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ABSTRACT. The sparse differential resultant ORes(3) of an overdetermined system P of
generic nonhomogeneous ordinary differential polynomials, was formally defined recently
by Li, Gao and Yuan (2011). In this note, a differential resultant formula OFRes(‘B)
is defined for linear systems. Under some conditions on the supports of the differential
operators determining 3, the formula is proved to be always nonzero and, up to a constant,
equal to ORes(P).

INTRODUCTION

The implicitization problem of unirational algebraic varieties has been widely studied,
and the results on the computation of the implicit equation of a system of algebraic rational
parametric equations by algebraic resultants are well known. The generalization of these
results to the differential (and more generally noncommutative) case is a field of research at
an initial stage of development, where many interesting problems arise.

Let B be an system of n generic sparse nonhomogeneous ordinary differential polynomials
in n— 1 differential variables. It would be useful to represent the sparse differential resultant
ORes(), defined in [4], as the quotient of two determinants, as done for the algebraic case
in [3]. In the differential case, so called Macaulay style formulas do not exist, even in the
simplest situation. The matrices used in the algebraic case to define Macaulay style formulas
[3], are coefficient matrices of sets of polynomials obtained by multiplying the original ones
by appropriate sets of monomials, [1]. In the differential case, in addition, derivatives of
the original polynomials should be considered. The differential resultant formula defined
by Carra-Ferro in [2], is the algebraic resultant of Macaulay |5], of a set of derivatives of
the ordinary differential polynomials in 3. Already for linear differential polynomials these
formulas vanish often, giving no information about the differential resultant ORes(*8). The
linear case can be seen as a previous stage to get ready to approach the nonlinear case,
considering only the problem of taking the appropriate set of derivatives of the elements in
B for the moment.

Let us assume that 9 is a system of linear differential polynomials. In [8], the linear
complete differential resultant OCRes(P) was defined, as an improvement, in the linear case
(non necessarily generic), of the differential resultant formula given by Carra-Ferro. Still,
OCRes(P) is the determinant of a matrix having zero columns in many cases. The linear
differential polynomials in 3 can be described via differential operators. We use appropriate
bounds of the supports of those differential operators to decide on a convenient set ps(*B) of
derivatives of B, such that its coefficient matrix M(*B) is squared and has no zero columns.
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Furthermore, we can guarantee that the linear sparse differential resultant dRes(*B) can
always be computed (up to a constant) as the determinant of a matrix M (P*), for a super
essential subsystem P* of 3, as defined in Section 2. A key fact is that not every polynomial
in P is involved in the computation of ORes(), only those in a super essential subsystem
PB* of P are, and P* is proved to exist in all cases. An extended version of the results
presented can be found in [7].

1. SPARSE LINEAR DIFFERENTIAL RESULTANT

Let us suppose that the field Q of rational numbers is a field of constants of a derivation 0.
Let us consider the set U = {u1,...,u,—1} of differential indeterminates over Q. By Ny we
mean the natural numbers including 0. For k£ € Ny, we denote by u;, the k-th derivative of
u; and for u; o we simply write u;. We denote by {U} the set of derivatives of the elements
of U.

Fori=1,...,nand j =1,...,n—1, let us consider subsets &, ; of Z to be the supports of
generic differential operators

gi - { Zkeei’j Civjakak 76i7j ;é ®’
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Let us consider the set of differential indeterminates over Q

C=1{c1,...,cp} and C := UL, U;-L;ll {cijr |k e}

Let K = Q(C), a differential field extension of Q, and D = K{C}, a differential domain.
Consider the set 3 = {Fy,...,F,} of generic sparse linear differential polynomials in D{U} as

follows
n—1 n—1
Fi = C — Z gi,j(uj) = C; — Z Z cm’kuj’k,i = 1, ooy n.
j=1

j=1 kEGiﬂj

Letz;;,i=1,...,n,j=1,...,n—1 be algebraic indeterminates over Q. Let X () = (X; ;)
be the n x (n — 1) matrix, such that

) w6 #0,
Xz,] T { 0 ,gi,j = 0.

The system P is said to be differentially essential if rank(X (B)) =n — 1.

Let [3] be the differential ideal generated by 3 in D{U }. By [4], Corollary 3.4, the dimension
of the elimination ideal

ID(P) = [P ND

is n — 1 if and only if B is a differentially essential system. In such case, ID(3) = sat(R),
the saturation ideal of a differential polynomial R in D, we can assume that R € Q{C,C}
is irreducible. By [4], Definition 3.5, R is the sparse differential resultant of I3, we will denote
it by ORes('B).
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2. SPARSE DIFFERENTIAL RESULTANT FORMULA FOR SUPPER ESSENTIAL SYSTEMS

Let us assume that the order of F; is 0; > 0, 7 = 1,...,n. We define positive integers, to
construct convenient intervals bounding the supports of the differential operators G; ;. Let
ldeg(G; ;) := min &;; and deg(G; ;) := max &; ;. For j =1,...,n—1,

7;(B) == min{o; — deg(G; ;) | Gij #0,i=1,...,n},
7, () := min{ldeg(G; ;) | Gi; #0,i=1,...,n},

J
7 (8) = 7, (B) + 7).

Therefore, for G; ; # 0 the next set of lattice points contains &; ; ,

1ij(B) = [y, (B), 00 =7;(B)| N Z.

J
Finally,

n—1
YR) = 7(B).
j=1

We denote by X;(B), ¢ = 1,...,n, the submatrix of X () obtained by removing its ith
row. The system ‘B is said to be supper essential if det(X;(B)) # 0,7 = 1,...,n. Given
N:=>"" 0 let
Li:=N—-0,—~v(),i=1,...,n.
If 5 is super essential then L; > 0,7 =1,...,n and we can construct the set
ps(P) := {OFF; |k € [0, L;]NZ,i=1,...,n},

containing L := Y_i" | (L; + 1) differential polynomials, in the set V of L — 1 differential
indeterminates

V= {uj,k|k€ [L(‘B%N—%(m)—’ﬂ‘p”ﬁza]:17771_1}

The coefficient matrix M(3) of the differential polynomials in ps(3) as polynomials in
D[V] is an L x L matrix. We define a linear differential resultant formula for 3, denoted by
OFRes(*B), and equal to:

OFRes(P) := det(M(R)).

3. MAIN RESULTS

The implicitization of linear DPPEs (differential polynomial parametric equations) by
differential resultant formulas was studied in [8] and [6]. In [7], some of the results in [6] are
extended and used to obtain the next conclusions.

Given a differentially essential system B, ID(B) = [ORes(P)]p, the differential ideal gen-
erated by ORes(*B) in D. Furthermore, R = ORes(P) is a linear differential polynomial
verifying:
(1) R=>"", Li(e;), Li € K[0] and a greatest common left divisor of Ly, ..., L, belongs
to IC, that is R is ID-primitive.
(2) R belongs to (ps(P)) N D, where (ps(*P)) is the algebraic ideal generated by ps(’B)
in D[V].
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(3) The highest positive integer ¢ such that 0°R € (ps(P) is
¢ = |ps(P)| — 1 — rank(M(V)),

where M(V) is the submatrix of M() whose L — 1 columns are indexed by the
elements in V.

Using these properties we can prove the next result.

Theorem 3.1. Let P be a system of generic sparse linear differential polynomials. If P is
super essential then OFRes(B) # 0.

Furthermore, if 3 is not super essential, we can prove the existence of a super essential
subsystem P* of P and provide a computation method, [7], Section 4. Furthermore, B is
differentially essential if and only it has a unique super essential subsytem.

Theorem 3.2. Let us consider a differentially essential system B, of generic sparse linear
differential polynomials, and the super essential subsystem PB* of B. There exists a nonzero
constant o € K such that ORes(P) = adFRes(P*).

The previous results, allow us to give a bound of the order of ORes(*3) in the differential
indeterminates C. Namely, given I* := {i | F; € PB*} and i € {1,...,n}

ord(ORes(P),c;) = —1if i ¢ I*,
ord(ORes(PB), ;) = N* —o0; —y(P¥) if i € I”,
with N* =", ;. 0; and equality holds for some i € I*.
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