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Abstract. We study the relationship between (generalized) tilting modules and triangle
equivalences between (quotients of) derived categories.

Introduction

The fundamental theorem of Morita theory gives a list of necessary and su�cient con-
ditions for an equivalence between two module categories to exist (see for example [6]).
Equivalences between derived categories of rings generalize Morita theory, and in this sense,
derived Morita theory is a generalization of Morita theory. The fundamental theorem of
derived Morita theory gives a list of necessary and su�cient conditions for a triangle equiv-
alence between two derived categories of rings to exist (see [4, 5]). This is at the basis of
classical tilting theory. Indeed, if A is a ring, a right A-module T is classical tilting if and
only if the adjoint pair of derived functors

DA

RHomA(T,?)

��
DB

?⊗L
BT

OO

induces a triangle equivalence between the derived category DA of A and the derived cate-
gory DB of its endomorphisms ring B = EndA(T ). In particular, a classical tilting module
is �nitely generated. The notion of classical tilting module has evolved to the notion of gen-
eralized tilting module, which includes other interesting modules which are not necessarily
�nitely generated. Recently, Bazzoni-Mantese-Tonolo [2] proved that a good (generalized)
tilting A-module T induces a triangle equivalence

DA

RHomA(T,?)
��

DB/ ker(?⊗L
B T)

?⊗L
BT

OO

between the derived category of A and the quotient of the derived category of B = EndA(T )
by the kernel of the derived tensor functor ? ⊗L

B T . This equivalence exists if and only if
(see [3]) the derived Hom-functor

RHomA(T, ?) : DA → DB

is fully faithful. A detailed inspection reveals that if T is a good tilting module, this functor
is not only fully faithful, but it also preserves compact objects.
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We summarize the di�erent notions of tilting modules we have been refering:

De�nition 0.1. Let A be an ordinary algebra, and let T be a right A-module. Consider
the following conditions:

a) There is an exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → T → 0 in Mod A
where the modules Pi are projective.

a') There is an exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → T → 0 in Mod A
where the modules Pi are �nitely generated projective.

b) There is an exact sequence 0 → A → T0 → T1 → · · · → Tm → 0 in Mod A where the
modules Ti are direct summands of coproducts of copies of T .

b') There is an exact sequence 0 → A → T0 → T1 → · · · → Tm → 0 in Mod A where the
modules Ti are direct summands of �nite coproducts of copies of T .

c) Exti
A(T, T (α)) = 0 for each i > 0 and each cardinal α.

We say that T is a generalized n-tilting module if it satis�es a), b) and c). We say that it
is a classical n-tilting module if it satis�es a'), b') and c) (for α = 1). We say that T is a
good n-tilting module if it satis�es a), b') and c). We say that a module is generalized tilting
(resp. classical tilting, good tilting) if it is generalized n-tilting (resp. classical n-tilting,
good n-tilting) for some n ≥ 1.

However, it is was still unclear which is the precise relationship between generalized tilting
modules and triangle equivalences between (quotients of) derived categories.

Let A be a di�erential graded(=dg) algebra, T an arbitrary right dg A-module and let
B = REndA(T ). In this work we contribute to the enlightenment of this relationship with:

1) A theorem which characterizes those A-modules T such that RHomA(T, ?) : DA →
DB is fully faithful and preserves compact objects (� 1). For this we use a derived
version of the classical notion of faithfully balanced bimodule.

2) A theorem which studies the link between generalized tilting modules and the mod-
ules appearing in the theorem mentioned above (� 2).

1. Special localizations

Let thickDA(T ) be the smallest full subcategory of DA containing T and closed under
shifts, extensions and direct summands.

Theorem 1.1. The following statements are equivalent:

1) RHomA(T, ?) : DA → DB is fully faithful and preserves compact objects.
2) A belongs to thickDA(T ).
3) The natural map A → RHomBop(T, T ) is a quasi-isomorphism and T is compact

regarded as an object of D(Bop).

Remark 1.2. a) Notice that a good tilting module T satis�es 2), and so part 1) will
always be true. Hence, the former theorem gives an alternative proof of the main
result of [2].

b) The theorem is a particular case of a more general result stated in terms of dg
categories and arbitrary bimodules.
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2. Tilting

Let now A be an ordinary algebra, T a right A-module and EndA(T ) = B.

Proposition 2.1. If Exti
A(T, T ) = 0 for each i > 0, the following conditions are equivalent:

1) A ∈ thickDA(T ),
2) A admits a coresolution

0 → A → T0 → T1 → · · · → Tn → 0

in Mod A, where each Ti is a direct summand of a �nite coproduct of copies of T .

Corollary 2.2. If a generalized tilting module T is such that RHomA(T, ?) : DA → DB is
fully faithful and preserves compact objects, then T is a good tilting module.

Theorem 2.3. The following assertions hold:

1) There are 1-tilting modules T such that RHomA(T, ?) : DA → DB is not fully
faithful.

2) There are right A-modules T satisfying the following conditions:
a) pdA T ≤ 1,
b) the functor RHomA(T, ?) : DA → DB is fully faithful and preserves compact

objects,
c) T does not satisfy condition c) of De�nition 0.1, and so it is not a tilting module.
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