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A B S T R A C T

Detrended Fluctuation Analysis (DFA) is an algorithm widely used to determine fractal long-range

correlations in physiological signals. Its application to heart rate variability (HRV) has proven useful in

distinguishing healthy subjects from patients with cardiovascular disease. In this study we examined the

effect of respiratory sinus arrhythmia (RSA) on the performance of DFA applied to HRV. Predictions based

on a mathematical model were compared with those obtained from a sample of 14 normal subjects at

three breathing frequencies: 0.1 Hz, 0.2 Hz and 0.25 Hz. Results revealed that: (1) the periodical

properties of RSA produce a change of the correlation exponent in HRV at a scale corresponding to the

respiratory period, (2) the short-term DFA exponent is significantly reduced when breathing frequency

rises from 0.1 Hz to 0.2 Hz. These findings raise important methodological questions regarding the

application of fractal measures to short-term HRV.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Extraordinary structural and functional complexity is a defining
characteristic of living organisms. This complexity gives rise to
physiological signals that exhibit interesting properties such as
scale invariance and long-term correlations. Statistical physics has
only recently began to develop the appropriate mathematical tools
to understand and quantify these properties present in a wide
variety of biological, physical and social complex systems (Stanley
et al., 1996, 1999, 2000).

Generally, signals exhibiting fluctuations whose distribution
obeys a power law over a broad range of frequencies are scale
invariant and usually referred to as fractal (Mandelbrot, 1983).
Fluctuations (F) in these signals can be expressed as a function of
the time interval (n) over which they are observed according to the
formula:

FðnÞ ¼ pna (1)

where p is a constant of proportionality and a is a scaling exponent
that depends on the signal correlation properties. The special case
of a ¼ 1 is frequently observed in nature and is often called 1= f

noise. Signals exhibiting 1= f noise are characteristic of complex
dynamical systems, composed of multiple interconnected ele-
ments and functioning in far from equilibrium conditions (Bak
et al., 1987). These systems demonstrate optimal stability,
information transmission, informational storage and computa-
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tional power (Beggs, 2008). Hence, 1= f fluctuations are commonly
considered as an indicator of the efficacy and adaptability of the
system that produces them (Jensen, 1998).

HRV has been extensively studied by psychophysiologists as an
indirect index of autonomic function in health and disease (Camm
et al., 1996; Berntson et al., 1997). Common HRV measures include
time and frequency domain metrics. Time domain measures
calculate the overall variance or the variability between successive
interbeat intervals (IBI) using linear statistics. Frequency domain
measures assess the variability of the power spectrum in
predetermined frequency bands. The rationale for the use of all
these different HRV methods in psychophysiological research is to
identify and measure characteristic components of heart rate
fluctuations that can be associated with specific physiological
control mechanisms such as respiratory sinus arrhythmia (RSA)
and baroreflex activity (Allen et al., 2007).

The power spectrum of 24-h heart rate records, however, also
reveals that the proportion of the signal in different frequency
bands is inversely proportional to the frequency over a wide range
of scales (Kobayashi and Musha, 1982; Saul et al., 1988). This
evidence of fractal 1= f noise in heart rate fluctuations may imply
that cardiac regulation mechanisms are organized in a critical state
that allows maximum adaptability to internal and external
stimulation (Stanley et al., 2000). More detailed aspects of this
organization can be assessed by algorithms that preserve the
temporal information present in the signal. DFA is one of the
algorithms that has been widely used to quantify IBI correlation
properties as a complementary measure to more traditional HRV
indices (Eke et al., 2002; Huikuri et al., 2003). Initial results indicate
that healthy HRV is characterized by 1= f scaling, while deviations
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Fig. 1. Plot of log FðnÞ vs. log n from a healthy subject (circles) and from a subject

with congestive heart failure (triangles). Arrows indicate crossovers that divide the

DFA plot into two distinct scaling regions.
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from this value are associated with aging and disease (Peng et al.,
1993; Goldberger et al., 2002).

The aim of this study is twofold. Firstly, to introduce in a brief
and concise manner the DFA as an HRV measure that is rarely
encountered in the biopsychological literature. We believe that
scaling analysis of cardiac dynamics can be used effectively to
probe how complexity is generated in the cardiovascular system
and also to improve our understanding of how the heart responds
to internal and external stimulation. With this in mind, in Section 4
we include some specific suggestions for further research. Our
second objective is to call attention to an important methodolo-
gical issue in the fractal analysis of short-term HRV that has not
been properly addressed in the literature. In our concluding
remarks we will articulate our opinion regarding the delicate issue
of applying the DFA on short-term HRV.

1.1. Detrended Fluctuation Analysis

DFA was introduced by Peng (Peng et al., 1995) and has been
successfully used to quantify correlation properties in nonsta-
tionary time series derived from biological, physical, and social
systems. It has been applied in various research fields including
economics (Weron, 2002), climate temperature fluctuations
(Vjushin et al., 2002), DNA (Buldyrev et al., 1998), neural networks
(Stam et al., 2005), and cardiac dynamics (Peng et al., 1995). In the
application of DFA to HRV, the IBI series B (of length N) is first
integrated in order to calculate the sum of the differences between
the ith interbeat interval BðiÞ and the mean interbeat interval
Bave : yðkÞ ¼

Pk
i¼1½BðiÞ � Bave�. Next, the integrated series yðkÞ is

divided into boxes of equal length n (measured in number of
beats). Each box is subsequently detrended by subtracting a least-
squares linear fit, denoted ynðkÞ. The root-mean-square (RMS) F of
this integrated and detrended time series is calculated by

FðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

½yðkÞ � ynðkÞ�
2

vuut (2)

This algorithm is repeated over a range of box sizes to provide a
relationship between the mean fluctuation FðnÞ as a function of box
size n. Normally, FðnÞ will increase as box size n becomes larger.
According to Eq. (1), a linear relationship on a log–log graph
indicates the presence of scaling characterized by the scaling
exponent a. For uncorrelated time series (white noise), the
integrated yðkÞ is a random walk that yields an exponent of
a ¼ 0:5. A scaling exponent a>0:5 indicates the presence of
correlations in the original series such that a large IBI is more likely
to be followed by another large interval, while 0<a<0:5 indicates
anti-correlations such that large and small IBI values are more
likely to alternate. The special case a ¼ 1:5 is obtained by the
integration of highly correlated Brown noise and a ¼ 1 corresponds
to 1= f noise which can be interpreted as a balance between the
complete step-by-step unpredictability of random signals and
highly correlated Brownian noise (Peng et al., 1992).

1.2. Application to IBI records

Peng et al. (Peng et al., 1995) applied the DFA algorithm to 24-h
IBI records obtained from healthy subjects and patients with
congestive heart failure, revealing two distinct scaling regions for
both groups: one corresponding to short-term variability (smaller
box sizes) and the other associated with long-term variability
(larger box sizes). Therefore, two different scaling exponents were
obtained: a short-term exponent for 4 � n � 16 referred to as a1

and a long-term exponent for n�16 referred to as a2.
Fig. 1 plots log FðnÞ against log n (which we will refer to as the

DFA plot) for two subjects from the same database, which is freely
available from the Physionet website (Goldberger et al., 2000). It
shows the two distinct scaling regions and their corresponding
slopes. The arrows indicate the box size where the scaling changes
(the crossover point). In healthy subjects, 1= f noise represented by
a2�1 is exhibited over a broad range of time scales from mid to
low frequencies (from n ¼ 16 to 3400). Stronger correlations are
found at higher frequencies (from n ¼ 4 to 16), reflected by a1 >1.
In patients with congestive heart disease, long-term variability
loses its fractal 1= f properties (a2 >1), while short-term
variability approximates uncorrelated randomness (a1�0:5).

1.3. Effects of sinusoidal trends on DFA

As noted above, scaling behavior is not constant throughout the
IBI series, with crossovers occurring at the changeover from one
RMS fluctuation power law to another. A crossover can arise either
from a change in intrinsic IBI correlation properties or from
external trends in the data (Peng et al., 1995). Therefore, a correct
interpretation of the scaling exponent is necessary to distinguish
between intrinsic heart rate fluctuations and trend-like fluctua-
tions arising from other systematic effects. Distinctions of this kind
are relevant because strong trends in the data can lead to a false
detection of long-range correlations if DFA results are not carefully
interpreted (Kantelhardt et al., 2001; Hu et al., 2001).

The DFA algorithm is capable of identifying and removing both
linear and higher-order polynomial trends and avoids the spurious
detection of apparent long-range correlations (Kantelhardt et al.,
2001). However, this is not the case for exponential or sinusoidal
trends (Xu et al., 2008; Nagarajan and Kavasseri, 2005). In Fig. 2 we
present the DFA plot of correlated noise with scaling exponent
a ¼ 0:8, superimposed by a sinusoidal trend with period T ¼ 15
samples. The same graph also includes the DFA plot for the noise
and sinusoidal trend separately. Constant scaling is observed with
a�0:8 for the noise. However, the sinusoidal trend shows a clear
crossover nx, dividing FðnÞ into two very distinct scaling regions.
Hu et al. (Hu et al., 2001) showed that this crossover is found at a
scale corresponding to the period of the sinusoid and is
independent of its amplitude. For n<nx, integration of the
sinusoid produces a quadratic background that is not filtered



Fig. 2. Crossover behavior of the fluctuation function FðnÞ for correlated noise

superimposed with a sinusoidal function with period T ¼ 15. The fluctuation

function for noise and the fluctuation function for the sinusoidal trend are shown

separately for comparison. The arrow indicates the scaling crossover at scale nx ¼
15 (log 10ð15Þ ¼ 1:1761) corresponding to the period of the sinusoidal trend.

1 For B f ¼ 0:25 Hz, the a1 exponent could only be calculated for the cases in

which nx >4.
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out by the linear detrending of the DFA algorithm. Thus, in this
region, FðnÞ is sensitive to the quadratic trend and the slope of
log FðnÞ increases steeply as box sizes become larger. For n>nx, the
box size is large enough to contain a whole cycle and, at these
scales, fluctuations associated with local gradient changes along
the sine wave are not detectable. Hence, FðnÞ no longer depends on
n, leading to a flattening of the DFA plot.

The DFA plot of the noise and sinusoidal trend shows a scaling
behavior produced by competition between the two signals. To
explain this effect analytically, Hu et al. demonstrated that for any
two independent signals (s1 and s2), the RMS fluctuation function
for a third signal resulting from their superposition is given by

½Fs1s2ðnÞ�2 ¼ ½Fs1ðnÞ�2 þ ½Fs2ðnÞ�2 (3)

This ‘‘superposition rule’’ allows a mathematical description of
how the competition between the contribution of the fluctuation
function of the correlated noise FnoiseðnÞ and the fluctuation
function of the sinusoidal trend FsinusðnÞ at different scales n leads
to the appearance of scaling crossovers (Hu et al., 2001). For n<nx,
FsinusðnÞ is dominant, leading to a high DFA exponent (a ¼ 1:328).
For n>nx, however, the contribution of FnoiseðnÞincreases, leading
to a gradual decrease in the DFA exponent.

At high frequencies, HRV is dominated by rather smooth
rhythmical oscillations associated with breathing (RSA) (Berntson
et al., 1993). In the IBI power spectrum of healthy individuals at
rest, RSA is evidenced as a clearly distinct peak at the respiratory
frequency (Kleiger et al., 2005). We assumed therefore that RSA
would produce a scaling behavior of short-term HRV similar to that
of a sinusoidal trend superimposed on correlated noise. It can be
argued that RSA is not always adequately approximated by a
sinusoid since there is significant variability in the inspiration/
expiration ratio (Boiten et al., 1994). However, it is clear from our
previous analysis that the strongly correlated region at scales
smaller than the crossover is caused by increases in the fluctuation
function FðnÞ that are mostly influenced by the local constant
gradient of the periodic signal and not by the exact form of the
sinusoidal function.
To experimentally test the above assumption, we designed a
study to explore the effects of RSA on the DFA of IBI series and
compared them with those observed when a sinusoidal trend is
superimposed on a correlated noise. We proposed two hypotheses:

1. Respiratory oscillations produce a crossover that divides the
log FðnÞ plot into two significantly different scaling regions.

2. Changes in breathing frequency Bð f Þ affect the location of the
crossover, producing predictable alterations in the value of the
short-term scaling exponent obtained by the DFA algorithm.

2. Method

The hypotheses were tested in a physiological experiment involving 14

university students (6 males) aged 20–23 years (mean ¼ 21:79� 0:89 years),

who were instructed to breathe at specific frequencies (0.1 Hz, 0.2 Hz and 0.25 Hz)

following a sinusoidal tone heard on headphones. Each breathing condition lasted

for 5 min and was preceded by a training session to ensure participants were able to

perform the task without difficulties. At the end of each breathing condition,

subjects were given the chance to have a short break to relax before commencing

with the next respiratory pattern. Prior to the three breathing conditions, that were

always performed in the same order, we also recorded 5 min of spontaneous

breathing. During each experimental session, continuous ECG (at a sample rate of

1000 Hz) was recorded by a Powerlab data acquisition system (4/25 T). R-wave

detection and artifact correction were performed with Ecglab (Carvalho et al., 2002).

The location of the crossover in the plot of log FðnÞ was calculated for each

subject using the relation,

nx ¼
T

hIBIi (4)

where T is the respiratory period and hIBIi is the average heart period calculated

over the entire 5-min breathing period. Eq. (4) therefore represents the box size

(number of beats) that contains a complete respiratory cycle dependent on the

average interbeat interval of each subject.

KARDIA (Perakakis et al., 2008), a Matlab Toolbox designed for IBI data analysis

was used to obtain scaling exponents, power spectrum graphs and DFA plots.

Spectral analysis was performed after interpolating the IBI series with cubic splines

at 2 Hz. The interpolated series was subsequently detrended, by removing the best

straight-line fit and multiplied by a Hanning window function. The discrete Fourier

transform (DFT) was calculated by means of fast Fourier transform with 512 points.

Finally, the Fourier power spectral density was obtained from the squared absolute

value of the DFT, multiplied by the sampling period and divided by the number of

samples in the signal. The short-term DFA exponent was calculated after

implementing a first-order DFA algorithm (as described in Section 1.2) for box

sizes ranging from 4 to 16 beats according to the original suggestion by Peng et al.

(Peng et al., 1995). To avoid ambiguity, the designation a4�16 was selected for this

short-term DFA exponent, which is usually denoted a1 in the literature, because we

will use the terms a1 and a2 to refer to the exponents of the two scaling regions

defined by the respiratory crossover. Statistical significance was tested by paired

Student’s t-test.

3. Results

Visual inspection of the power spectra revealed distinctive
peaks at the expected frequencies (0.1 Hz, 0.2 Hz and 0.25 Hz) for
all subjects and conditions. This was used as a measure to assure
that participants had followed the instructions correctly producing
the desired respiratory patterns. Table 1 shows the average IBI
values, the predicted box size at which the respiratory crossover
should appear according to Eq. (4), the scaling exponent for the two
regions defined by the crossover, and the scaling exponent
obtained for 4 � n � 16.

To test our first hypothesis, we compared the scaling exponents
obtained for the regions before and after the location of the
respiratory crossover (a1 and a2 respectively). In all breathing
conditions, the two exponents were significantly different,
confirming the hypothesis. In every case, a1 was significantly
higher than a2 (B f ¼ 0:1 Hz: t13 ¼ 23:21, p<0:001; B f ¼ 0:2 Hz:
t13 ¼ 16:65, p<0:001; B f ¼ 0:25 Hz: t6 ¼ 7:77, p<0:001 1).



Table 1
Results for 14 subjects breathing at frequencies of 0.1 Hz, 0.2 Hz, and 0.25 Hz

Subjects 0.1 Hz 0.2 Hz 0.25 Hz

IBI nx a1 a2 a4�16 IBI nx a1 a2 a4�16 IBI nx a1 a2 a4�16

1 823 12 1.628 0.528 1.41 818 6 1.496 0.668 0.86 831 4 0.881 0.92

2 945 10 1.636 0.364 1.23 958 5 1.456 0.493 0.64 983 4 0.399 0.44

3 785 12 1.594 0.722 1.42 763 6 1.336 0.848 0.98 770 5 1.521 1.07 1.13

4 801 12 1.469 0.562 1.29 810 6 1.429 0.589 0.8 852 4 0.482 0.55

5 820 12 1.52 0.534 1.33 818 6 1.4 0.285 0.58 808 4 0.599 0.66

6 917 10 1.678 0.428 1.28 913 5 1.582 0.822 0.95 908 4 0.845 0.88

7 808 12 1.655 0.545 1.44 813 6 1.515 0.365 0.67 817 4 0.812 0.87

8 734 13 1.552 0.65 1.43 714 7 1.426 0.629 0.89 714 5 1.642 1.222 1.29

9 763 13 1.597 0.68 1.46 751 6 1.677 1.086 1.24 733 5 1.736 1.235 1.32

10 858 11 1.655 0.503 1.36 848 5 1.518 0.521 0.71 859 4 0.768 0.82

11 727 13 1.51 0.679 1.4 733 6 1.421 0.345 0.67 759 5 1.222 0.489 0.59

12 776 12 1.387 0.593 1.24 724 6 1.506 0.426 0.74 727 5 1.5 0.472 0.63

13 759 13 1.518 0.569 1.39 735 6 1.543 0.427 0.74 751 5 1.442 0.626 0.75

14 765 13 1.349 0.537 1.24 723 6 1.577 0.714 0.96 775 5 1.536 0.932 1.03

Mean 1.553 0.564 1.351 1.492 0.587 0.816 1.514 0.774 0.849

IBI is the average cardiac interbeat interval, nx is the predicted scale of the respiratory crossover, a1 and a2 are the exponents for the two scaling regions defined by the

crossover, and a4�16 is the exponent for the region from 4 to 16 beats. There are data gaps at 0.25 Hz due to the small value of nx in the fast breathing condition.
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Our second hypothesis was tested by examining the effect of
breathing frequency on the a4�16 exponent. We found that a4�16

was significantly reduced when the breathing frequency was
increased from 0.1 Hz to 0.2 Hz (t13 ¼ 11:59, p<0:001). The
comparison of a4�16 at 0.2 Hz and 0.25 Hz revealed no significant
differences ( p ¼ 0:487). The high a1 exponents in all breathing
conditions are illustrated in the DFA plots for one subject (number
12) in Fig. 3. We note that FðnÞ behavior strongly resembles the
simulated data shown in Fig. 2.

In order to show that similar scaling behavior is observed
during relaxed normal breathing, in Fig. 4 we compare DFA plots
for three subjects during the spontaneous breathing session.
Although RSA is not restricted to a narrow frequency band (as in
paced breathing paradigms), it is evident that faster breathing
frequencies produce a respiratory crossover at smaller scales.
According to our prediction, slopes are always higher to the left of
the crossover.
Fig. 3. Crossover behavior of the FðnÞ function at different respiratory frequencies in

one subject. Changes in scaling exponents indicate the location of the crossover. The

crossover occurs at smaller scales as breathing becomes more rapid.
4. Discussion

In the original article introducing the DFA algorithm, Peng et al.
noted that the high a4�16 exponents obtained from healthy
subjects are: ‘‘. . . probably due to the fact that on very short time
scales, the physiologic interbeat interval fluctuation is dominated
by the relatively smooth heartbeat oscillation associated with
respiration . . .(Peng et al., 1995). The only systematic study on the
effects of breathing frequency on the DFA short-term exponent
reported that a reduction in the respiration rate from 15 breaths/
min to 6 breaths/min increased the scaling exponent from 0:83�
0:25 to 1:18� 0:27 (Penttila et al., 2003). However, the authors
offered no explanation for this effect.

Our study confirms the original suggestion by Peng et al. (Peng
et al., 1995) that the crossover at scales close to the respiratory
period is caused by periodic breathing oscillations. As shown in
Section 1.3, this scaling behavior is similar in signals produced by the
superposition of simulated correlated noise and sinusoidal trends.
The superposition rule described by Eq. (3) explains the appearance
of changes in scaling as a result of the competing contributions of the
two signals at different time scales. Although, in the case of real IBI
data we do not have independent signals, the principle of competing
contributions can still be used to explain the scaling behavior of the
FðnÞ function. At short time scales (high frequencies), RSA is the
dominant contribution in the IBI signal and FðnÞ follows a constant
local gradient with increasing n, leading to high scaling exponents.
However, at scales longer than the respiratory crossover (given by
Eq. (4)), box sizes contain a complete respiratory cycle and RSA no
longer contributes to the increases in FðnÞwith increasing box size.

The results also explain the effects of breathing frequency
alterations on estimations of the short-term DFA scaling exponent.
In accordance with our second hypothesis, we showed that the
changes in FðnÞ scaling caused by changes in respiratory period,
affected the scaling exponent a4�16, which is usually considered to
account for HRV short-term correlations. We found that a4�16 was
significantly higher in the slow breathing condition when the a1

exponent extended over a time scale range of 4 to approximately 12
beats, exerting a strong influence on the value of thea4�16 exponent.
Conversely, the a1 exponent extended over a shorter time scale
range in the fast breathing condition and a4�16 was closer to a2.

4.1. Re-interpreting results of previous studies

Our findings have important methodological implications for
the interpretation of previous reports. The short-term DFA



Fig. 4. Crossover behavior of the FðnÞ function in three subjects (A–C) during spontaneous breathing. In the top row we observe a broad-band RSA at progressively faster

frequencies as we move from subject A to subject C. Arrows on the DFA plots in the second row indicate scaling crossovers that are encountered at smaller scales for faster

breathing frequencies.
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exponent has proven to be a more accurate predictor of mortality
in patients with depressed left ventricular function after an acute
myocardial infarction in comparison to the more common HRV
measures (Stein et al., 2008). Thus, reduced a4�16 predicted both
arrhythmic and nonarrhythmic cardiac death (Huikuri et al., 2000).
Other studies showed that a4�16 was reduced in patients with
dilated cardiomyopathy (Mahon et al., 2002; Voss et al., 2007), and
that reductions in the short-term DFA exponent are observed
before the spontaneous onset of paroxysmal atrial fibrillation
episodes (Vikman et al., 1999).

In our study, however, we have shown that changes in
breathing frequency produce significant alterations in the short-
term DFA exponent that were related to effects of RSA behaving as
a sinusoidal trend rather than to autonomic cardiac control. We
also predicted and confirmed the exact direction of these
alterations as a function of the breathing frequency and heart
rate. In general, slow periodic breathing tends to increase the
scaling exponent, while faster breathing significantly reduces it.
Therefore, it is essential to consider both respiration and heart rate
in order to correctly interpret short-term HRV scaling behavior. For
example, faster and more irregular breathing (implying hyper-
ventilation-related hypocapnia) may be responsible for the low
scaling exponents observed in patients with cardiovascular
diseases (Dimopoulou et al., 2001; Johnson et al., 2000; Mazzara
et al., 1974).

4.2. General conclusions and suggestions for further research

Our research calls for a reevaluation of fractal analysis of short-
term HRV. As we have already noted, the use of scaling measures in
physiological time series is interesting to the extent that it reveals
information about the complex organization of underlining control
mechanisms. Fractal long-term correlations in biological signals
require the antagonistic interaction of nonlinearly coupled
subsystems functioning and producing fluctuations at all scales
(Struzik et al., 2004). At high frequencies, however, HRV is
dominated by RSA, a well studied mechanism attributable to
respiratory modulation of vagal efferent outflow to the heart
(Denver et al., 2007; Grossman and Taylor, 2007). In addition, the
time delays in sympathetic signal transduction caused by the
intervention of second messenger cAMP for the depolarization of
pacemaker cells in the sinoatrial node (Berntson et al., 1993;
Levick, 2003), further support the notion that high-frequency HRV
is driven by the parasympathetic system alone and is therefore not
the right place to look for a substrate of complex nonlinear
interactions.

This leads to the conclusion that DFA (and generally scaling
analysis), is not valid when applied at small HRV scales. Alterations
of the a1 exponent by experimental manipulation or deviations
from normal values in pathological populations cannot be
attributed to a breakdown of fractal properties since those require
a nonlinear coupling of multiple competing mechanisms function-
ing over a wide range of scales (Struzik et al., 2004). We suggest
that a more detailed examination of breathing parameters and
vagal cardiac influences would more adequately elucidate why the
a1 exponent is a good prognostic measure of various cardiovas-
cular disorders.

Although we discourage the use of DFA for short-term HRV, we
believe that it is a powerful algorithm to assess the correlation
properties of cardiac IBI fluctuations at large scales. Ideally, long-
term HRV scaling patterns are obtained by 24-h ECG recordings.
Evidence suggests, however, that shorter data segments of
approximately 8200 samples (�2-h recordings) do not signifi-
cantly reduce the reliability of the DFA algorithm (Peng et al., 1995;
Eke et al., 2002). This makes the use of DFA also suitable for
behavioral experiments in laboratory settings.
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The fractal 1= f noise observed in long-term HRV is also
encountered in a certain class of physical systems which, for critical
values of their parameters, exhibit complex organization character-
ized by long-term correlations among their individual components
(Ivanov et al., 2004). In addition, Bak et al. have shown that for some
physical systems, organization at a critical state with fractal
geometries, scale invariance and power law long-term correlations,
happens spontaneously without the need for any external adjust-
ment of parameters (Bak, 1990). Bak used the term Self-Organizing
Criticality (SOC) to describe this phenomenon which has been
proposed as an explanation for fractal scale invariance in a wide
variety of physical, biological and even social systems (Bak, 1996).

The characteristics of long-term correlations, scale invariance,
and especially the absence of any fine tuning, make SOC an
attractive principle to explain the dynamics of scale-free biological
systems (Gisiger, 2001). The possibility of biological systems self-
organizing in a critical state questions the traditional paradigm of
homeostasis which postulates that in healthy organisms, physio-
logic control mechanisms operate to reduce variability generated
by external perturbations in order to achieve an equilibrium-like
state (Cannon, 1929). SOC, on the contrary, suggests that the goal of
physiologic control may be to maintain a complex variability over a
broad range of scales rather than a steady or periodic state, even in
resting conditions (Goldberger, 1991).

The advantages of SOC have been mostly investigated in
computer models. It has been shown that the capacity of scale-
free networks to generate fluctuations at all scales optimizes
information transmission (Beggs and Plenz, 2004; Bertschinger and
Natschlager, 2004), and information storage by maximizing the
number of repeating complex activation patterns (Haldeman and
Beggs, 1998). Increased variability also allows a large number of
different mappings between inputs and outputs which optimizes
computational power without compromising the network’s relia-
bility (Latham and Nirenberg, 2004). Finally, fractal networks
generate parallel trajectories in phase space, which means that
despite increased variability, their dynamical evolution is still stable
and controllable with minor corrective inputs (Bertschinger and
Natschlager, 2004; Haldeman and Beggs, 1998). Remarkably, all
these seemingly contradictory information processing tasks are
optimized simultaneously when a system operates near the critical
point (Beggs, 2008). Extrapolating the above results to cardiac
dynamics, we can hypothesize that SOC in the cardiovascular system
allows the heart to respond in a consistent manner to specific
internal or external stimulation, while maintaining at the same time
the flexibility to rapidly adjust to extreme perturbations.

The idea of complex variability is not new to psychophysiol-
ogists as the opposite extremes of strict periodicity (rigidity) and
uncorrelated randomness are considered to contribute to inap-
propriate autonomic responses, characteristic of anxious and
phobic patients (Friedman and Thayer, 1998; Friedman, 2007). In
addition, there is a large amount of knowledge accumulated in the
biopsychological literature regarding cardiac responsiveness to
emotional and attentional stimuli. We believe that the application
of new tools for the study of nonlinear dynamical systems may
initiate a new line of psychophysiological research, where phasic
cardiac responses to external stimuli can be used to test and
support or reject the hypothesis of SOC in the cardiovascular
system. In either case this will undoubtedly improve our under-
standing of how the various cardiac control mechanisms function
as a whole in order to produce a fractal variability, and how this
organization is disturbed in psychologically disordered states.
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