

XLVIII Olimpiada Matemática Española Fase nacional 2012 (Santander) Primera sesión (24 de marzo)

• Problema 1

Determinar razonadamente si el número $\lambda_n = \sqrt{3n^2 + 2n + 2}$ es irracional para todo entero no negativo n.

• Problema 2

Hallar todas las funciones $f: \mathbb{R} \longrightarrow \mathbb{R}$ de variable real con valores reales, tales que

$$(x-2)f(y) + f(y+2f(x)) = f(x+yf(x))$$

para todo $x, y \in \mathbb{R}$.

• Problema 3

Sean x y n enteros tales que $1 \le x < n$. Disponemos de x+1 cajas distintas y n-x bolas idénticas. Llamamos f(n,x) al número de maneras que hay de distribuir las n-x bolas en las x+1 cajas. Sea p un número primo. Encontrar los enteros n mayores que 1 para los que se verifica que el número primo p es divisor de f(n,x) para todo $x \in \{1,2,\ldots,n-1\}$.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre siete puntos. El tiempo de cada sesión es de tres horas y media.

XLVIII Olimpiada Matemática Española Fase nacional 2012 (Santander) Segunda sesión (25 de marzo)

• Problema 4

Hallar todos los números enteros positivos n y k tales que $(n+1)^n = 2n^k + 3n + 1$.

• Problema 5

Una sucesión $(a_n)_{n>1}$ se define mediante la recurrencia

$$a_1 = 1$$
, $a_2 = 5$, $a_n = \frac{a_{n-1}^2 + 4}{a_{n-2}}$, para $n \ge 3$

Demostrar que todos los términos de la sucesión son números enteros y encontrar una fórmula explícita para a_n .

• Problema 6

Sea ABC un triángulo acutángulo, ω su circunferencia inscrita de centro $I,\ \Omega$ su circunferencia circunscrita de centro $O,\ y\ M$ el punto medio de la altura $AH,\ donde\ H$ pertenece al lado BC. La circunferencia ω es tangente a este lado BC en el punto D. La recta MD corta a ω en un segundo punto $P,\ y$ la perpendicular desde I a MD corta a BC en N. Las rectas NR y NS son tangentes a la circunferencia Ω en R y S respectivamente. Probar que los puntos $R,\ P,\ D$ y S están en una misma circunferencia.