DIFFERENTIAL RESULTANT FORMULAS FOR LINEAR OD-POLYNOMIALS

SONIA L. RUEDA

Abstract

The sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$ of an overdetermined system \mathfrak{P} of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula $\partial \mathrm{FRes}(\mathfrak{P})$ is defined for linear systems. Under some conditions on the supports of the differential operators determining \mathfrak{P}, the formula is proved to be always nonzero and, up to a constant, equal to $\partial \operatorname{Res}(\mathfrak{P})$.

Introduction

The implicitization problem of unirational algebraic varieties has been widely studied, and the results on the computation of the implicit equation of a system of algebraic rational parametric equations by algebraic resultants are well known. The generalization of these results to the differential (and more generally noncommutative) case is a field of research at an initial stage of development, where many interesting problems arise.

Let \mathfrak{P} be an system of n generic sparse nonhomogeneous ordinary differential polynomials in $n-1$ differential variables. It would be useful to represent the sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$, defined in [4], as the quotient of two determinants, as done for the algebraic case in [3]. In the differential case, so called Macaulay style formulas do not exist, even in the simplest situation. The matrices used in the algebraic case to define Macaulay style formulas [3], are coefficient matrices of sets of polynomials obtained by multiplying the original ones by appropriate sets of monomials, [1]. In the differential case, in addition, derivatives of the original polynomials should be considered. The differential resultant formula defined by Carrà-Ferro in [2], is the algebraic resultant of Macaulay [5], of a set of derivatives of the ordinary differential polynomials in \mathfrak{P}. Already for linear differential polynomials these formulas vanish often, giving no information about the differential resultant $\partial \operatorname{Res}(\mathfrak{P})$. The linear case can be seen as a previous stage to get ready to approach the nonlinear case, considering only the problem of taking the appropriate set of derivatives of the elements in \mathfrak{P} for the moment.

Let us assume that \mathfrak{P} is a system of linear differential polynomials. In [8], the linear complete differential resultant $\partial \operatorname{CRes}(\mathfrak{P})$ was defined, as an improvement, in the linear case (non necessarily generic), of the differential resultant formula given by Carrà-Ferro. Still, $\partial \operatorname{CRes}(\mathfrak{P})$ is the determinant of a matrix having zero columns in many cases. The linear differential polynomials in \mathfrak{P} can be described via differential operators. We use appropriate bounds of the supports of those differential operators to decide on a convenient set $\mathrm{ps}(\mathfrak{P})$ of derivatives of \mathfrak{P}, such that its coefficient matrix $\mathcal{M}(\mathfrak{P})$ is squared and has no zero columns.

Furthermore, we can guarantee that the linear sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$ can always be computed (up to a constant) as the determinant of a matrix $\mathcal{M}\left(\mathfrak{P}^{*}\right)$, for a super essential subsystem \mathfrak{P}^{*} of \mathfrak{P}, as defined in Section 2. A key fact is that not every polynomial in \mathfrak{P} is involved in the computation of $\partial \operatorname{Res}(\mathfrak{P})$, only those in a super essential subsystem \mathfrak{P}^{*} of \mathfrak{P} are, and \mathfrak{P}^{*} is proved to exist in all cases. An extended version of the results presented can be found in [7].

1. Sparse linear differential Resultant

Let us suppose that the field \mathbb{Q} of rational numbers is a field of constants of a derivation ∂. Let us consider the set $U=\left\{u_{1}, \ldots, u_{n-1}\right\}$ of differential indeterminates over \mathbb{Q}. By \mathbb{N}_{0} we mean the natural numbers including 0 . For $k \in \mathbb{N}_{0}$, we denote by $u_{j, k}$ the k-th derivative of u_{j} and for $u_{j, 0}$ we simply write u_{j}. We denote by $\{U\}$ the set of derivatives of the elements of U.

For $i=1, \ldots, n$ and $j=1, \ldots, n-1$, let us consider subsets $\mathfrak{S}_{i, j}$ of \mathbb{Z} to be the supports of generic differential operators

$$
\mathcal{G}_{i, j}:= \begin{cases}\sum_{k \in \mathfrak{S}_{i, j}} c_{i, j, k} \partial^{k} & , \mathfrak{S}_{i, j} \neq \emptyset \\ 0 & , \mathfrak{S}_{i, j}=\emptyset\end{cases}
$$

Let us consider the set of differential indeterminates over \mathbb{Q}

$$
C=\left\{c_{1}, \ldots, c_{n}\right\} \text { and } \bar{C}:=\cup_{i=1}^{n} \cup_{j=1}^{n-1}\left\{c_{i, j, k} \mid k \in \mathfrak{S}_{i, j}\right\}
$$

Let $\mathcal{K}=\mathbb{Q}\langle\bar{C}\rangle$, a differential field extension of \mathbb{Q}, and $\mathbb{D}=\mathcal{K}\{C\}$, a differential domain. Consider the set $\mathfrak{P}=\left\{\mathbb{F}_{1}, \ldots, \mathbb{F}_{n}\right\}$ of generic sparse linear differential polynomials in $\mathbb{D}\{U\}$ as follows

$$
\mathbb{F}_{i}:=c_{i}-\sum_{j=1}^{n-1} \mathcal{G}_{i, j}\left(u_{j}\right)=c_{i}-\sum_{j=1}^{n-1} \sum_{k \in \mathfrak{S}_{i, j}} c_{i, j, k} u_{j, k}, i=1, \ldots, n
$$

Let $x_{i, j}, i=1, \ldots, n, j=1, \ldots, n-1$ be algebraic indeterminates over \mathbb{Q}. Let $X(\mathfrak{P})=\left(X_{i, j}\right)$ be the $n \times(n-1)$ matrix, such that

$$
X_{i, j}:= \begin{cases}x_{i, j} & , \mathcal{G}_{i, j} \neq 0 \\ 0 & , \mathcal{G}_{i, j}=0\end{cases}
$$

The system \mathfrak{P} is said to be differentially essential if $\operatorname{rank}(X(\mathfrak{P}))=n-1$.
Let $[\mathfrak{P}]$ be the differential ideal generated by \mathfrak{P} in $\mathbb{D}\{U\}$. By [4], Corollary 3.4 , the dimension of the elimination ideal

$$
\operatorname{ID}(\mathfrak{P})=[\mathfrak{P}] \cap \mathbb{D}
$$

is $n-1$ if and only if \mathfrak{P} is a differentially essential system. In such case, $\operatorname{ID}(\mathfrak{P})=\operatorname{sat}(R)$, the saturation ideal of a differential polynomial R in \mathbb{D}, we can assume that $R \in \mathbb{Q}\{\bar{C}, C\}$ is irreducible. By [4], Definition 3.5, R is the sparse differential resultant of \mathfrak{P}, we will denote it by $\partial \operatorname{Res}(\mathfrak{P})$.

2. Sparse differential resultant formula for supper essential systems

Let us assume that the order of \mathbb{F}_{i} is $o_{i} \geq 0, i=1, \ldots, n$. We define positive integers, to construct convenient intervals bounding the supports of the differential operators $\mathcal{G}_{i, j}$. Let $\operatorname{ldeg}\left(\mathcal{G}_{i, j}\right):=\min \mathfrak{S}_{i, j}$ and $\operatorname{deg}\left(\mathcal{G}_{i, j}\right):=\max \mathfrak{S}_{i, j}$. For $j=1, \ldots, n-1$,

$$
\begin{gathered}
\bar{\gamma}_{j}(\mathfrak{P}):=\min \left\{o_{i}-\operatorname{deg}\left(\mathcal{G}_{i, j}\right) \mid \mathcal{G}_{i, j} \neq 0, i=1, \ldots, n\right\}, \\
\underline{\gamma}_{j}(\mathfrak{P}):=\min \left\{\operatorname{ldeg}\left(\mathcal{G}_{i, j}\right) \mid \mathcal{G}_{i, j} \neq 0, i=1, \ldots, n\right\}, \\
\gamma_{j}(\mathfrak{P}):=\underline{\gamma}_{j}(\mathfrak{P})+\bar{\gamma}_{j}(\mathfrak{P}) .
\end{gathered}
$$

Therefore, for $\mathcal{G}_{i, j} \neq 0$ the next set of lattice points contains $\mathfrak{S}_{i, j}$,

$$
I_{i, j}(\mathfrak{P}):=\left[\underline{\gamma}_{j}(\mathfrak{P}), o_{i}-\bar{\gamma}_{j}(\mathfrak{P})\right] \cap \mathbb{Z} .
$$

Finally,

$$
\gamma(\mathfrak{P}):=\sum_{j=1}^{n-1} \gamma_{j}(\mathfrak{P})
$$

We denote by $X_{i}(\mathfrak{P}), i=1, \ldots, n$, the submatrix of $X(\mathfrak{P})$ obtained by removing its i th row. The system \mathfrak{P} is said to be supper essential if $\operatorname{det}\left(X_{i}(\mathfrak{P})\right) \neq 0, i=1, \ldots, n$. Given $N:=\sum_{i=1}^{n} o_{i}$, let

$$
L_{i}:=N-o_{i}-\gamma(\mathfrak{P}), i=1, \ldots, n
$$

If \mathfrak{P} is super essential then $L_{i} \geq 0, i=1, \ldots, n$ and we can construct the set

$$
\operatorname{ps}(\mathfrak{P}):=\left\{\partial^{k} \mathbb{F}_{i} \mid k \in\left[0, L_{i}\right] \cap \mathbb{Z}, i=1, \ldots, n\right\}
$$

containing $L:=\sum_{i=1}^{n}\left(L_{i}+1\right)$ differential polynomials, in the set \mathcal{V} of $L-1$ differential indeterminates

$$
\mathcal{V}:=\left\{u_{j, k} \mid k \in\left[\underline{\gamma}_{j}(\mathfrak{P}), N-\bar{\gamma}_{j}(\mathfrak{P})-\gamma(\mathfrak{P})\right] \cap \mathbb{Z}, j=1, \ldots, n-1\right\} .
$$

The coefficient matrix $\mathcal{M}(\mathfrak{P})$ of the differential polynomials in $\mathrm{ps}(\mathfrak{P})$ as polynomials in $\mathbb{D}[\mathcal{V}]$ is an $L \times L$ matrix. We define a linear differential resultant formula for \mathfrak{P}, denoted by $\partial \mathrm{FRes}(\mathfrak{P})$, and equal to:

$$
\partial \operatorname{FRes}(\mathfrak{P}):=\operatorname{det}(\mathcal{M}(\mathfrak{P}))
$$

3. Main ReSults

The implicitization of linear DPPEs (differential polynomial parametric equations) by differential resultant formulas was studied in [8] and [6]. In [7], some of the results in [6] are extended and used to obtain the next conclusions.

Given a differentially essential system $\mathfrak{P}, \operatorname{ID}(\mathfrak{P})=[\partial \operatorname{Res}(\mathfrak{P})]_{\mathbb{D}}$, the differential ideal generated by $\partial \operatorname{Res}(\mathfrak{P})$ in \mathbb{D}. Furthermore, $R=\partial \operatorname{Res}(\mathfrak{P})$ is a linear differential polynomial verifying:
(1) $R=\sum_{i=1}^{n} \mathcal{L}_{i}\left(c_{i}\right), \mathcal{L}_{i} \in \mathcal{K}[\partial]$ and a greatest common left divisor of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ belongs to \mathcal{K}, that is R is ID-primitive.
(2) R belongs to $(\operatorname{ps}(\mathfrak{P})) \cap \mathbb{D}$, where $(\operatorname{ps}(\mathfrak{P}))$ is the algebraic ideal generated by $\mathrm{ps}(\mathfrak{P})$ in $\mathbb{D}[\mathcal{V}]$.
(3) The highest positive integer c such that $\partial^{c} R \in(\mathrm{ps}(\mathfrak{P})$ is

$$
c=|\operatorname{ps}(\mathfrak{P})|-1-\operatorname{rank}(\mathcal{M}(\mathcal{V}))
$$

where $\mathcal{M}(\mathcal{V})$ is the submatrix of $\mathcal{M}(\mathfrak{P})$ whose $L-1$ columns are indexed by the elements in \mathcal{V}.

Using these properties we can prove the next result.
Theorem 3.1. Let \mathfrak{P} be a system of generic sparse linear differential polynomials. If \mathfrak{P} is super essential then $\partial \operatorname{FRes}(\mathfrak{P}) \neq 0$.

Furthermore, if \mathfrak{P} is not super essential, we can prove the existence of a super essential subsystem \mathfrak{P}^{*} of \mathfrak{P} and provide a computation method, [7], Section 4. Furthermore, \mathfrak{P} is differentially essential if and only it has a unique super essential subsytem.
Theorem 3.2. Let us consider a differentially essential system \mathfrak{P}, of generic sparse linear differential polynomials, and the super essential subsystem \mathfrak{P}^{*} of \mathfrak{P}. There exists a nonzero constant $\alpha \in \mathcal{K}$ such that $\partial \operatorname{Res}(\mathfrak{P})=\alpha \partial \mathrm{FRes}\left(\mathfrak{P}^{*}\right)$.
The previous results, allow us to give a bound of the order of $\partial \operatorname{Res}(\mathfrak{P})$ in the differential indeterminates C. Namely, given $I^{*}:=\left\{i \mid \mathbb{F}_{i} \in \mathfrak{P}^{*}\right\}$ and $i \in\{1, \ldots, n\}$

$$
\begin{aligned}
& \operatorname{ord}\left(\partial \operatorname{Res}(\mathfrak{P}), c_{i}\right)=-1 \text { if } i \notin I^{*} \\
& \operatorname{ord}\left(\partial \operatorname{Res}(\mathfrak{P}), c_{i}\right)=N^{*}-o_{i}-\gamma\left(\mathfrak{P}^{*}\right) \text { if } i \in I^{*},
\end{aligned}
$$

with $N^{*}=\sum_{i \in I^{*}} o_{i}$ and equality holds for some $i \in I^{*}$.

References

[1] J. Canny, I. Emiris, A subdivision based algorithm for the sparse resultant, J. ACM 47 (2000), 417-451.
[2] G. Carrà-Ferro, A resultant theory for ordinary algebraic differential equations. Lecture Notes in Computer Science, 1255. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Proceedings (1997).
[3] D'Andrea, C., Macaulay Style Formulas for Sparse Resultants. Trans. of AMS, 354(7) (2002), 2595-2629.
[4] W. Li, X.S. Gao, C.M. Yuan, Sparse Differential Resultant, Proceedings of the ISSAC'2011 (2011), 225-232.
[5] F.S. Macaulay, The Algebraic Theory of Modular Systems. Proc. Cambridge Univ. Press., Cambridge, (1916).
[6] S.L. Rueda, A perturbed differential resultant based implicitization algorithm for linear DPPEs. Journal of Symbolic Computation, 46 (2011), 977-996.
[7] S.L. Rueda, Linear sparse differential resultant formulas. arXiv:1112.3921 (2011).
[8] S.L. Rueda and J.F. Sendra, Linear complete differential resultants and the implicitization of linear DPPEs. Journal of Symbolic Computation, 45 (2010), 324-341.

Dpto de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Madrid. Member of the Research Group ASYNACS. Partially supported by the "Ministerio de Ciencia e Innovación" under the Project MTM2008-04699-C03-01 and by the "Ministerio de Economía y Competitividad" under the project MTM2011-25816-C02-01.

E-mail address: sonialuisa.rueda@upm.es

