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Abstract. We present a generalization of associative algebras, called associative dialge-
bras. We give a simplified statement of the KP algorithm introduced by Kolesnikov and
Pozhidaev for extending polynomial identities for algebras to corresponding identities for
dialgebras. Applications to the KP algorithm are given.

Introduction

Dialgebras were introduced by Loday [10] to provide a natural setting for Leibniz alge-
bras, a “noncommutative” version of Lie algebras. To be more precise, a (right) Leibniz
algebra (see [6, 9] for details) is a vector space L, together with a bilinear map L×L→ L,
denoted (a, b) 7→ 〈a, b〉, satisfying the (right) Leibniz identity, which says that right
multiplications are derivations:

〈〈a, b〉, c〉 ≡ 〈〈a, c〉, b〉+ 〈a, 〈b, c〉〉.
If 〈a, a〉 ≡ 0 then the Leibniz identity is the Jacobi identity and L is a Lie algebra.

It is well known that every associative algebra becomes a Lie algebra if the product ab is
replaced by the Lie bracket ab − ba. Loday’s goal was to introduce a new structure which
gives a Leibniz algebra by a similar procedure. His idea was to replace the product ab and
its opposite ba by two distinct operations a a b and b ` a. As this way, the Leibniz bracket
a a b− b ` a is not necessarily skew-symmetric, and we obtain the notion of an associative
dialgebra.

An associative dialgebra is a vector space A with two bilinear maps A × A → A,
denoted a and ` and called the left and right products, satisfying the left and right bar
identities, and left, right and inner associativity:

(a a b) ` c ≡ (a ` b) ` c, a a (b a c) ≡ a a (b ` c),

(a a b) a c ≡ a a (b a c), (a ` b) ` c ≡ a ` (b ` c), (a ` b) a c ≡ a ` (b a c).

The Leibniz bracket in an associative dialgebra satisfies the Leibniz identity.
Dialgebras have become an active research area, attracting the attention of numerous

authors who have considered other varieties of nonassociative dialgebras, which have been
studied by Velásquez and Felipe [14, 15], Gubarev and Kolesnikov [8, 7], Pozhidaev [12, 13],
Voronin [16], and Bremner, Felipe, Peresi and J.S.O [1, 2, 4, 3, 5], among many others.

The purpose of the talk is to present the distinct varieties of nonassociative dialgebras,
and their related systems (here by a system, we will understand a pair of a triple).

Section 1 recalls basic definitions for free dialgebras. Section 2 presents a simplified
statement of the general Kolesnikov-Pozhidaev (KP) algorithm for converting an arbitrary
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variety of multioperator algebras into a variety of dialgebras. Sections 3 and 4 are devoted
to the application of the KP algorithm to the Jordan and Lie setting, respectively.

1. Free dialgebras

Loday has determined a basis for the free dialgebra.

Definition 1.1. A dialgebra monomial on a set X is a product x = a1a2 · · · an where
a1, . . . , an ∈ X with some placement of parentheses and some choice of operations. The
center of x is defined inductively: if n = 1 then c(x) = x; if n ≥ 2 then x = y a z or
x = y ` z and we set c(y a z) = c(y) or c(y ` z) = c(z).

Lemma 1.2. (Loday [11]) If x = a1a2 · · · an is a monomial with c(x) = ai then x is
determined by the order of its factors and the position of its center:

x = (a1 ` · · · ` ai−1) ` ai a (ai+1 a · · · a an).

Definition 1.3. The right side of the last equation is the normal form of x and is abbre-
viated by the hat notation a1 · · · ai−1âiai+1 · · · an.

Lemma 1.4. (Loday [11]) The set of monomials a1 · · · ai−1âiai+1 · · · an in normal form with
1 ≤ i ≤ n and a1, . . . , an ∈ X forms a basis of the free dialgebra on X.

2. The Kolesnikov-Pozhidaev algorithm

This algorithm, introduced by Kolesnikov [8] and Pozhidaev [13], converts a multilinear
polynomial identity of degree d for an n-ary operation into d multilinear identities of degree
d for n new n-ary operations.

Definition 2.1. KP Algorithm.
Part 1: We consider a multilinear n-ary operation, denoted by the symbol

(1) {−,−, . . . ,−} (n arguments).

Given a multilinear polynomial identity of degree d in this operation, we describe the appli-
cation of the algorithm to one monomial in the identity, and from this the application to the
complete identity follows by linearity. Let a1a2 . . . ad be a multilinear monomial of degree
d, where the bar denotes some placement of n-ary operation symbols. We introduce n new
n-ary operations, denoted by the same symbol but distinguished by subscripts:

(2) {−,−, . . . ,−}1, {−,−, . . . ,−}2, . . . , {−,−, . . . ,−}n.
For each i ∈ {1, 2, . . . , d} we convert the monomial a1a2 . . . ad in the original n-ary operation
(1) into a new monomial of the same degree d in the n new n-ary operations (2), according
to the following rule which is based on the position of ai. For each occurrence of the original
operation symbol in the monomial, either ai occurs within one of the n arguments or not,
and we have the following cases:

• If ai occurs within the j-th argument then we convert the original operation symbol
{. . . } to the j-th new operation symbol {. . . }j .
• If ai does not occur within any of the n arguments, then either

– ai occurs to the left of the original operation symbol, in which case we convert
{. . . } to the first new operation symbol {. . . }1, or
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– ai occurs to the right of the original operation symbol, in which case we convert
{. . . } to the last new operation symbol {. . . }n.

In this process, we call ai the central argument of the monomial.
Part 2: In addition to the identities constructed in Part 1, we also include the following

identities for all i, j ∈ {1, 2, . . . , n} with i 6= j and all k, ` ∈ {1, 2, . . . , n}:
{a1, . . . , ai−1, {b1, · · · , bn}k, ai+1, . . . , an}j ≡
{a1, . . . , ai−1, {b1, · · · , bn}`, ai+1, . . . , an}j .

This identity says that the n new operations are interchangeable in the i-th argument of the
j-th new operation when i 6= j.

Example 2.2. The defining identities for associative dialgebras can be obtained by applying
the KP algorithm to the associativity identity, which we write in the form {{a, b}, c} ≡
{a, {b, c}}. The original operation produces two new operations {−,−}1 and {−,−}2. Since
associativity has degree 3, Part 1 produces three new identities of degree 3 by making a, b,
c in turn the central argument:

{{a, b}1, c}1≡{a, {b, c}1}1, {{a, b}2, c}1≡{a, {b, c}1}2, {{a, b}2, c}2≡{a, {b, c}2}2,
and Part 2 produces these two identities:

{a, {b, c}1}1 ≡ {a, {b, c}2}1, {{a, b}1, c}2 ≡ {{a, b}2, c}2.
If we revert to the standard notation by writing a a b = {a, b}1 and a ` b = {a, b}2, then
these five identities are the defining identities for associative dialgebras.

3. Jordan dialgebras and Jordan triple disystems

We apply the KP algorithm to the defining identities for Jordan algebras to obtain the
variety of Jordan dialgebras. The most recent results related to Jordan dialgebras will be
stablished.

4. Leibniz triple systems

The KP algorithm will be applied to Lie triple systems to get a new variety of triple
systems; we call these structures Leibniz triple systems. To conclude, we verify that
Leibniz triple systems are the natural analogues of Lie triple systems in the context of
dialgebras.
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870–885; translation in Siberian Mathematical Journal 49 (2008) 696Ð708.

[13] A. P. Pozhidaev: 0-dialgebras with bar-unity, Rota-Baxter and 3-Leibniz algebras. Contemporary
Mathematics 499, 245–256. American Mathematical Society, 2009.

[14] R. Velásquez, R. Felipe: Quasi-Jordan algebras. Communications in Algebra 36 (2008) 1580–1602.
[15] R. Velásquez, R. Felipe: Split dialgebras, split quasi-Jordan algebras and regular elements. Journal

of Algebra and its Applications 8 (2009) 191–218.
[16] V. Voronin: Special and exceptional Jordan dialgebras. arXiv:1011.3683v1 [math.RA]

Dpto. de Matemática Aplicada, E. T. S. I. de Telecomunicación, Campus de Teatinos, Universidad
de Málaga

E-mail address: jsanchezo@uma.es


