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We consider an extension of the Gompertz homogeneous diffusion process by

introducing time functions (exogenous factors) that affect its trend. After

obtaining its transition probability density function, the inference on the para-

meters of the process is obtained by considering discrete sampling of the sample

paths. Finally, we apply this stochastic process to model housing price in Spain.

INTRODUCTION

The study of stochastic systems by using Markovian processes has

become of great interest to investigators in many disciplines (biology,

physics, demography, economics, cybernetics, etc.). Among these pro-

cesses, diffusions have been widely considered and its study has covered

several areas such the inference (especially the estimation of the para-

meters of the drift and the diffusion coefficient) and first passage times

through varying boundaries.

Diffusions can be introduced from stochastic differential equations,

this being the natural way when the process is observed continuously. An

extensive review of this theory can be found in the literature (Prakasa

Rao 1999) and related recent work has been done by Kloeden et al.

(1996) and Singer (2002), among others. On the other hand, the statistical
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inference for diffusion processes realized by discrete sampling and the

first-passage-times problem need the formulation of the Kolmogorov’s

forward and backward equations whose unique solution, under certain

analytical conditions, is the transition probability density function (pdf).

This approach is an alternative formulation to that given by the corre-

sponding Itô stochastic equation. There are many works in the context of

inference by discrete sampling. Among others, we can cite those related to

particular processes such as the lognormal diffusion process (Gutiérrez

et al. 1991, 1997b, 1999, 2001a,b, 2003; Tintner and Sengupta 1972) as

well as in a general context (Bibby and Sørensen 1995). For results about

first passage times, we can see the works of Gutiérrez et al. (1995, 1997a)

and references therein.

There is a wide variety of diffusion processes (and Markovian pro-

cesses in general) in the literature. One of these is the Gompertz diffusion

process, whose deterministic antecedent, the Gompertz growth curve, has

been extensively treated. A stochastic version of this, as a birth and death

process, has been introduced by Tan (1986) and has been applied by

Troynikov and Gorfine (1998), and Miller et al. (2000) in animal and

tumor population growth. On the other hand, the stochastic Gompertz

diffusion process has also been treated by Ricciardi (1977) in population

growth by adding white noise fluctuation to intrinsic fertility of the

population and by Dennis and Patil (1988) in ecology modeling.

Recently, and in the context of the stochastic systems with delays mod-

eling by using univariate and multivariate Markov processes, Frank

(2002) applies the generalized Fokker�Planck equations with delays

(given by Guillouzic et al. 2000) to a Gompertz model.

However, most of the aforementioned applications have been treated

in a homogeneous context. In this paper, we consider an extension of the

Gompertz homogeneous diffusion process by introducing exogenous

factors in the stochastic model. Such exogenous factors are time func-

tions that affect the drift of the process. Their time behavior is assumed

known and they must contribute to the description of the process evo-

lution and its external control.

First we introduce the Gompertz diffusion process with exogenous

factors from the point of view of stochastic differential equations as the

Kolmogorov equations. From the second approach, we obtain the

transition PDF. Later, the estimation of the parameters (and conse-

quently of the trend) is realized by using discrete sampling. Finally, we

consider an application of the theoretical results developed in the
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previous section. This application treats one of the most important

economic variables: the housing price.

THEGOMPERTZDIFFUSIONPROCESSWITHEXOGENOUS
FACTORS

TheModel

Let X tð Þ; t 2 ½t0;T�; t0 > 0f g be the one-dimensional diffusion process

taking values on R
þ and with infinitesimal moments

aðx; tÞ ¼ hðtÞx� bx logðxÞ
bðx; tÞ ¼ s2x2

ð1Þ

where s > 0, b 2 R, hðtÞ ¼ a0 þ
Pq

i¼1 aigiðtÞ, and where ai 2 R and gi
are time-continuous functions in ½t0;T�.

This process can be studied from the point of view of the par-

tial differential equations. The starting point for this is the forward

equation,

@fðx; tjx0; t0Þ
@t

¼ � @

@x
½aðx; tÞfðx; tjx0; t0Þ� þ

@2

@x2
½bðx; tÞfðx; tjx0; t0Þ� ð2Þ

and the backward equation,

@fðx; tjx0; t0Þ
@t0

þ aðx0; toÞ
@fðx; tjx0; t0Þ

@x0
þ bðx0; toÞ

@2fðx; tjx0; t0Þ
@x20

¼ 0 ð3Þ

with initial condition limt!t0 fðx; tjx0; t0Þ ¼ dðx� x0Þ and from which the

transition PDF can be obtained. (This will be the way followed in the

next section.)

Alternatively, we can consider the stochastic differential equation

given by

dXðtÞ ¼ aðXðtÞ; tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðXðtÞ; tÞ

p
dWðtÞ Xðt0Þ ¼ x0 ð4Þ

where WðtÞ : t 2 ½t0;T�f g is a one-dimensional Wiener process and x0 is a

fixed real number belonging to R
þ . Considering the analytical properties

of aðx; tÞ and bðx; tÞ, it follows that Eq. (4) has unique solution that will
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be the Rþ-valued diffusion process with initial value x0 and infinitesimal

moments given by Eq. (1).

We note that this process generalizes that treated, in homogenous

context, by Skiadas et al. (1994) and Capocelli and Ricciardi (1974). The

actual process includes a time term affecting the drift. This term allows

introduction of an external influence on the endogenous variable of the

process that can contribute to explain some alterations in the observed

trend beside the trend of the homogenous process. Because of the

introduction of these external variables, we will refer to this process in the

future as the Gompertz diffusion process with exogenous factors.

Also we have to point out that, when b vanishes, this process leads to

the lognormal diffusion process with exogenous factors. We will see,

throughout this paper, that the limit situation b ! 0 leads us to results

already obtained for the lognormal process.

Transition PDF

The transition PDF of the process can be obtained by looking for a

transformation

t0 ¼fðtÞ
x0 ¼cðx; tÞ

that changes its Kolmogorov equation into that of the Wiener process.

Indeed, the infinitesimal moments (1) verify the conditions of theorem 1

of Ricciardi (1976), so that such transformation exists. Concretely,

fðtÞ ¼ k1
2b

e2bðt�t0Þ � e2bðt1�t0Þ
h i

þ k3

cðx; tÞ ¼ k
1
2
1

s
ebðt�t0Þ logðx=zÞ �

Z t

t2

hðtÞebðt�t0Þdt
� �

þ k
1
2
1

bs
s2

2
þ b logðzÞ

� �
ebðt�t0Þ � ebðt2�t0Þ
� �

þ k2

where z 2 Rþ, ti > 0, and the ki are arbitrary constants with k1 > 0. Note

that this transformation changes the state-space Rþ into R and allows

us to obtain the transition PDF for the considered process, resulting in
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fðx; tjy; sÞ

¼ 1

x

ps2

b
1� e�2bðt�sÞ
� �� ��1

2

� exp �
b logðxÞ � e�bðt�sÞ logðyÞ þ s2

2b 1� e�bðt�sÞ� 	
�
R t
s hðtÞe�bðt�tÞdt

h i
s2 1� e�2bðt�sÞð Þ

2
0
B@

1
CA
ð5Þ

which corresponds with a lognormal distribution.

From Eq. (5) and by considering the initial distribution of the pro-

cess, we obtain the rth moment of the endogenous variable. In particular,

by assuming P½Xðt0Þ ¼ x0� ¼ 1,

E½XðtÞr� ¼ exp

�
re�bðt�t0Þ logðx0Þ þ r

Z t

t0

hðtÞe�bðt�tÞdt

� rs2

2b
1� e�bðt�t0Þ
� �

þ r2s2

4b
1� e�2bðt�t0Þ
� �� ð6Þ

from which the trend and variance functions follow.

Inference on theModel

Now we give a brief summary of the inferential procedure whose main

aim is to obtain the estimation of the moments of the endogenous vari-

able and, in particular, the estimation of the trend of the process that will

be used in the practical application.

The inference on the process can be achieved by means of

1. continuous sampling; that is, from the sample paths of the process and

using the methodology derived of Itô’s calculus from stochastic dif-

ferential equation (4), or

2. discrete sampling, that is, for fixed times t1; . . . ; tn, we observe the

variables Xðt1Þ; . . . ;XðtnÞ, whose values will be the basic sample from

which we carry out the inferential process. The joint distribution

(likelihood function) of the sample is built from transition PDF (5),

taking into account the initial condition P½Xðt1Þ¼x1�¼1 from which

the maximum likelihood method is used to obtain the estimation of

the parameters.
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In this paper, the employed method has been the maximum like-

lihood using discrete sampling. For simplicity we assume that the length

of the time intervals ½ti�1; ti� i ¼ 2; . . . ; nð Þ is equal to one. This assump-

tion is not restrictive in practice because there are many data in such a

situation, for example, those extracted from time series as considered in

the next section.

Let x1; . . . ; xn be the observed values of the sampling. Now we trans-

form these values by means of v1¼ x1 and vi;b ¼ logðxiÞ � e�b logðxi�1Þ
i ¼ 2; . . . ; nð Þ. From Eq. (5), the likelihood function for the transformed

sample is

Lv2;b;...;vn;bða; b; s2Þ ¼
b

ps2 1� e�2bð Þ

� �n� 1

2

� exp �
bðvb � gbU

0
baÞ0ðvb � gbU

0
baÞ

s2 1� e�2bð Þ

 ! ð7Þ

where vb ¼ ðv2;b; . . . ; vn;bÞ0, a ¼ ða0 � s2=2; a1; . . . ; aqÞ0, gb ¼ 1� e�b
� 	

=b,
and Ub is the ðqþ 1Þ � ðn� 1Þ matrix, whose rank is assumed to be

qþ 1, given by Ub ¼ ðu2;b; . . . ; un;bÞ with

ui;b ¼ 1;
1

gb

Z ti

ti�1

g1ðtÞe�bðti�tÞdt; . . . ;
1

gb

Z ti

ti�1

gqðtÞe�bðti�tÞdt

 !0

i ¼ 2; . . . ; n

Also, we consider lx ¼ logðx1Þ; . . . ; logðxn�1Þð Þ0, which we are going to

use in the following expressions.

After calculating the derivatives of the log-likelihood function with

respect to a and s2, we have the following equations:

Ubvb ¼ gbUbU
0
ba ð8Þ

ðn� 1Þ 1� e�2b� 	
s2 ¼ 2bðvb � gbU

0
baÞ

0ðvb � gbU
0
baÞ ð9Þ

And from the derivative with respect to b, making use of Eqs. (8) and (9),

the third equation is obtained, resulting in

e�bl0x þ gba
0 @Ub

@b

� �
vb � gbU

0
ba

� �
¼ 0 ð10Þ

where @Ub=@b is the matrix whose elements are the derivatives, with

respect to b, of the components of Ub.
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Taking into account Eq. (8), this last expression can be expressed as

e�bl0x þ v0bU
0
bðUbU

0
bÞ

�1 @Ub

@b

� �
HU;bvb ¼ 0 ð11Þ

where HU;b is the symmetric and idempotent matrix given by

HU;b ¼ In�1� U0
bðUbU

0
bÞ

�1
Ub.

To obtain the maximum likelihood estimators of the parameters it is

necessary to solve Eq. (11) in the unknown quantity b. Nevertheless, this

equation depends on the functional form of the gj functions and so its

resolution will be dependent on the practical situations in which we use

this process. In the next section, we consider a type of exogenous factor

that is related to the considered data.

Once Eq. (11) is solved, the maximum likelihood estimators of a and

s2 are

âa ¼ b̂b

1� e�b̂b
Ub̂bU

0
b̂b

� ��1

Ub̂bvb̂b ð12Þ

ŝ2s2 ¼ 2b̂b

ðn� 1Þ 1� e�2b̂b
� � v0

b̂b
H

U;b̂bvb̂b ð13Þ

Remarks 1: By Zehna’s theorem, the predicted trend of the process can

be obtained from Eq. (6) (taking r¼ 1) by replacing the parameters by its

estimators. Then we have

E X̂XðtÞ

 �

¼ exp e�ðt�t1Þb̂b logðx1Þþ
â0a0� ŝ2s2=2

b̂b
1� e�ðt�t1Þb̂b
� � 

þ ŝ2s2

4b̂b
1� e�2ðt�t1Þb̂b
� �!

� exp
Xq
i¼1

âiai

Z t

t1

e�b̂bðt�tÞgiðtÞdt
 !

t� t1

Remarks 2: If b ! 0, as mentioned earlier, we obtain the lognormal

diffusion process with exogenous factors. Then the maximum likelihood

estimators of the parameters of this process (in the case of ti � ti�1 ¼ 1)

can be obtained from those of the Gompertz process by taking limits, as

b̂b ! 0, in Eqs. (12) and (13). In this sense, we have
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lim
b̂b!0

âa ¼ ðUU0Þ�1Uv ð14Þ

lim
b̂b!0

ŝ2s2 ¼ 1

n� 1
v0HUv ð15Þ

where, now, v ¼ ðv2; . . . ; vnÞ0 with vi ¼ log xi=xi�1ð Þ i ¼ 2; . . . ; nð Þ and the

columns of the matrix U are given by

ui ¼ 1;

Z ti

ti�1

g1ðtÞdt; . . . ;
Z ti

ti�1

gqðtÞdt
� �

i ¼ 2; . . . ; n

We have to note that these estimators have been already obtained by

Gutiérrez et al. (1997b, 1999, 2001a).

APPLICATION TOHOUSINGPRICE INSPAIN

Econometric models have been widely used to treat some economic

aspects about housing price (see, for instance, Jaffee and Rosen 1979).

In particular, the housing investment equations included in some

macroeconometrics models have been reviewed by Egebo and Lienert

(1988). In this review, the authors compare some models applied to

several developed countries (concretely the seven major OECD coun-

tries). Other models that can be cited are those of Nellis and Longbotton

(1981) and Meen (1990). These last are multiplicative models that con-

sider supply-and-demand equations connecting the housing price with

some economic variables such as family income, demographic factors,

mortgage credit availability, interest rate, retail price index, and so on.

In this application, we consider the evolution of housing

price—concretely, new housing price in Spain. This subject is, actually,

one of the most important social problems and has great repercussions in

the global economy of Spain. (Note, for example, that the housing price

per m2 has increased by a 80% in the past four years.)

Our aim is to describe the development and behavior of this variable

by applying the methodology explained in the previous section about the

Gompertz diffusion process and by considering external influences

(exogenous factors). With this treatment, some problems related to the

application of the multiplicative econometric models are removed (for

example, the problems that arise when the exogenous variables take

negative values).
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The first question that arises in this application is the choice of

the exogenous factors. In this case we have considered the retail price

index, the gross national product per inhabitant, and the long-term

interest rate.

Nevertheless, two interesting questions need to be pointed out:

1. First, it is not common to take the real value of these variables in each

observation time but the increment relative to the previous instant. We

denote these values by yij i ¼ 2; . . . ; n; j ¼ 1; 2; 3ð Þ y1j ¼ 0; j ¼ 1; 2; 3
� 	

.

2. Second, it is normal to consider such variables to be constant

functions in each time interval to be used later, for example, with

forecasting aims. Such an approach is common in practice but it is not

valid for our model, and so we have taken another one. Concretely, we

have built the exogenous factors gjðtÞ j ¼ 1; 2; 3ð Þ from the observed

values of the aforementioned economic variables by considering the

polygonal functions

gjðtÞ ¼ yi�1;j þ yij � yi�1;j

� 	
t� ti�1ð Þ

ti�1 � t � ti i ¼ 2; . . . ; n j ¼ 1; 2; 3 ð16Þ

From this approach, and by denoting

zijðbÞ ¼ yi�1;j þ ðyij � yi�1;jÞ
b� 1þ e�b

b 1� e�bð Þ i ¼ 2; . . . ; n j ¼ 1; 2; 3

we have

Z ti

ti�1

gjðtÞe�bðti�tÞdt ¼ gbzijðbÞ i ¼ 2; . . . ; n j ¼ 1; 2; 3

and, consequently,

ui;b ¼ 1; zi1ðbÞ; zi2ðbÞ; zi3ðbÞð Þ0 i ¼ 2; . . . ; n ð17Þ

Table 1 shows the observed values, from 1976 to 2001, of the endogenous

and exogenous variables fromwhich the exogenous factors have been built.

Taking into account polygonal (16) and that the columns of the

matrix Ub are given by Eq. (17), the estimation procedure described in

the previous section can be used by solving Eq. (11) and then
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substituting its solution into Eqs. (12) and (13). We have to point out

that Eq. (11) cannot be solved explicitly and numerical methods must

be used, for example, by means of numerical packages. In this case we

have used Mathematica, resulting in b̂b ¼ 0:0313376157. From this

value, one has

âa ¼

0:14669244572143308

0:7718302129347099

4:167358788915776

0:2255066224128105

0
BBB@

1
CCCA and ŝ2s2 ¼ 0:003278028409722636

Table 1. Observed values: constant prices, base 1995

Time

Housing price

(4/m2)

Retail price

index

Gross national

product/inhab. (4)

Long-term

interest rate

1976 102.54 16 7976 0.11

1977 122.43 19.9 8049 0.12

1978 162.09 23.9 8049 0.13

1979 211.98 27.6 8026 0.13

1980 218.29 31.9 8092 0.14

1981 230.18 36.6 8037 0.16

1982 239.24 41.8 8096 0.17

1983 248.25 46.9 8203 0.18

1984 265.27 52.2 8317 0.18

1985 290.65 56.8 8481 0.16

1986 328.88 61.8 8731 0.15

1987 407.92 65.1 9193 0.15

1988 509.97 68.2 9640 0.17

1989 628.50 72.9 10086 0.16

1990 727.63 77.7 10454 0.17

1991 830.69 82.4 10704 0.16

1992 820.51 87.2 10778 0.15

1993 816.84 91.2 10644 0.14

1994 823.06 95.5 10878 0.1

1995 851.38 100 11161 0.11

1996 866.98 103.6 11417 0.09

1997 880.63 105.6 11856 0.07

1998 921.10 107.6 12337 0.06

1999 987.58 110 12791 0.05

2000 1166.83 113.8 13214 0.06

2001 1346.27 117.9 13465 0.06

Source: I.N.E.

212 R. GUTIÉRREZ ET AL.



Figure 1. Estimated maximum likelihood trend versus observed values of the endogenous

variable (4).

Figure 2. Estimated conditional maximum likelihood trend versus observed values of the

endogenous variable (4).
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Once the estimations of the parameters have been obtained, the

following step is to estimate the trend of the process for the time interval

considered. Alternatively, one can use the conditional trend (Gutiérrez

et al. 2003) that can be calculated from Eq. (5). Figures 1 and 2 show

these functions. Obviously, these functions can be use with forecasting

aims if future values of the exogenous variables are available.
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