses. In particular, the sharp variation in the trend of the
total stocks of private cars-petrol in Spain that can be
observed between 2000 and 2006 (See Fig. 1) is well mod-
elled by the gamma model utilized. The variation over the
period 1986–1999 is of an exponential nature, and so the
stochastic model that is appropriate for this period can be
based on diffusion processes of an increasing exponential
trend function, such as lognormal or even Gompertz diffu-
sion. As remarked in Section 1, the evolution of the total
stocks of private cars (1986–2006) is clearly different in
the subsectors ‘‘petrol” and ‘‘diesel”. In the latter case, the
evolution of the trend is exponential, while in the case of
petrol-driven cars, the model used must reflect the change
by means of a non-exponential trend diffusion. Thus, the
conclusion to be drawn from the present study is that the
gamma diffusion model is capable of representing the total
period under consideration (1986–2006), including the
above-mentioned change of trend.
With regard to the ‘‘forecasting capacity” of the proposed
gamma model, we may conclude that it is valid for short
and medium-term forecasts of the future evolution of the
variable xðtÞ under consideration. Furthermore, the statisti-
cal inference established in this study for the gamma process
enables us to evaluate the precision of the forecasts made.
Note that the real value for the year 2005 and 2006 (which
were not used for the statistical fit, see Section 3) are clearly
included in the interval ½1:101157; 1:256373� � 109 and
½1:066641; 1:225425� � 109 provided by the 95% confidence
interval of the trend function for t ¼ 2005 and t ¼ 2006, cal-
culated by Eq. (16) and (17). The prediction value for the
year 2005, by using the ETF Eq. (13) is 1:176208� 109 and
for 2006 is 1:143280� 109.

(4) The stochastic model proposed, based on the new stochastic
gamma diffusion process, as described in Section 2, and
which we have analyzed in probabilistic and statistical
terms (Section 3) is of a non homogeneous nature. This
non-homogeneity is ‘‘intrinsic” to the process, in the sense
that it is not defined on the basis of a prior homogeneous
version that is subsequently extended to a non homoge-
neous one, but, rather, it is non homogeneous from the
beginning (see comments in Section 1). Therefore, an open
question that remains is that of studying a version that
might be termed ‘‘doubly non homogeneous” of the gamma
process presented in this paper, which would be obtained
ock of the private car-petrol in Spain: ..., Appl Energ (2008),
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with the introduction of ‘‘exogenous factors” (of the type
examined in Section 1) in the drift coefficient given by Eq.
(1). This methodology has been used as a means of obtaining
non homogeneous versions on the basis of prior homoge-
neous ones in various types of diffusions (see, for example,
Gutiérrez et al. [35]). In this latter situation, when the statis-
tical fits are performed on the models, it is necessary to pos-
sess sampling information on these ‘‘exogenous factors”. It is
to be hoped that when this new type of gamma process is
studied it can be used to obtain improvements in the statis-
tical fits for real cases, such as the one considered in this
paper, that of the total stock of private cars-petrol in Spain.
For this purpose, we will have to locate the ‘‘exogenous fac-
tors” that are assumed to influence the real pattern of the
trend function, and that are capable of incorporating into
the global model the ‘‘irregularities” (the discrepancies
between the observed values and those predicted by the
estimated trend) that can be observed when the SGDP is
used, as shown in the present paper – for example, explain-
ing the sharp change in the trend of the total stock of private
cars-petrol between 2000 and 2006 in terms of the evolution
of certain exogenous factors such as prices and/or fiscal
measures with respect to the quantity of CO2 emissions.
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