DIFFERENTIAL RESULTANT FORMULAS FOR LINEAR OD-POLYNOMIALS

SONIA L. RUEDA

ABSTRACT. The sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$ of an overdetermined system \mathfrak{P} of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula $\partial \operatorname{FRes}(\mathfrak{P})$ is defined for linear systems. Under some conditions on the supports of the differential operators determining \mathfrak{P} , the formula is proved to be always nonzero and, up to a constant, equal to $\partial \operatorname{Res}(\mathfrak{P})$.

INTRODUCTION

The implicitization problem of unirational algebraic varieties has been widely studied, and the results on the computation of the implicit equation of a system of algebraic rational parametric equations by algebraic resultants are well known. The generalization of these results to the differential (and more generally noncommutative) case is a field of research at an initial stage of development, where many interesting problems arise.

Let \mathfrak{P} be an system of n generic sparse nonhomogeneous ordinary differential polynomials in n-1 differential variables. It would be useful to represent the sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$, defined in [4], as the quotient of two determinants, as done for the algebraic case in [3]. In the differential case, so called Macaulay style formulas do not exist, even in the simplest situation. The matrices used in the algebraic case to define Macaulay style formulas [3], are coefficient matrices of sets of polynomials obtained by multiplying the original ones by appropriate sets of monomials, [1]. In the differential case, in addition, derivatives of the original polynomials should be considered. The differential resultant formula defined by Carrà-Ferro in [2], is the algebraic resultant of Macaulay [5], of a set of derivatives of the ordinary differential polynomials in \mathfrak{P} . Already for linear differential polynomials these formulas vanish often, giving no information about the differential resultant $\partial \operatorname{Res}(\mathfrak{P})$. The linear case can be seen as a previous stage to get ready to approach the nonlinear case, considering only the problem of taking the appropriate set of derivatives of the elements in \mathfrak{P} for the moment.

Let us assume that \mathfrak{P} is a system of linear differential polynomials. In [8], the linear complete differential resultant $\partial CRes(\mathfrak{P})$ was defined, as an improvement, in the linear case (non necessarily generic), of the differential resultant formula given by Carrà-Ferro. Still, $\partial CRes(\mathfrak{P})$ is the determinant of a matrix having zero columns in many cases. The linear differential polynomials in \mathfrak{P} can be described via differential operators. We use appropriate bounds of the supports of those differential operators to decide on a convenient set $ps(\mathfrak{P})$ of derivatives of \mathfrak{P} , such that its coefficient matrix $\mathcal{M}(\mathfrak{P})$ is squared and has no zero columns.

SONIA L. RUEDA

Furthermore, we can guarantee that the linear sparse differential resultant $\partial \operatorname{Res}(\mathfrak{P})$ can always be computed (up to a constant) as the determinant of a matrix $\mathcal{M}(\mathfrak{P}^*)$, for a super essential subsystem \mathfrak{P}^* of \mathfrak{P} , as defined in Section 2. A key fact is that not every polynomial in \mathfrak{P} is involved in the computation of $\partial \operatorname{Res}(\mathfrak{P})$, only those in a super essential subsystem \mathfrak{P}^* of \mathfrak{P} are, and \mathfrak{P}^* is proved to exist in all cases. An extended version of the results presented can be found in [7].

1. Sparse linear differential resultant

Let us suppose that the field \mathbb{Q} of rational numbers is a field of constants of a derivation ∂ . Let us consider the set $U = \{u_1, \ldots, u_{n-1}\}$ of differential indeterminates over \mathbb{Q} . By \mathbb{N}_0 we mean the natural numbers including 0. For $k \in \mathbb{N}_0$, we denote by $u_{j,k}$ the k-th derivative of u_j and for $u_{j,0}$ we simply write u_j . We denote by $\{U\}$ the set of derivatives of the elements of U.

For i = 1, ..., n and j = 1, ..., n - 1, let us consider subsets $\mathfrak{S}_{i,j}$ of \mathbb{Z} to be the supports of generic differential operators

$$\mathcal{G}_{i,j} := \begin{cases} \sum_{k \in \mathfrak{S}_{i,j}} c_{i,j,k} \partial^k &, \mathfrak{S}_{i,j} \neq \emptyset, \\ 0 &, \mathfrak{S}_{i,j} = \emptyset. \end{cases}$$

Let us consider the set of differential indeterminates over \mathbb{Q}

$$C = \{c_1, \ldots, c_n\}$$
 and $\overline{C} := \bigcup_{i=1}^n \bigcup_{j=1}^{n-1} \{c_{i,j,k} \mid k \in \mathfrak{S}_{i,j}\}.$

Let $\mathcal{K} = \mathbb{Q}\langle \overline{C} \rangle$, a differential field extension of \mathbb{Q} , and $\mathbb{D} = \mathcal{K}\{C\}$, a differential domain. Consider the set $\mathfrak{P} = \{\mathbb{F}_1, \ldots, \mathbb{F}_n\}$ of generic sparse linear differential polynomials in $\mathbb{D}\{U\}$ as follows

$$\mathbb{F}_i := c_i - \sum_{j=1}^{n-1} \mathcal{G}_{i,j}(u_j) = c_i - \sum_{j=1}^{n-1} \sum_{k \in \mathfrak{S}_{i,j}} c_{i,j,k} u_{j,k}, i = 1, \dots, n.$$

Let $x_{i,j}$, i = 1, ..., n, j = 1, ..., n-1 be algebraic indeterminates over \mathbb{Q} . Let $X(\mathfrak{P}) = (X_{i,j})$ be the $n \times (n-1)$ matrix, such that

$$X_{i,j} := \begin{cases} x_{i,j} & , \mathcal{G}_{i,j} \neq 0, \\ 0 & , \mathcal{G}_{i,j} = 0. \end{cases}$$

The system \mathfrak{P} is said to be differentially essential if $\operatorname{rank}(X(\mathfrak{P})) = n - 1$.

Let $[\mathfrak{P}]$ be the differential ideal generated by \mathfrak{P} in $\mathbb{D}\{U\}$. By [4], Corollary 3.4, the dimension of the elimination ideal

$$\mathrm{ID}(\mathfrak{P}) = [\mathfrak{P}] \cap \mathbb{D}$$

is n-1 if and only if \mathfrak{P} is a differentially essential system. In such case, $\mathrm{ID}(\mathfrak{P}) = \mathrm{sat}(R)$, the saturation ideal of a differential polynomial R in \mathbb{D} , we can assume that $R \in \mathbb{Q}\{\overline{C}, C\}$ is irreducible. By [4], Definition 3.5, R is the sparse differential resultant of \mathfrak{P} , we will denote it by $\partial \mathrm{Res}(\mathfrak{P})$.

2. Sparse differential resultant formula for supper essential systems

Let us assume that the order of \mathbb{F}_i is $o_i \geq 0$, $i = 1, \ldots, n$. We define positive integers, to construct convenient intervals bounding the supports of the differential operators $\mathcal{G}_{i,j}$. Let $\operatorname{ldeg}(\mathcal{G}_{i,j}) := \min \mathfrak{S}_{i,j}$ and $\operatorname{deg}(\mathcal{G}_{i,j}) := \max \mathfrak{S}_{i,j}$. For $j = 1, \ldots, n-1$,

$$\overline{\gamma}_{j}(\mathfrak{P}) := \min\{o_{i} - \deg(\mathcal{G}_{i,j}) \mid \mathcal{G}_{i,j} \neq 0, i = 1, \dots, n\},\\ \underline{\gamma}_{j}(\mathfrak{P}) := \min\{\operatorname{ldeg}(\mathcal{G}_{i,j}) \mid \mathcal{G}_{i,j} \neq 0, i = 1, \dots, n\},$$

$$\gamma_j(\mathfrak{P}) := \underline{\gamma}_j(\mathfrak{P}) + \overline{\gamma}_j(\mathfrak{P})$$

Therefore, for $\mathcal{G}_{i,j} \neq 0$ the next set of lattice points contains $\mathfrak{S}_{i,j}$,

$$I_{i,j}(\mathfrak{P}) := [\underline{\gamma}_j(\mathfrak{P}), o_i - \overline{\gamma}_j(\mathfrak{P})] \cap \mathbb{Z}.$$

Finally,

$$\gamma(\mathfrak{P}) := \sum_{j=1}^{n-1} \gamma_j(\mathfrak{P}).$$

We denote by $X_i(\mathfrak{P})$, i = 1, ..., n, the submatrix of $X(\mathfrak{P})$ obtained by removing its *i*th row. The system \mathfrak{P} is said to be supper essential if $\det(X_i(\mathfrak{P})) \neq 0$, i = 1, ..., n. Given $N := \sum_{i=1}^{n} o_i$, let

$$L_i := N - o_i - \gamma(\mathfrak{P}), i = 1, \dots, n$$

If \mathfrak{P} is super essential then $L_i \geq 0, i = 1, \ldots, n$ and we can construct the set

$$ps(\mathfrak{P}) := \{ \partial^k \mathbb{F}_i \mid k \in [0, L_i] \cap \mathbb{Z}, i = 1, \dots, n \},\$$

containing $L := \sum_{i=1}^{n} (L_i + 1)$ differential polynomials, in the set \mathcal{V} of L - 1 differential indeterminates

$$\mathcal{V} := \{ u_{j,k} \mid k \in [\underline{\gamma}_j(\mathfrak{P}), N - \overline{\gamma}_j(\mathfrak{P}) - \gamma(\mathfrak{P})] \cap \mathbb{Z}, \, j = 1, \dots, n-1 \}.$$

The coefficient matrix $\mathcal{M}(\mathfrak{P})$ of the differential polynomials in $ps(\mathfrak{P})$ as polynomials in $\mathbb{D}[\mathcal{V}]$ is an $L \times L$ matrix. We define a linear differential resultant formula for \mathfrak{P} , denoted by $\partial FRes(\mathfrak{P})$, and equal to:

$$\partial \operatorname{FRes}(\mathfrak{P}) := \det(\mathcal{M}(\mathfrak{P})).$$

3. Main results

The implicitization of linear DPPEs (differential polynomial parametric equations) by differential resultant formulas was studied in [8] and [6]. In [7], some of the results in [6] are extended and used to obtain the next conclusions.

Given a differentially essential system \mathfrak{P} , $\mathrm{ID}(\mathfrak{P}) = [\partial \mathrm{Res}(\mathfrak{P})]_{\mathbb{D}}$, the differential ideal generated by $\partial \mathrm{Res}(\mathfrak{P})$ in \mathbb{D} . Furthermore, $R = \partial \mathrm{Res}(\mathfrak{P})$ is a linear differential polynomial verifying:

- (1) $R = \sum_{i=1}^{n} \mathcal{L}_i(c_i), \mathcal{L}_i \in \mathcal{K}[\partial]$ and a greatest common left divisor of $\mathcal{L}_1, \ldots, \mathcal{L}_n$ belongs to \mathcal{K} , that is R is ID-primitive.
- (2) R belongs to $(ps(\mathfrak{P})) \cap \mathbb{D}$, where $(ps(\mathfrak{P}))$ is the algebraic ideal generated by $ps(\mathfrak{P})$ in $\mathbb{D}[\mathcal{V}]$.

SONIA L. RUEDA

(3) The highest positive integer c such that $\partial^c R \in (ps(\mathfrak{P}))$ is

$$c = |\mathrm{ps}(\mathfrak{P})| - 1 - \mathrm{rank}(\mathcal{M}(\mathcal{V})),$$

where $\mathcal{M}(\mathcal{V})$ is the submatrix of $\mathcal{M}(\mathfrak{P})$ whose L-1 columns are indexed by the elements in \mathcal{V} .

Using these properties we can prove the next result.

Theorem 3.1. Let \mathfrak{P} be a system of generic sparse linear differential polynomials. If \mathfrak{P} is super essential then $\partial \operatorname{FRes}(\mathfrak{P}) \neq 0$.

Furthermore, if \mathfrak{P} is not super essential, we can prove the existence of a super essential subsystem \mathfrak{P}^* of \mathfrak{P} and provide a computation method, [7], Section 4. Furthermore, \mathfrak{P} is differentially essential if and only it has a unique super essential subsystem.

Theorem 3.2. Let us consider a differentially essential system \mathfrak{P} , of generic sparse linear differential polynomials, and the super essential subsystem \mathfrak{P}^* of \mathfrak{P} . There exists a nonzero constant $\alpha \in \mathcal{K}$ such that $\partial \operatorname{Res}(\mathfrak{P}) = \alpha \partial \operatorname{FRes}(\mathfrak{P}^*)$.

The previous results, allow us to give a bound of the order of $\partial \text{Res}(\mathfrak{P})$ in the differential indeterminates C. Namely, given $I^* := \{i \mid \mathbb{F}_i \in \mathfrak{P}^*\}$ and $i \in \{1, \ldots, n\}$

ord
$$(\partial \operatorname{Res}(\mathfrak{P}), c_i) = -1$$
 if $i \notin I^*$,
ord $(\partial \operatorname{Res}(\mathfrak{P}), c_i) = N^* - o_i - \gamma(\mathfrak{P}^*)$ if $i \in I^*$,

with $N^* = \sum_{i \in I^*} o_i$ and equality holds for some $i \in I^*$.

References

- [1] J. Canny, I. Emiris, A subdivision based algorithm for the sparse resultant, J. ACM 47 (2000), 417-451.
- [2] G. Carrà-Ferro, A resultant theory for ordinary algebraic differential equations. Lecture Notes in Computer Science, 1255. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Proceedings (1997).
- [3] D'Andrea, C., Macaulay Style Formulas for Sparse Resultants. Trans. of AMS, 354(7) (2002), 2595-2629.
- [4] W. Li, X.S. Gao, C.M. Yuan, Sparse Differential Resultant, Proceedings of the ISSAC'2011 (2011), 225-232.
- [5] F.S. Macaulay, The Algebraic Theory of Modular Systems. Proc. Cambridge Univ. Press., Cambridge, (1916).
- S.L. Rueda, A perturbed differential resultant based implicitization algorithm for linear DPPEs. Journal of Symbolic Computation, 46 (2011), 977-996.
- [7] S.L. Rueda, Linear sparse differential resultant formulas. arXiv:1112.3921 (2011).
- [8] S.L. Rueda and J.F. Sendra, Linear complete differential resultants and the implicitization of linear DPPEs. Journal of Symbolic Computation, 45 (2010), 324-341.

Dpto de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Madrid. Member of the Research Group ASYNACS. Partially supported by the "Ministerio de Ciencia e Innovación" under the Project MTM2008-04699-C03-01 and by the "Ministerio de Economía y Competitividad" under the project MTM2011-25816-C02-01.

E-mail address: sonialuisa.rueda@upm.es

 $\mathbf{4}$