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Abstract. The sparse di�erential resultant ∂Res(P) of an overdetermined system P of
generic nonhomogeneous ordinary di�erential polynomials, was formally de�ned recently
by Li, Gao and Yuan (2011). In this note, a di�erential resultant formula ∂FRes(P)
is de�ned for linear systems. Under some conditions on the supports of the di�erential
operators determining P, the formula is proved to be always nonzero and, up to a constant,
equal to ∂Res(P).

Introduction

The implicitization problem of unirational algebraic varieties has been widely studied,
and the results on the computation of the implicit equation of a system of algebraic rational
parametric equations by algebraic resultants are well known. The generalization of these
results to the di�erential (and more generally noncommutative) case is a �eld of research at
an initial stage of development, where many interesting problems arise.

Let P be an system of n generic sparse nonhomogeneous ordinary di�erential polynomials
in n−1 di�erential variables. It would be useful to represent the sparse di�erential resultant
∂Res(P), de�ned in [4], as the quotient of two determinants, as done for the algebraic case
in [3]. In the di�erential case, so called Macaulay style formulas do not exist, even in the
simplest situation. The matrices used in the algebraic case to de�ne Macaulay style formulas
[3], are coe�cient matrices of sets of polynomials obtained by multiplying the original ones
by appropriate sets of monomials, [1]. In the di�erential case, in addition, derivatives of
the original polynomials should be considered. The di�erential resultant formula de�ned
by Carrà-Ferro in [2], is the algebraic resultant of Macaulay [5], of a set of derivatives of
the ordinary di�erential polynomials in P. Already for linear di�erential polynomials these
formulas vanish often, giving no information about the di�erential resultant ∂Res(P). The
linear case can be seen as a previous stage to get ready to approach the nonlinear case,
considering only the problem of taking the appropriate set of derivatives of the elements in
P for the moment.

Let us assume that P is a system of linear di�erential polynomials. In [8], the linear
complete di�erential resultant ∂CRes(P) was de�ned, as an improvement, in the linear case
(non necessarily generic), of the di�erential resultant formula given by Carrà-Ferro. Still,
∂CRes(P) is the determinant of a matrix having zero columns in many cases. The linear
di�erential polynomials in P can be described via di�erential operators. We use appropriate
bounds of the supports of those di�erential operators to decide on a convenient set ps(P) of
derivatives of P, such that its coe�cient matrix M(P) is squared and has no zero columns.
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Furthermore, we can guarantee that the linear sparse di�erential resultant ∂Res(P) can
always be computed (up to a constant) as the determinant of a matrix M(P∗), for a super
essential subsystem P∗ of P, as de�ned in Section 2. A key fact is that not every polynomial
in P is involved in the computation of ∂Res(P), only those in a super essential subsystem
P∗ of P are, and P∗ is proved to exist in all cases. An extended version of the results
presented can be found in [7].

1. Sparse linear differential resultant

Let us suppose that the �eld Q of rational numbers is a �eld of constants of a derivation ∂.
Let us consider the set U = {u1, . . . , un−1} of di�erential indeterminates over Q. By N0 we
mean the natural numbers including 0. For k ∈ N0, we denote by uj,k the k-th derivative of
uj and for uj,0 we simply write uj . We denote by {U} the set of derivatives of the elements
of U .

For i = 1, . . . , n and j = 1, . . . , n− 1, let us consider subsets Si,j of Z to be the supports of
generic di�erential operators

Gi,j :=

{ ∑
k∈Si,j

ci,j,k∂
k ,Si,j ̸= ∅,

0 ,Si,j = ∅.

Let us consider the set of di�erential indeterminates over Q

C = {c1, . . . , cn} and C := ∪n
i=1 ∪n−1

j=1 {ci,j,k | k ∈ Si,j}.

Let K = Q⟨C⟩, a di�erential �eld extension of Q, and D = K{C}, a di�erential domain.
Consider the set P = {F1, . . . ,Fn} of generic sparse linear di�erential polynomials in D{U} as
follows

Fi := ci −
n−1∑
j=1

Gi,j(uj) = ci −
n−1∑
j=1

∑
k∈Si,j

ci,j,kuj,k, i = 1, . . . , n.

Let xi,j , i = 1, . . . , n, j = 1, . . . , n−1 be algebraic indeterminates over Q. Let X(P) = (Xi,j)
be the n× (n− 1) matrix, such that

Xi,j :=

{
xi,j ,Gi,j ̸= 0,
0 ,Gi,j = 0.

The system P is said to be di�erentially essential if rank(X(P)) = n− 1.

Let [P] be the di�erential ideal generated byP in D{U}. By [4], Corollary 3.4, the dimension
of the elimination ideal

ID(P) = [P] ∩ D
is n − 1 if and only if P is a di�erentially essential system. In such case, ID(P) = sat(R),
the saturation ideal of a di�erential polynomial R in D, we can assume that R ∈ Q{C,C}
is irreducible. By [4], De�nition 3.5, R is the sparse di�erential resultant of P, we will denote
it by ∂Res(P).
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2. Sparse differential resultant formula for supper essential systems

Let us assume that the order of Fi is oi ≥ 0, i = 1, . . . , n. We de�ne positive integers, to
construct convenient intervals bounding the supports of the di�erential operators Gi,j . Let
ldeg(Gi,j) := min Si,j and deg(Gi,j) := max Si,j . For j = 1, . . . , n− 1,

γj(P) := min{oi − deg(Gi,j) | Gi,j ̸= 0, i = 1, . . . , n},
γ
j
(P) := min{ldeg(Gi,j) | Gi,j ̸= 0, i = 1, . . . , n},

γj(P) := γ
j
(P) + γj(P).

Therefore, for Gi,j ̸= 0 the next set of lattice points contains Si,j ,

Ii,j(P) := [γ
j
(P), oi − γj(P)] ∩ Z.

Finally,

γ(P) :=

n−1∑
j=1

γj(P).

We denote by Xi(P), i = 1, . . . , n, the submatrix of X(P) obtained by removing its ith
row. The system P is said to be supper essential if det(Xi(P)) ̸= 0, i = 1, . . . , n. Given
N :=

∑n
i=1 oi, let

Li := N − oi − γ(P), i = 1, . . . , n.

If P is super essential then Li ≥ 0, i = 1, . . . , n and we can construct the set

ps(P) := {∂kFi | k ∈ [0, Li] ∩ Z, i = 1, . . . , n},
containing L :=

∑n
i=1(Li + 1) di�erential polynomials, in the set V of L − 1 di�erential

indeterminates

V := {uj,k | k ∈ [γ
j
(P), N − γj(P)− γ(P)] ∩ Z, j = 1, . . . , n− 1}.

The coe�cient matrix M(P) of the di�erential polynomials in ps(P) as polynomials in
D[V] is an L×L matrix. We de�ne a linear di�erential resultant formula for P, denoted by
∂FRes(P), and equal to:

∂FRes(P) := det(M(P)).

3. Main results

The implicitization of linear DPPEs (di�erential polynomial parametric equations) by
di�erential resultant formulas was studied in [8] and [6]. In [7], some of the results in [6] are
extended and used to obtain the next conclusions.

Given a di�erentially essential system P, ID(P) = [∂Res(P)]D, the di�erential ideal gen-
erated by ∂Res(P) in D. Furthermore, R = ∂Res(P) is a linear di�erential polynomial
verifying:

(1) R =
∑n

i=1 Li(ci), Li ∈ K[∂] and a greatest common left divisor of L1, . . . ,Ln belongs
to K, that is R is ID-primitive.

(2) R belongs to (ps(P)) ∩ D, where (ps(P)) is the algebraic ideal generated by ps(P)
in D[V].
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(3) The highest positive integer c such that ∂cR ∈ (ps(P) is

c = |ps(P)| − 1− rank(M(V)),
where M(V) is the submatrix of M(P) whose L − 1 columns are indexed by the
elements in V.

Using these properties we can prove the next result.

Theorem 3.1. Let P be a system of generic sparse linear di�erential polynomials. If P is

super essential then ∂FRes(P) ̸= 0.

Furthermore, if P is not super essential, we can prove the existence of a super essential
subsystem P∗ of P and provide a computation method, [7], Section 4. Furthermore, P is
di�erentially essential if and only it has a unique super essential subsytem.

Theorem 3.2. Let us consider a di�erentially essential system P, of generic sparse linear

di�erential polynomials, and the super essential subsystem P∗ of P. There exists a nonzero

constant α ∈ K such that ∂Res(P) = α∂FRes(P∗).

The previous results, allow us to give a bound of the order of ∂Res(P) in the di�erential
indeterminates C. Namely, given I∗ := {i | Fi ∈ P∗} and i ∈ {1, . . . , n}

ord(∂Res(P), ci) = −1 if i /∈ I∗,

ord(∂Res(P), ci) = N∗ − oi − γ(P∗) if i ∈ I∗,

with N∗ =
∑

i∈I∗ oi and equality holds for some i ∈ I∗.
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