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Abstract

The principal objective of the present study is to examine the possibilities of using a

Gompertz-type innovation diffusion process as a stochastic growth model of natural-gas

consumption in Spain, and to compare our results with those obtained, on the one hand, by

stochastic logistic innovation modelling and, on the other, by using a stochastic lognormal

growth model based on a non-innovation diffusion process. Such a comparison is carried out

taking into account the macroeconomic characteristics and natural-gas consumption patterns

in Spain, both of which reflect the current expansive situation characterizing the Spanish

economy. From the technical standpoint a contribution is also made to the theory of the

stochastic Gompertz Innovation diffusion process (SGIDP), as applied to the case in

question.
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Nomenclature

â,b̂ maximum likelihood of the drift parameters a and b
ĉ estimator of the diffusion coefficient c
DLR dynamic linear-regression
dxðtÞ stochastic Ito’s differential of xðtÞ
E mathematical expectation

FNð0;1Þ cumulative normal standard-distribution

IEA International Energy Agency

ktep thousand metric tons of oil equivalent

mðtÞ trend function

mðtjsÞ conditional trend function

SGIDP stochastic Gompertz innovation diffusion process
SDE stochastic differential-equation

vlower lower limit of the confidence interval

vupper upper limit of the confidence interval

wðtÞ Wiener standard process

xðtÞ total natural-gas consumption

a conditional confidence interval
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1. Introduction

Various deterministic and stochastic models have been applied to describe and

forecast the evolution of natural-gas consumption in different situations (residential,

industrial or national consumption, in large geographic areas, in stable or developing

economies, etc.). For example, Maddala et al. [1] proposed a dynamic linear re-

gression (DLR) model to estimate short-run and long-run elasticities of residential

demands for natural gas in the USA for each of 49 states, as a function of the real per
capita personal income, the real residential natural-gas price, the real residential

electricity price and the heating and cooling degree days. Subsequently, Batalgi et al.

[2] discussed problems that might arise in evaluating forecasts produced with the

above model, particularly as regards shrinkage estimators. Sarak and Saturau [3]

described a deterministic model to forecast natural-gas consumption for residential

heating in certain areas of Turkey, based on previous studies performed by Dur-

mayaz et al. [4]. Other studies have examined the total (domestic and industrial)

consumption of natural gas and other fuels in large geographic areas. For example,
Siemek et al. [5] consolidated earlier studies by Hubbert [6] and by Al Fattah et al.

[7], proposing a deterministic model based on the logistic growth curve to describe

and forecast natural-gas consumption in Poland, taking into account the macro-

economic context and the economic cycles affecting the country. Stochastic logistic

growth models have also been used in relation to the consumptions of various fuels,

with special attention to that of electricity. For example, Giovanis and Skiadas [8]
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described and forecasted total energy consumption in the USA and in Greece, de-

veloping estimation methods that were based on statistical inference by continuous

sampling for this type of logistic diffusion, and obtained good results. Other models

of non-logistic deterministic growth, notably the Gompertz curve, have been widely

used to describe phenomena such as the diffusion of technological innovations and

the marketing of new products. A representative example is the model proposed by
Franses [9] concerning the sale of new cars in the context of cointegrated trivariate

systems fitted to market data from the Netherlands.

Darrat [10] discussed statistical problems associated with the Franses model [9],

analyzing questions related to cointegration, and suggested the possibility of using

other explanatory variables. Skiadas and Giovanis [11] applied the stochastic version

of Bass’s classical growth-model to the study of electricity consumption in Greece.

This paper, in which we examine the possibilities of using a SGIDP as a stochastic

growth model of natural-gas consumption in Spain, is structured as follows: in the
next section, we define this process as a solution of Ito’s stochastic differential

equation (SDE) and then, using Ito’s formula, the analytical expression of this

process is found, after which the trend and conditional trend functions are deter-

mined. In Section 3, the parameter estimators of the proposed process are derived by

two methods, firstly, the maximum likelihood based on continuous sampling used to

estimate the parameters in the drift coefficient; the second is used to approximate the

parameters in the diffusion coefficient. Therefore, a confidence interval of the model

is obtained. In the last section, the model is applied to time-series data of natural-gas
consumption in Spain and provides sufficiently good results. Our results are com-

pared with those obtained, on the one hand, by stochastic logistic innovation

modelling and, on the other, by using a stochastic lognormal growth model based on

the non-innovation diffusion process.
2. The stochastic Gompertz innovation diffusion process

2.1. The SGIDP model

The stochastic version of the Gompertz innovation diffusion process, can be de-

fined ([12] and [13]) by the following SDE
dxðtÞ ¼ axðtÞð � bxðtÞ log xðtÞÞdt þ cxðtÞdwðtÞ; xðsÞ ¼ xs; ð1Þ

c > 0, xs 2 R�

þ and wðtÞ is a one-dimensional Wiener standard process, with inde-

pendent increment wt � ws normally distributed with mean zero and variance t � s,
for tP s.

By applying the Ito formula to the transformation ebt logðxðtÞÞ, and if we denote

by c ¼ a� c2=2, we obtain the solution of the Eq. (1) (which presented the analytic
expression of SGIDP) in the following form
xðtÞ ¼ exp logðxsÞe�bðt�sÞ
�

þ c
b
ð1� e�bðt�sÞÞ

�
exp c

Z t

s
e�bðt�sÞdws

� �
:
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2.2. Trend and conditional trend functions of the SGIDP

The conditional trend function of the process is given by
mðt j sÞ ¼ E xðtÞ j xðsÞð ¼ xsÞ

¼ exp logðxsÞe�bðt�sÞ
�

þ c
b

1
�

� e�bðt�sÞ��Eexp c
Z t

s
e�bðt�sÞdws

� �
:

The random variable in the last expression, is normally distributed with mean zero

and variance c2
R t
s e

�2bðt�sÞds and so its expectation can be calculated using the

(Gardiner [14]) relation
E exp ztð Þð Þ ¼ exp
1

2
EðztÞ2

� �
;

where zt is a zero-Gaussian random process. Then, we have
E exp c
Z t

s
e�bðt�sÞdws

� �� �
¼ exp

c2

2

Z t

s
e�2bðt�sÞds

� �
:

After substitution, we obtain the final form of the conditional trend function of

the process
mðt j sÞ ¼ exp logðxsÞe�bðt�sÞ
�

þ c
b

1
�

� e�bðt�sÞ�þ c2

4b
1
�

� e�2bðt�sÞ��: ð2Þ
With the initial condition P ðxð0Þ ¼ x0Þ ¼ 1, the trend function produces
mðtÞ ¼ exp logðx0Þe�bt

�
þ c
b

1
�

� e�bt
�
þ c2

4b
1
�

� e�2bt
��

: ð3Þ
These functions are used in the final section to forecast the future values of the

model.
3. Inference in the SGIDP

In this section, we examine the SGIDP estimation parameters. Two methods are

presented, the first of which is used to estimate the drift parameters a and b by the

maximum likelihood principle in continuous sampling, while the second is used to

approximate the parameter in the diffusion coefficient c2 (the white noise).
3.1. Estimation of drift parameters

The two parameters in the drift a and b are to be estimated from an observed

sample path xðtÞ; t 2 ½0; T �f g: for this, we suppose that we have observed the process

in the interval ½0; T �, then the likelihood estimators of the parameters [15] are given

by the following equations:
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â ¼

R T
0
ðlogðxðtÞÞÞ2dt

� � R T
0

dxðtÞ
xðtÞ

� �
�

R T
0
logðxðtÞÞdt

� � R T
0

log xðtÞ
xðtÞ dxðtÞ

� �

T
R T
0
log2ðxðtÞÞdt �

R T
0
logðxðtÞÞdt

� �2
; ð4Þ

b̂ ¼

R T
0
logðxðtÞÞdt

� � R T
0

dxðtÞ
xðtÞ

� �
� T

R T
0

log xðtÞ
xðtÞ dxðtÞ

� �

T
R T
0
log2ðxðtÞÞdt �

R T
0
logðxðtÞÞdt

� �2
: ð5Þ
In practice, as we do not have continuous sampling, we must consider approxi-

mations based on the discrete observations of the process at times t0 ¼ 0; . . . ; tn ¼ T
(discrete sampling). By using conditioned likelihood based on the transition density

of Gompertz diffusion, very complicated equations are obtained in [16], which,

nonetheless, can be solved numerically. An alternative method, used in the present
study, is to replace the stochastic integrals in expressions (4) and (5) by Riemann

integrals, applying Ito’s formula, and then approximating the integrals by the

trapezoidal method.
3.2. Estimation of the noise coefficient

In order to estimate the coefficient c, we can extend the procedure proposed in [17]

for estimating the coefficient diffusion for a linear SDE with multiplicative noise to

the case of a non-linear SDE with multiplicative noise: the method is the same as in

[18]; the resulting estimator having the following form:
ĉ ¼ 1

T � 1

XT
t¼2

j xðtÞ � xðt � 1Þ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t xðtÞxðt � 1Þ

p :
3.3. A confidence interval of the (SGIDP)

Let vðs; tÞ ¼ X ðtÞ j xðsÞ ¼ xs. As we mentioned in the Section (2.2), it is known that

the Ito integral c
R t
s e

�2bðt�sÞdws is Gaussian with mean zero and variance

c2
R t
s e

�2bðt�sÞds. Then a random variable z is given by
z ¼ logðvðs; tÞÞ � lðs; tÞ
mðs; tÞ � Nð0; 1Þ;
where
lðs; tÞ ¼ logðxsÞe�bðt�sÞ þ c
b

1
�

� e�bðt�sÞ�;
m2ðs; tÞ ¼ c2

2b
1
�

� e�2bðt�sÞ�:

A a% conditional confidence interval for z is given by P ð��6 z6 �Þ ¼ a. From

this, we can obtain a confidence interval of vðs; tÞ with following form:

vlowerðs; tÞ6 vðs; tÞ6 vupperðs; tÞ, where,
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vlowerðs; tÞ ¼ exp lðs; tÞf � nmðs; tÞg; ð6Þ

vupperðs; tÞ ¼ exp lðs; tÞf þ nmðs; tÞg; ð7Þ

with n ¼ F �1

Nð0;1Þðð1þ aÞ=2Þ and where F �1
Nð0;1Þ is the inverse cumulative normal stan-

dard distribution.

By Zehna’s theorem, the estimated trend, conditional trend functions and the

confidence interval of the process can be obtained from (2), (3), (6) and (7) by re-
placing the parameters by their estimators.
4. Application to gas consumption in Spain

In Spain, the proportion of natural gas within the total energy consumption

increased consistently during the period 1973–2000. In particular, between 1990

and 2000, natural-gas consumption rose from 7.5 to 14.2% of the total energy-
consumption in Spain, while the proportions of final energy derived from oil

and electricity, in the same period, varied from 67.4% to 64.1% and from

18.1% to 18.8%, respectively. During a similar period, according to Interna-

tional Energy Agency (IEA) data, the consumption of the above sources of

energy in OECD countries varied as follows: 18.86–19.58% (gas); 52.2–52.86%

(oil); 17.50–19.66% (electricity). With regard to the European Union, the re-

spective figures were: 20.6–23.2% (gas); 46.03–48.1% (oil) and 18.06–19.5%

(electricity). There has been a notable increase in the contribution of natural
gas to energy consumption in Spain, in comparison with EU and OECD

countries.

In the Spanish market, the total consumption of primary energy obtained from

natural gas presents structural characteristics similar to those referring to final en-

ergy consumption. Other characteristics of the energy market in Spain can be con-

sulted in [19].

The endogenous consumption pattern in Spain, in absolute terms, also presents

a clear upward trend. Between 1973 and 2000, the final consumption of energy
obtained from natural gas rose from 763 to 12292 ktep (thousand metric tons of

oil equivalent), while between 1990 and 2000, from 4531 to 12292 ktep ( an in-

crease of 171.3%). With respect to the total consumption of primary energy de-

rived from natural gas, the increase between 1990 and 2000 was even greater, at

204.46%. Finally, the separation, within total demand for gas (final energy), of

domestic-commercial use from industrial use (including electricity generation and

cogeneration), reveals values of 18% and 82%, respectively (estimated data for

2002).
The energy market in Spain has been characterized in recent decades by very

important quantitative and structural changes, especially concerning natural gas as a

source of energy. Moreover, this has taken place in a context of an expanding phase

of the economic cycle and significant social changes.
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The SGIDP is applied to the data of total natural-gas consumption in Spain from

1973 to 2000. These data were provided by the Ministry of Economic of Spain [19]

and are included in Table 1.

We use the 25 first data of the above time series in order to estimate the pa-

rameters of the process using the methods described in Sections (3.1) and (3.2). By

using the Matlab package, the resulting values of the estimators are: â ¼ �0:0108,
b̂ ¼ �0:0144 and ĉ ¼ 0:0322. The data from 1998 to 2000 are used to make forecasts

of the future values of the process, with the trend and conditional trend functions

given by expressions (2) and (3) and the confidence interval (given a ¼ 95%) in the

expressions (6) and (7). The results are summarized in Tables 2 and 3.

The performance of the SGIDP for the forecasting period using the trend and

conditional trend function is illustrated in Figs. 1 and 2.

Finally, in order to evaluate the results obtained using the SGIDP in studying our

data series, we compared it with two alternative models; the first being the stochastic
logistic innovation process [11] and the second is the stochastic lognormal model

[20]. The results obtained are shown in Fig. 3.
Table 1

Total natural-gas consumption (in ktep) in Spain

Years 1973 1974 1975 1976 1977 1978 1979

Data 763 820 901 1034 1136 1220 1252

Years 1980 1981 1982 1983 1984 1985 1986

Data 1220 1184 1178 1110 1549 1768 2004

Years 1987 1988 1989 1990 1991 1992 1993

Data 2463 3153 4116 4531 4999 5154 5130

Years 1994 1995 1996 1997 1998 1999 2000

Data 5647 6550 7325 8162 9688 10934 12319

Table 2

Predictions from trend function of the process

Years Real data Trend function Confidence interval

1998 9688 9718 (6510–13,966)

1999 10,934 10,981 (7270–15,934)

2000 12,319 12,430 (8133–18,211)

Table 3

Predictions from conditional trend function of the process

Years Real data Conditional trend Confidence interval

1998 9688 9197 (8626–9795)

1999 10934 10943 (10264–11656)

2000 12319 12373 (11604–13178)
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Fig. 1. Real data versus a trend function.
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Fig. 2. Real data versus a conditional trend function.

122 R. Guti�errez et al. / Applied Energy 80 (2005) 115–124



 1973 1978 1983 1988 1993 1998 2003
0

2000

4000

6000

8000

10000

12000

14000

Years

T
ot

al
 n

at
ur

al
-g

as
 c

on
su

m
pt

io
n 

in
 k

te
p 

Real data
Trend Logistic
Trend Lognormal
Trend Gompertz

Fig. 3. Real data versus trends of the three processes.
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5. Conclusions

• By fitting a Gompertz stochastic model of diffusion and innovation to the data for

total consumption of final energy obtained from natural gas in Spain during the

period 1973–1997, a good description of the series and good short-medium term
forecasts (1998–2000) are obtained.

• The description and forecast using the conditioned trend are considerably better

than those based on the trend alone, although they are only optima in the short

term (year on year).

• For the period in question, the Gompertz model is found to be more suitable than

other stochastic diffusion growth models, namely the logistic (diffusion–innova-

tion) and the lognormal (diffusion–non innovation) models.

• Further studies are required to examine data fitting for versions of the above-men-
tioned stochastic diffusion processes that incorporate exogenous factors given by

non-endogenous variables such as economic and demographic data, using tech-

niques (see, for example [20,21]) that have been successfully applied in other fields.

Thus, we could improve the long-run fits and forecasts achieved, by taking into

account the influences on gas consumption of significant variables within the

socio-economic environment.
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