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Our aim in this article is to obtain efficient estimators of the parameters of the bivariate Kotz type
distribution considering a particular matrix-variate joint dependence between the sample random
vectors. As the normal law is a particular Kotz type distribution, it seems reasonable, taking into
account the known results about the normal law, to search such estimators inside the family of unbiased
linear estimators. However, we have proven that it is not possible to obtain efficient linear estimators.
Then, we have focused our interest on determining the best unbiased linear estimators in the sense
of minimizing the distance to the Cramér-Rao lower bound. The results theoretically obtained are
illustrated in a numerical simulation example.
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1. Introduction

The elliptically contoured distributions have been in the last years the object of a wide research.
This fact is justified for several reasons: on the one hand, this kind of symmetric distributions
models a large number of practical situations and, on the other, the family of elliptically con-
toured distributions includes some of the better known probability distributions (such as the
normal law, the uniform one, the stable and logistic laws, Kotz and Bessel distributions and
Pearson laws, among others) and it also preserves some of the most important and useful prop-
erties of the normal distribution under dependence assumptions between the sample random
vectors.

We will specially mention the works presented by Fang and Zhang [1] and Gupta and
Varga [2], who collected the most important results on the theory of elliptically contoured
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distributions available in the literature and organized them in a unified manner. Another more
specific properties of these distributions have been also approached. In this sense, Shapiro and
Browne [3] and Sutradhar [4] generalized the analysis of covariance valid for the normal law
to the case of elliptical distributions; Golan Kibria and Safiul Haq [5] studied some inference
problems in the linear model with errors having an elliptical distribution; Chu [6] and Girón
and Rojano [7] approached the estimation problem in stochastic systems assuming elliptically
contoured errors, etc.

Our aim in this article is to study the efficiency property of the estimators of the parameters
of the bivariate Kotz type distribution inside the family of unbiased linear estimators. For
this purpose, we assume that the sample random vectors are jointly distributed as a specific
matrix-variate distribution (justified by the form of the bivariate marginal distributions of a
Kotz type random matrix). A similar dependence has been recently used by Gutiérrez and
Jiménez [8, 9] to study the efficiency property in the bivariate Pearson type II and type VII
distributions.

Firstly, the Cramér-Rao regularity conditions are analyzed by using the properties of matrix
differential calculus [10]. Secondly, from the analogy with the normal distribution, and taking
into account the results about efficient estimation in the normal law [11], we construct the
family of unbiased linear estimators of the parameters of the bivariate Kotz type distribution.

First of all, it would be reasonable to think that this class of estimators might contain efficient
estimators. However, it is proven that this is not true in general. Then, our study is focused
on the search of unbiased linear estimators which minimize the distance to the Cramér-Rao
lower bound, concluding that the sample mean and the sample covariance matrix, affected by
an unbiasedness weighting, satisfy this minimum condition.

2. Cramér-Rao regularity conditions

Let us consider Z1, . . . , Zn random vectors identically distributed as a bivariate Kotz type
distribution denoted by K2×1(µ, Σ, q, r, s) with q, r, s ∈ R

+, that is, the probability density
function of each Zi is given by

f (zi) = sr(q/s)

π�(q/s)|�|1/2
[(zi − µ)′Σ−1(zi − µ)]q−1 exp{−r[(zi − µ)′Σ−1(zi − µ)]s}.

We are interested in estimating the unknown parameter vector θ = (µ′, vec′(Σ) where vec(·)
denotes the vec operator. As Σ is a symmetric matrix, vec (Σ) contains repeated elements; so,
in order to simplify the calculus, we have taken v(Σ) (vector formed by the different elements
of vec(Σ)) and, hence θ = (µ′, v′(Σ)) is the parameter considered to be estimated.

Let U be a random variable independent of (Z1, . . . , Zn) such that U 2 is distributed as
a beta distribution β(1, n − 1). Let us assume that X = (X1, . . . , Xn) = (UZ1, . . . , UZn)

is distributed as a matrix-variate Kotz type distribution K2×n(µ1′, Σ ⊗ In, q − n + 1, r, s)

where 1′ = (1, . . . , 1) of dimension 1 × n, ⊗ denotes the Kronecker product and In the
n × n identity matrix. Then, the joint likelihood function is

L(x|θ) = sr(q/s)�(n)

πn�(q/s)|Σ|n/2
(tr((x − µ1′)′Σ−1(x − µ1′)))q−n

× exp{−r(tr((x − µ1′)′Σ−1(x − µ1′)))s}. (1)

In order to study the Cramér-Rao regularity conditions, next we present some useful results
to prove these conditions.



Linear estimation problem 117

LEMMA 1 Let us consider Y = (Y1, . . . , Yk) ∼ K2×k(0, I2 ⊗ Ik, q, r, s) and A a 2 × 2 posi-
tive definite matrix. Then, if X = A1/2Y (where A1/2 denotes the symmetric square root of
matrix A), the moment of order l of X, for l = 1, 2, 3, 4, denoted by

�l(X) =
{

E{vec X ⊗ vec′ X ⊗ · · · ⊗ vec′ X} if l is even

E{vec X ⊗ vec′ X ⊗ · · · ⊗ vec X} if l is odd

is given as follows

(i)

�1(X) = 02k×1

(ii)

�2(X) = �((q + k)/s)r−(1/s)

2k�(q + k − 1)/s
(Ik ⊗ A)

(iii)

�3(X) = 04k2×2k

(iv)

�4(X) = �(k)�((q + k + 1)/s)r−(2/s)

4�(k + 2)�(q + k − 1)/s
(Ik ⊗ A1/2 ⊗ Ik ⊗ A1/2)(2N2k + vecI2kvec′I2k)

× (Ik ⊗ A1/2 ⊗ Ik ⊗ A1/2)

with Na = (1/2)(Ia2 + Ca) being Ca the a2 × a2 commutation matrix.

Proof Firstly, from the properties of the Kronecker product [10], the following relations
between the moments of X and those of Y are deduced

�1(X) = (Ik ⊗ A1/2)�1(Y) (2)

�2(X) = (Ik ⊗ A1/2)�2(Y)(Ik ⊗ A1/2) (3)

�3(X) = (Ik ⊗ A1/2 ⊗ Ik ⊗ A1/2)�3(Y)(Ik ⊗ A1/2) (4)

�4(X) = (Ik ⊗ A1/2 ⊗ Ik ⊗ A1/2)�4(Y)(Ik ⊗ A1/2 ⊗ Ik ⊗ A1/2) (5)

Secondly, by using the properties of the matrix differential calculus [10], it is obtained that

�l(Y) =




i−l ∂ lψY(T)

∂vecT∂vec′T · · · ∂vec′T

∣∣∣∣
T=0

if l is even,

i−l
∂ l
ψY(T)

∂vecT∂vec′T · · · ∂vec′T∂vec T

∣∣∣∣
T=0

if l is odd,

(6)

where ψY(T) denotes the characteristic function of Y, which can be expressed as

ψY(T) = φ(tr(T′T))

since it is the characteristic function of a elliptically contoured random matrix [2]. Then,
differentiating successively ψY(T) by using the properties of the matrix differential calculus,
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we obtain

∂ψ

∂vecT
= 2φ′vecT (7)

∂2ψ

∂vecT∂vec′T
= 4φ′′vecTvec′T + 2φ′I2k (8)

∂3ψ

∂vecT∂vec′T∂vecT
= 8φ′′′(vecT ⊗ vec′T ⊗ vecT) + 4φ′′[(vecT ⊗ I2k)

+ (I2k ⊗ vecT)] + 4φ′′vecI2kvec′T (9)

∂4ψ

∂vecT∂vec′T∂vecT∂vec′T
= 16φiv(vec Tvec′T ⊗ vecTvec′T) + 8φ′′′[(vec Tvec′T ⊗ I2k)

+ (vec′T ⊗ vecI2k ⊗ vec′T) + I2k ⊗ vecTvec′T]
+ 8φ′′′(vecT ⊗ vec′I2k ⊗ vecT) + 4φ′′C2k + 4φ′′I4k2

+ 8φ′′′(I2k ⊗ vecTvec′T + 4φ′′vecI2kvec′I2k)

+ 4φ′′′[(vec′T ⊗ I2k ⊗ vecT) + (vecT ⊗ I2k ⊗ vec′T)].
(10)

By using equations (6)–(10), the moments �l(Y), l = 1, . . . , 4 are obtained. Finally, from
them and equations (2)–(5), the required results are derived, taking into account that −2φ′(0) =
E[Y 2

11] and 4φ′′(0) = 1
3E[Y 4

11] being Y11 the (1, 1)-element of Y.

LEMMA 2 Let us consider X = (X1, . . . , Xn) ∼ K2×n(µ1′, Σ ⊗ In, q, r, ) such that q + n >

1 and r, s ∈ R
+. Let h: R

2×p → R
u×v be a function with p, u, v ∈ N, and i1, . . . , ip ∈

{1, . . . , n}, p different values. Then

(i) EX{h(Σ−1(Xi1 − µ), . . . ,Σ−1(Xip − µ))} = EY{h(Σ−1/2Yi1 , . . . ,Σ
−1/2Yip )}

(ii) EX{h((Xi1 − µ), . . . , (Xip − µ))} = EY{h(Σ1/2Yi1 , . . . ,Σ
1/2Yip )}

where Y = (Yi1 , . . . , Yip ) = UZ, being U and Z independent with U 2 ∼ β(p, n − p) and
Z = (Zi1 , . . . , Zip ) ∼ K2×p(0, I2 ⊗ Ip, q + n − p, r, s).

Proof We show the proof of the first property as the second one is obtained in an analogous
way. From equation (1), it is clear that

EX{h(Σ−1(Xi1 − µ), . . . ,Σ−1( Xip − µ))}

= c0

∫
R2×n

h(Σ−1(xi1 − µ), . . . ,Σ−1(xip − µ))

(
n∑

i=1

(xi − µ)′ Σ−1(xi − µ)

)q−1

× exp

{
−r

(
n∑

i=1

(xi − µ)′ Σ−1(xi − µ)

)s} n∧
i=1

dxi

begin c0 = sr(q+n−1)/s�(n)

πn�(q + n − 1)/s|Σ|n/2
.
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Let I be the integral appearing on the right-hand side of the earlier expression, that is,

I =
∫

R2×n

h(Σ−1(xi1 − µ), . . . ,Σ−1(xip − µ))

(
n∑

i=1

(xi − µ)′Σ−1(xi − µ)

)q−1

× exp

{
−r

(
n∑

i=1

(xi − µ)′Σ−1(xi − µ)

)s} n∧
i=1

dxi

For each k ∈ {1, . . . , n} with k �= ij , j = l, . . . , p, we consider the transformation

zk =

 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




1/2

Σ−1/2(xk − µ).

Then, I can be rewritten as

c1

∫
R2×p

∫
R2×(n−p)

h(Σ−1(xi1 − µ), . . . ,Σ−1(xip − µ))

×

 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




q+n−p−1

× exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s


1 +

n∑
k=1

k �=i1,...,ip

z′
k zk




s


×


1 +

n∑
k=1

k �=i1,...,ip

z′
kzk




q−1

n∧
k=1

k �=i1,...,ip

dzk

p∧
j=1

dxij (11)

where c1 = |Σ|(n−p)/2.
Next, denoting by I1 the integral below

I1 =
∫

R2×(n−p)

exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s


1 +

n∑
k=1

k �=i1,...,ip

z′
kzk




s


×


1 +

n∑
k=1

k �=i1,...,ip

z′
kzk




q−1

n∧
k=1

k �=i1,...,ip

dzk

and considering, for each k ∈ {1, . . . , n} with k �= ij , j = 1, . . . , p the transformation given
by zk = (tk cos θk, tk sin θk)

′ where tk ∈ R
+, θk ∈ (0, 2π ], it is deduced that I1 is equivalent to
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this integral

(2π)n−p

∫
(R+)n−p

exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s


1 +

n∑
k=1

k �=i1,...,ip

t2
k




s


×


1 +

n∑
k=1

k �=i1,...,ip

t2
k




q−1

n∏
k=1

k �=i1,...,ip

tk

n∧
k=1

k �=i1,...,ip

dtk. (12)

Using the transformation to polar coordinates

tj1 = t cos θ1

tjk
= t

k−1∏
i=1

sin θi cos θk (2 ≤ k ≤ n − p − 1)

tjn−p
= t

n−p−1∏
i=1

sin θi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t ∈ R
+, θi ∈

(
0,

π

2

]
,

i = 1, . . . , n − p − 1,

it is obtained that equation (12) can be rewritten as follows

(2π)n−p

∫
R+

(1 + t2)q−1t2n−2p−1 exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s

(1 + t2)s


 dt

×
n−p−1∏

i=1

∫ π/2

0
sin2(n−p−i)−1 θi cos θi dθi

Consequently,

I1 = 2πn−p

�(n − p)

∫
R+

(1 + t2)q−1t2n−2p−1

× exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s

(1 + t2)s


 dt

and hence, equation (11) can be expressed as

c2

∫
R2×p

h(Σ−1(xi1 − µ), . . . ,Σ−1(xip − µ))

×

 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




q+n−p−1 ∫
R+

(1 + t2)q−1t2n−2p−1

× exp


−r


 p∑

j=1

(xij − µ)′Σ−1(xij − µ)




s

(1 + t2)s


 dt

p∧
j=1

dxij , (13)
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where

c2 = 2πn−p|Σ|(n−p)/2

�(n − p)
.

Next, for each ij , j = l, . . . , p, we consider the transformation yij = Σ−1/2(xij − µ); so
equation (13) can be rewritten as follows

c3

∫
R2×p

h(Σ−1/2yi1
, . . . ,Σ−1/2yip

)


 p∑

j=1

y′
ij

yij




q+n−p−1

×
∫

R+
(1 + t2)q−1t2n−2p−1 exp


−r


 p∑

j=1

y′
ij

yij




s

(1 + t2)s


 dt

p∧
j=1

dyij
,

where

c3 = 2πn−p|Σ|n/2

�(n − p)
.

Finally, the desired result is deduced taking into account that if Y = (Yij )j=1,...,p = UZ,
being U and Z independent with Z = (Zij )j=1,...,p ∼ K2×p(0, I2 ⊗ In−p, q + n − p, r, s) and
U 2 ∼ β(p, n − p), the integral I can be expressed as

I = πn�((q + n − 1)/s)|Σ|n/2

sr(q+n−1)/s�(n)

∫
R2×p

h(Σ−1/2yi1
, . . . ,Σ−1/2 yip

)f (yi1
, . . . , yip

)

p∧
j=1

dyij

= 1

c0
EY{h(Σ−1/2Yi1 , . . . ,Σ

−1/2Yip )}

THEOREM 1 Under the initial conditions, let us define Yi = Σ−1/2(Xi − µ). Then, for each
i ∈ {1, . . . , n} and m ∈ N such that m < q, we have

(i)

EX

{(
n∑

k=1

Y′
kYk

)−m

Σ−1/2Yi

}
= 02×1

(ii)

EX

{(
n∑

k=1

Y′
kYk

)−m

Σ−1/2YiY′
iΣ

−1/2

}
= �((q − m + 1)/s)r(m−1)/s

2n�(q/s)
Σ−1

(iii)

EX

{(
n∑

k=1

Y′
kYk

)−m

Σ−1/2Yi vec′(Σ−1/2YiY′
iΣ

−1/2)

}
= 02×4

(iv)

EX

{(
n∑

k=1

Y′
kYk

)−m

vec (Σ−1/2YiY′
iΣ

−1/2) vec′(Σ−1/2YiY′
iΣ

−1/2)

}

= �((q − m + 2)/s)r(m−2)/s

4n(n + 1)�(q/s)
(Σ−1/2 ⊗ Σ−1/2) (2N2 + vecI2vec′I2) (Σ−1/2 ⊗ Σ−1/2).
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Proof Let us consider a function h: R
2 → R

u×v . Then, from Lemma 2, we have that

EX

{(
n∑

k=1

(Xk − µ)′Σ−1(Xk − µ)

)−m

h(Σ−1(Xi − µ))

}

= �((q − m)/s)rm/s

�(q/s)
E Yi

{
h(Σ−1/2Yi )

}
being Yi = UZi with U and Zi independent and such that Zi ∼ K2×1(0, I2, q − m, r, s) and
U 2 ∼ β(1, n − 1). Then, the result is easily obtained as a consequence of Lemma 1.

THEOREM 2 Under the initial conditions, let us define Yi = Σ−1/2(Xi − µ). Then, if i, j ∈
{1, . . . , n} with i �= j and m ∈ N, such that m < q. we have

(i)

EX

{(
n∑

k=1

Y′
kYk

)−m

Σ−1/2Y′
jΣ

−1/2

}
= 02×2

(ii)

EX

{(
n∑

k=1

Y′
kYk

)−m

Σ−1/2Yivec′ (Σ−1/2Yj Y′
jΣ

−1/2
)} = 02×4

(iii)

EX

{(
n∑

k=1

Y′
kYk

)−m

vec′(Σ−1/2YiY′
iΣ

−1/2)vec′(Σ−1/2Yj Y′
jΣ

−1/2)

}

= �((q − m + 2)/s)r(m − 2)/s

4n(n + 1)�(q/s)
vecΣ−1vec′Σ−1.

Proof By using a similar reasoning to that used in the proof of the previous theorem, given
a function h: R

2×2 → R
u×v , from Lemma 2 we have

EX

{
h(Σ−1(Xi − µ), Σ−1(Xj − µ))(∑n

k=1(Xk − µ)′Σ−1(Xk − µ)
)m
}

= �((q − m)/s)r(m/s)

��(q/s)
EY{h(Σ−1/2Yi , Σ

−1/2Yj )}

being Y = (Yi ,Yj ) = UZ with U and Z independent and such that U 2 ∼ β(2, n − 2) and
Z = (Zi , Zj ) ∼ K2×2(0, I2 ⊗ I2, q − m − 1, r, s). Hence, as a consequence of Lemma 1 the
established properties are easily derived.

The earlier results guarantee that the Cramér-Rao regularity conditions are satisfied, being
the Fisher information matrix

IK
n (µ′, v′(Σ)) =

(
IK
n (µ′) 02×3

03×2 IK
n (v′(Σ))

)
,

where

IK
n (µ)′ = 2r(1/s) �(q − 1)/s

�(q/s)
[(n − 1)2 + s(q − 1)]Σ−1

IK
n (v′(Σ)) = 1

4
Q
[(

−n2 + n
n2 + qs

n + 1

)
vecΣ−1vec′Σ−1 + n2 + qs

n + 1
(Σ−1 ⊗ Σ−1)2N2

]
Q′

with Q = (E11 + E22 + E34) ∈ R
3×4 (Eij denotes the elemental matrix of dimension 3 × 4

whose ij th element is the unit and the remaining elements are all zero).
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In view, if the Fisher information matrix obtained, we may remark that it presents a similar
structure to that obtained in the normal case assuming independence between the random
vectors. More specifically, the submatrices situated in the diagonal, IK

n (µ′) and IK
n (v′(Σ)),

correspond to the Fisher information matrices associated with the estimators of the individual
parameters µ and v (Σ), respectively, and the remaining ones are zero matrices. The structure
of this matrix is very useful to study the efficiency property of the estimators of the joint
parameter (µ′, v′(Σ))′.

3. Unbiased linear estimators of minimum distance

3.1 Estimators of µ

As we have previously mentioned, the normal law is a particular Kotz type distribution. For
this reason, it is reasonable to think that the sample mean, X, may be an efficient estimator
of µ. However, we have proven that this estimator does not satisfy the efficiency property.
Actually, the determinant of the sample mean covariance matrix, for q > 1, is given by

det(Cov(X, µ)) = �((q + 1)/s)2r−(2/s)

4n4�(q/s)2
det Σ (14)

Then, if q > 2, the associated efficiency equation is

�(q/s)4

�((q − 1)/s)2�((q + 1)/s)2
= ((n − 1)2 + s(q − 1))2

n4

The following result guarantees that there are not solutions of this equation.

THEOREM 3 For all n ∈ N and q, s ∈ R
+, with q > 2, the following inequality holds

�(q/s)2

�((q − 1)/s)�(q + 1)/s
<

(n − 1)2 + s(q − 1)

n2

Proof Firstly, from the definition of the Gamma function due to Weierstrass we obtain

�(q/s)2

�((q − 1)/s)�(q + 1)/s
= q2 − 1

q2

∞∏
n=1

(
1 − 1

(q + sn)2

)
(15)

Secondly, if k ∈ N, the product in the second term of equation (15) can be bounded as follows

∞∏
n=1

(
1 − 1

(q + sn)2

)
<

(
1 − 1

(q + s)2

)k ∞∏
n=1

(
1 − 1

(q + s)2n2

)

=
(

1 − 1

(q + s)2

)k sin π/(q + s)

π(q + s)

Finally, we have proven that for each q > 2 and s ∈ R
+ there exists k ∈ N satisfying

q2 − 1

q2

(
1 − 1

(q + s)2

)k sin π/(q + s)

π/(q + s)
≤ (n − 1)2 + s(q − 1)

n2
, ∀n ∈ N �
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As a consequence of this result, we have tried to search efficient estimators inside the family
of unbiased linear estimators of µ, defined by

FK
µ =


µ̂ =

(
n∑

i=1

αi

)−1 n∑
i=1

αiXi

/
α1, . . . , αn ∈ R


 (16)

but we have proven that it is not possible to find such estimators. In fact, for each µ̂ ∈ FK
µ ,

the efficiency equation associated, for q > 2, is

�(q/s)4

�((q − 1)/s)2�((q + 1)2/s)2

n2

((n − 1)2 + s(q − 1))2
=
(

n∑
i=1

αi

)−4 ( n∑
i=1

α2
i

)2

and, by using Theorem 3, taking into account the following property

min
α1,...,αn

(
n∑

i=1

αi

)−2 n∑
i=1

α2
i = 1

n

we can guarantee that there are not efficient linear estimators of µ.
Then, we have focused our interest on determining the best unbiased linear estimators of µ

in the sense of minimizing the distance to the Cramér-Rao lower bound. So, we have proven
that, for q > 2,

min

{
det(Cov(µ̂, µ))

µ̂ ∈ FK
µ

}
= �((q + 1)/s)2r−(2/s)

4n4�(q/s)2
det (Σ)

Hence, from equation (14), we can conclude that the sample mean is an unbiased linear
estimator which minimizes the distance to the Cramér-Rao lower bound.

3.2 Estimators of Σ

Taking again into account the analogy with the normal law, it would be reasonable to think
that the sample covariance matrix, affected by an unbiasedness weighting, defined by

Σ̂∗ = 2n�(q/s)

(n − 1)�((q + 1)/s)

n∑
i=1

(Xi − X̄)(Xi − X̄)′

could be an efficient estimator. However, we have proven that this estimator is not efficient in
general.

In order to prove this property, next we show a result which will be useful to obtain the
covariance matrices of the estimators.

THEOREM 4 Under the initial conditions, let us define Yi = Xi − µ. Then, for q > 1 and
i1, i2, i3, i4 ∈ {1, . . . , n} we have

(i)

EX{vec(Yij Y′
ik
)vec′(Yij Y′

ik
)} = �((q + 2)/s)r−(2/s)

4n(n + 1)�(q/s)
(Σ ⊗ Σ), ∀j �= k ∈ {1, 2, 3, 4}
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(ii)

EX{vec(Yij Y′
ik
)vec′(Yik Y

′
ij
)}= �((q + 2)/s)r−(2/s)

4n(n + 1)�(q/s)
(Σ ⊗ Σ)C2, ∀j �= k ∈ {1, 2, 3, 4}

(iii)

EX{vec(Yj1 Y′
j2)vec′(Yj3 Y′

j4
)} = 04×4, ∀(j1, j2, j3, j4) ∈ P(i1, i1, i2, i3)

(iv)

EX{vec(Yj1 Y′
j2)vec′(Yj3 Y′

j4
)} = 04×4, ∀(j1, j2, j3, j4) ∈ P(i1, i1, i1, i2)

(v)

EX{vec(Yi1 Yi2)vec′(Yi3 Y′
i4
)} = 04×4

where, for each n ∈ N, P (a1, . . . , an) denotes the group of permutations of (a1, . . . , an).

Proof These properties are immediately deduced as a consequence of Lemma l, taking into
account that the matrices which appear in (i), (ii) and (iii) are submatrices of �4(Σ

1/2Y2),
the matrix in (iv) is a submatrix of �4(Σ

1/2Y3) and the one in (v) is a submatrix of
�4(Σ

1/2Y4), being Yi = UZi with U and Zi independent and such that U 2 ∼ β(i, n − i)

and Zi ∼ K2×i (0, I2 ⊗ Ii , q − i, r, s).

From this theorem, together with Lemmas 1 and 2, we have obtained the covariance matrix
of Σ̂∗, being its determinant

det (Cov(Σ̂∗, Σ)) = 4n2�(q/s)3�((q + 2)/s)3

(n2 − 1)3�((q + 1)/s)6

×
(

n − (n2 − 1)�((q + 1)/s)2

n�(q/s)�(q + 2)/s

)
(det Σ)3, q > 1 (17)

Then, for q > 2, the efficiency equation associated with this estimator is given by

4�((q + 1)/s)6

qs�(q/s)3�((q + 2)/s)3
=
(

n2 + qs

n + 1

)2 (
n

n2 − 1

)3 (
n − (n2 − 1)�((q + 1)/s)2

n�(q/s)�(q + 2)/s

)

Although, there are some particular cases in which it is possible to find q, s and n solutions
of this equation (being then Σ̂∗ an efficient estimator of Σ), this does not happen in general.

For this reason, we have tried to search efficient estimators inside the family of unbiased
linear estimators of Σ, defined by

FK
� =


Σ̂ = 2n2�(q/s)r(1/2)

(n − 1)�(q + 1)/2

(
n∑

i=1

βi

)−1 n∑
i=1

βi(Xi − X̄)(Xi − X̄)′
/

βi ∈ R


 (18)



126 R. Gutiérrez-Jáimez

However, it is not possible to obtain such estimators. Actually, the efficiency equation
associated with the estimators of this family is given by, for q > 2,

k =
(

n∑
i=1

βi

)−6




n∑
i=1

β2
i + 1

(n − 1)2
2

n∑
i=1

n∑
j=1
i<j

βiβj




2

×




(
2 − (n + 1)�((q + 1)/s)2

n�(q/s)�(q + 2)/s

) n∑
i=1

β2
i

+
(

1 + (n − 1)2

(n − 1)2
− (n + 1)�((q + 1)/s)2

n�(q/s)�(q + 2)/s

)
2

n∑
i=1

n∑
j=1
i<j

βiβj


,

where

k = 4

qs

(
n + 1

n2 + qs

)2 (
n + 1

n

)3
�((q + 1)/s)6

�(q/s)3�((q + 2)/s)3

and, if β1, . . . , βn would be solutions of this equation, they might verify the following property

min
β1,...,βn

(
n∑

i=1

βi

)−2

2
n∑

i=1

n∑
j=1
i<j

βiβj = n − 1

n

As it is not possible to find β1, . . . , βn satisfying this condition (except for particular cases of
q, s, n), we conclude that there are not efficient linear estimators different from that indicated
earlier.

Then, our aim is focused on determining the best unbiased linear estimators in the sense of
minimizing the distance to the Cramér-Rao lower bound. For this purpose, the determinant of
the covariance matrix of the estimators in this family is given by

min

{
det(Cov(Σ̂, Σ))

Σ̂ ∈ FK
Σ

}
= 4n3�(q/s)3�((q + 2)/s)3

(n2 − 1)3�((q + 1)/s)6

×
(

n − (n2 − 1)�((q + 1)/s)2

n�(q/s)�(q + 2)/s

)
(det Σ)3

and, taking into account (17), we conclude that the sample covariance matrix, weighted by an
unbiasedness constant, is an unbiased linear estimator of minimum distance to the Cramér-Rao
lower bound.

3.3 Estimators of (µ, Σ)

From the considerations made in the previous sections and the structure of the Fisher informa-
tion matrix, the joint estimator, (X, Σ̂∗), is an unbiased linear estimator of minimum distance
to the Cramér-Rao lower bound.

4. Numerical simulation results

The results theoretically obtained in the previous sections are illustrated in the numerical
simulation example we next present. Specifically, our aim in this example is to show clearly
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Table 1. Unbiased linear estimations of µ for different values of their weightings.

Weightings, αi Estimations, µ̂ Weightings, αi Estimations, µ̂

α2i = 0.9
α2i+1 = 1 µ̂1 =

(−0.9467
3.981

)
α2i = 1

α2i+1 = 2 µ̂10 =
(−0.9342

3.9342

)
α2i = 0.8
α2i+1 = 1 µ̂2 =

(−0.9419
3.963

)
α2i = 1

α2i+1 = 3 µ̂11 =
(−0.9404

3.9576

)
α2i = 0.7
α2i+1 = 1 µ̂3 =

(−0.9378
3.9476

)
α2i = 1

α2i+1 = 4 µ̂12 =
(−0.9442

3.9726

)
α2i = 0.6
α2i+1 = 1 µ̂4 =

(−0.9342
3.9342

)
α2i = 1

α2i+1 = 5 µ̂13 =
(−0.9467

3.981

)
α2i = 0.5
α2i+1 = 1 µ̂5 =

(−0.931
3.9225

)
α2i = 1

α2i+1 = 6 µ̂14 =
(−0.9484

3.9876

)
α2i = 0.4
α2i+1 = 1 µ̂6 =

(−0.9283
3.9122

)
α2i = 1

α2i+1 = 7 µ̂15 =
(−0.9509

3.9966

)
α2i = 0.3
α2i+1 = 1 µ̂7 =

(−0.9259
3.9031

)
α2i = 1

α2i+1 = 8 µ̂16 =
(−0.9498

3.9926

)
α2i = 0.2
α2i+1 = 1 µ̂8 =

(−0.9237
3.8949

)
α2i = 1

α2i+1 = 9 µ̂17 =
(−0.9517

3.9997

)
α2i = 0.1
α2i+1 = 1 µ̂9 =

(−0.9217
3.8875

)
α2i = 100

α2i+1 = 0.01 µ̂18 =
(−0.8743

3.7621

)

Table 2. Unbiased linear estimations of E for different values of their weightings.

Weightings, βi Estimations, v (Σ̂) Weightings, βi Estimations, v (Σ̂)

β2i = 0.9
β2i+1 = 1 v (Σ̂1) =


 1.2363

−0.2681
1.1633


 β2i = 1

β2i+1 = 2 v (Σ̂10) =

 1.2707

−0.3089
1.2148




β2i = 0.8
β2i+1 = 1 v (Σ̂2) =


 1.2435

−0.2767
1.1744


 β2i = 1

β2i+1 = 3 v (Σ̂11) =

 1.2911

−0.3326
1.2431




β2i = 0.7
β2i+1 = 1 v (Σ̂3) =


 1.2515

−0.2863
1.1866


 β2i = 1

β2i+1 = 4 v (Σ̂12) =

 1.3032

−0.3466
1.2594




β2i = 0.6
β2i+1 = 1 v (Σ̂4) =


 1.2606

−0.2969
1.1999


 β2i = 1

β2i+1 = 5 v (Σ̂13) =

 1.3112

−0.3558
1.2698




β2i = 0.5
β2i+1 = 1 v (Σ̂5) =


 1.2707

−0.3089
1.2148


 β2i = 1

β2i+1 = 6 v (Σ̂14) =

 1.317

−0.3623
1.2772




β2i = 0.4
β2i+1 = 1 v (Σ̂6) =


 1.2824

−0.3225
1.2312


 β2i = 1

β2i+1 = 7 v (Σ̂15) =

 1.3213

−0.3672
1.2826




β2i = 0.3
β2i+1 = 1 v (Σ̂7) =


1.2957

−0.338
1.2494


 β2i = 1

β2i+1 = 8 v (Σ̂16) =

1.3246

−0.371
1.2867




β2i = 0.2
β2i+1 = 1 v (Σ̂8) =


 1.3112

−0.3558
1.2698


 β2i = 1

β2i+1 = 9 v (Σ̂17) =

1.3273

−0.374
1.29




β2i = 0.1
β2i+1 = 1 v (Σ̂9) =


 1.3295

−0.3765
1.2927


 β2i = 100

β2i+1 = 0.01 v (Σ̂18) =

 1.1188

−0.1172
1.9301
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that the sample mean and the sample covariance matrix, affected by an unbiasedness weighting,
minimize the distance to the Cramér-Rao lower bound.

By means of the method of simulating values of random matrices based on the knowl-
edge of their matrix-variate conditional and marginal distributions, we have simulated,
by using MATLAB program, a matrix value for a random matrix, X, distributed as
K2×100((−1, 4)′1′, I2 ⊗ I100, 4, 1, 1). Next, from these simulations, by using expressions (16)
and (18), we have obtained different unbiased linear estimations of µ and Σ, taking different
values for {αi}i=1,...,100 and {βi}i=1,...,100, respectively; specifically, these are the values for the
sample mean and the sample covariance matrix

x̄ =
(−0.9523

4.0022

)
, Σ̂∗ =

(
1.2298 −0.2603

−0.2603 1.1531

)

and the remaining estimations for µ, and Σ are shown in tables 1 and 2, respectively. For all
of them (including x̄ and Σ̂∗), we have also calculated the distances to the Cramér-Rao lower
bound. The results obtained are presented in figures 1 and 2.

From table 1 and figure 1, it is clearly observed that the smallest distance to the Cramér-Rao
lower bound corresponds to the sample mean. Moreover, as α2i decreases taking α2i+1 fixed
and equal to 1 (this occurs from µ̂1 to µ̂9), the distances to the Cramér-Rao lower bound are
worse. The same consideration can be made from µ̂10 to µ̂17 (obtained taking α2i fixed and
equal to 1 and increasing α2i+1). The worst estimation corresponds to µ̂18, obtained taking a
large value for α2i and a small value for α2i+1.

Figure 1. Distances to Cramér-Rao lower bound for the different unbiased linear estimations of µ.
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Figure 2. Distances to Cramér-Rao lower bound for the different unbiased linear estimations of Σ.

Let us note that analogous considerations can be made from table 2 and figure 2. Hence,
we can conclude that the sample mean and the sample covariance matrix, affected by an
unbiasedness weighting, are the best unbiased linear estimations of the parameters µ, and Σ,
respectively, in the sense of minimizing the distance to the Cramér-Rao lower bound.

5. Conclusions

This work approaches the search of efficient estimators of the parameters of the bivariate Kotz
type distribution assuming a particular joint dependence between the sample random vectors.

Firstly, from the analogy with the normal law, it is reasonable to think that the sample mean
and the sample covariance matrix, affected by an unbiasedness weighting, may be efficient
estimators. As this consideration is not true, secondly we try to find such estimators inside
the family of unbiased linear estimators of the parameters but we prove that there are not
efficient linear estimators. Finally, our interest is focused in determining the best unbiased
linear estimators in this family, obtaining that these estimators are the sample mean and the
sample covariance matrix, weighted by an unbiasedness constant. From a numerical simulation
study, it is shown that both estimators are the best in the sense of minimizing the distance to
the Cramér-Rao lower bound.
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