
MOTIVATION

The cerebellum is involved in controlling and learning 
smooth coordinated movements, therefore an accurate 
understanding of how this control engine works should 
have a strong impact on the control of biomorphic 
robots.
ŸWe have studied the possible control implications that 

the inferior olive→ deep cerebellar nuclei cell connections 
(IO→  DCN) may present in a distributed-synaptic-
plasticity cerebellar model (activity conveyed by this 
connection seems to control plasticity at DCN synapses 
(Bengtsson & Hesslow 2006) (Ruigrok & Voogd 2000)).

ŸThe Marr and Albus model hypothesized that parallel 
fibers (PFs) presented LTP/ LTD synaptic mechanisms so 
as to correlate the activity at PFs with an error signal 
through climbing fibers. In subsequent studies it has been 
demonstrated that most of the cerebellar connections 
show traces of plasticity (Hansel, Linden & DAngelo 
2001).

ŸWe have developed a firing-rate cerebellar model 
(Garrido et al. 2012) with plasticity mechanisms at PF→

PC and at DCN synaptic inputs (from Mossy Fibers (MFs), 
Purkinje Cells (PCs) and IO). Therefore, we present a 
model where the IO→ DCN pathway plays a fundamental 
role by refining the cerebellar learning performance.

. 

CONCLUSIONS

he results suggest that the cerebellar gain control is a 
consequence of the MF→  DCN and PC→  DCN Tsynaptic plasticity working in balance with IO→DCN 

connection. Thus, this balance (homeostasis), which is 
implemented through different learning, enhances the 
cerebellar learning performance. IO→  DCN connection 
ensures stability in the very early learning stages, that is, 
while the weights of MF→ DCN and PC→ DCN connections 
have yet to stabilize. Once the learning process is finished, 
the IO→DCN connection effect ceases.
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CEREBELLAR MODEL

ur cerebellar model includes the following plasticity 
mechanisms:O

IO-driven LTD and LTP at PF→PC connections.
IO-driven LTP and LTD at PC→ DCN connections.
PC-driven LTD and LTP at MF→DCN connections.
PC-driven LTD and LTP at PC→DCN connections.
. 

FURTHER INFORMATION: If you are interested in this work or any other related information from our group, please do not 
hesitate to contact me at nluque@atc.ugr.es.

DIFFERENT CONTROL PATHWAYS DURING LEARNING 
PROCESS

Figure 2. Effect of the presented plasticity mechanisms.
A. The feedforward control loop trough IO→DCN ensures stability during the first stage of the learning process.
B. The distributed learning process through different pathways ensures a relatively fast synaptic weight adjustment by using the PF→PC plasticity 
mechanism and the subsequent slow adaptation of the excitation and inhibition levels by means of the MF→DCN and PC→DCN synaptic plasticity 
mechanisms. These mechanisms also helps keep the PF→ PC synaptic weight values in their optimum range (in our experiments, this range has been 
fixed to [0, 1], although other ranges could be suitable).

Figure 4. Comparison between the MAE evolution with/without 
using IO-DCN connection when manipulating different masses 
(2.5kg, 6kg, 10kg). The system gain has been set to manipulate up to 
0.5kg. The manipulated masses are larger than expected, so the 
existing plasticity mechanisms at MF/PC→DCN adjust the cerebellar 
output to cope with these masses. The model with IO→  DCN 
connection supplies a proper adjustment from the beginning of the 
learning process( A )

?  

Figure 1. Cerebellar microcircuitry, main components of the 
cerebellar paths and plasticity sites included. The cerebellum 
receives proprioceptive signals through MFs. These inputs follow two 
different pathways: the first one reaches the DCN through the 
cerebellar cortex, and the second one contacts directly the DCN cells. 
Long-term plasticity has been represented using two colors: red 
indicates potentiation (LTP) and blue indicates depression (LTD).

CONTROL  ARCHITECTURE

he adaptive cerebellar module delivers corrective add-on 
torque values to compensate for deviations in the inverse Tdynamic module when manipulating an object of 

mismatched weight

Figure 3. Light-Weight-Robot (LWR) simulator within a feed-
forward control loop. The robot-plant physical characteristics 
can be modified to match different contexts (different contexts 
means that the object manipulated by the robot (payload) has 
different weights). This LWR robot is a 7-DOF arm composed of 
revolute joints. We used the first, second and fifth joint 
maintaining the others fixed.

RESULTS

he plasticity mechanisms that determine the synaptic strength in  were driven 
by the activity from PCs which is responsible for the balance (homeostasis) between all these plasticity laws. This PC Tactivity makes MF→ DCN and PC→ DCN synaptic strength increase while makes the IO→ DCN synaptic strength 

decrease. During the first learning stages the IO→ DCN corrective action predominates (Fig5.C and 5.D).Afterwards, this 
corrective action is gradually decreased while the corrective action provided by MF→ DCN and PC→ DCN connections is 
gradually increased. The transition between these two control actions is regulated by the PC activity which in turn, is working in a 
constant range of frequencies thanks to MF→DCN and PC→DCN connections. We obtain a system able to self-adapt by means 
of a distributed learning where all the learning sites are complementary  working together. 

MF→DCN/PC→DCN/IO→DCN connections

Figure 5. Synaptic weight evolution during the learning process, 
at IO→ DCN, MF→ DCN and PC→ DCN connections when using a 
10kg payload and initial parameters for a 0.5 kg payload setting. 
(A) Synaptic weight at MF→ DCN. (B) Synaptic weight at PC→DCN. 
(C) Normalized synaptic weight at IO→DCN. (D) Synaptic weight at 
IO→DCN.
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