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The purpose of this work is to present some results about improper affine hyperspheres
(in short IA-hyperspheres) in the unimodular affine real (n + 1)-space An+1. The study
of IA-hypersheres is locally equivalent (see [C1],[C2]) to the study of convex solutions of
the Monge-Ampère equation

(P) det

(
∂2f

∂xi∂xj

)
= 1,

on a domain in R
n.

In this paper we show some properties of existence and uniqueness of compact IA-
hyperspheres in An+1 (Sect. 2) and we apply these properties to the study of the solutions
of (P) on a ring-shaped domain.

In Sect. 3 we tackle the case of non compact IA-spheres with compact boundary in
A3. We introduce a special class of such spheres which are said regular at infinity and
give a Maximum Principle at infinity for them.

1 Some Notations

Throughout M will be a smooth locally strongly convex IA-hypersphere in An+1 with
a C2-boundary B, that is, M is smooth in the interior and C2 at the boundary B.
We shall denote by (x1, x2, ..., xn+1) a rectangular coordinate system in An+1 and by
{e1, e2, ..., en+1} the canonical base of R

n+1.
We observe that by an unimodular affine transformation we can assume that the affine

normal vector of M is ξ = en+1. If Πk ≡ {xn+1 = k}, then the projection on Π0 parallel
to ξ, pξ : M −→ Π0, is an immersion and so M is, locally, the graph of a strictly convex
function f : Ω −→ R, which is a solution of the Monge-Ampère equation (P) on a domain
Ω in Π0 (see [LSZ]).

Conversely, the graphs of convex solutions of (P) on a domain Ω in Π0, are IA-
hyperspheres with affine normal vector field ξ = en+1.

Furthermore, if f and g are two convex solutions of (P) on Ω, the function u = f − g
satisfies Lu = 0, where L is a linear elliptic operator (see [B]). Using this linear elliptic
operator, we can give the following Maximum Principle:
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Proposition 1. Let M1 and M2 be compact IA-hyperspheres with boundaries B1 and B2,
respectively, and with the same affine normal vector field ξ1 = ξ2 = en+1.

(a) Suppose p is an interior point of both M1 and M2. If M1 ≥M2 near p, then M1 = M2

in a neighbourhood of p.

(b) Suppose p is an interior point of B1 and B2 such that

i) TpM1 = TpM2.

ii) B1 and B2 have the same euclidean conormal vector in p.

iii) M1 ≥M2 near of p.

Then M1 = M2 in a neighbourhood of p.

2 The Compact case

The aim of this section is to generalize the results obtained by the authors in [FMM] for
compact IA-spheres in A3. Because of the similarity of the proofs we shall omit most of
them.

We observe that if M is an IA-hypersphere and B is a compact (n − 1)-hypersurface
of M such that B ⊂ Π for some Π hyperplane of An+1, then B lies on the boundary of a
convex set of Π.

If we assume that B ⊂ Πk, and we denote by I(B), E(B) the bounded and nonbounded
regions of Πk − B, then one can prove that the tangent hyperplane to M at every point
of B is always transversal to Πk. Moreover we have:

(A) If M ≥ Πk near of B, then in a neighbourhood U of B in M , we have pξ(U) ⊂
pξ(E(B)).

(B) If Πk ≥ M near of B, then in a neighbourhood U of B in M , we have pξ(U) ⊂
pξ(I(B)),

where by bar we indicate the closure of the corresponding subset.
Hence, using a topological argument, we obtain the following description of a compact

IA-hypersphere.
Proposition 2. Let M be a compact IA-hypersphere with affine normal vector ξ = en+1

and with boundary B. If B = B1 ∪ B2, with B1 ⊂ Πk1 and B2 ⊂ Πk2 , k1 > k2. Then B1

and B2 must be connected and pξ(I(B2)) ⊂ pξ(I(B1)). Moreover M is globally the graph
of the function f defined on the ring-shaped bounded domain given by

Ω = pξ(I(B1)) − pξ(I(B2))

which satisfies

det

(
∂2f

∂xi∂xj

)
= 1, on Ω,

f = ki, in pξ(Bi), i = 1, 2.
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Remark 1. It is easy to see from here that if M is as in Proposition 2, then M lies on
the boundary of a convex body. Therefore the shape of these hyperspheres is strongly
determinated.

Since (P) is invariant under unimodular linear transformations of {x1, x2, ..., xn}, us-
ing Proposition 2 and the Maximum Principle we have the following basic properties of
symmetry.

Corollary 1. Let B1 and B2 be compact (n − 1)-hypersurfaces lying on two different
parallel hyperplanes Π1 and Π2. We assume there is a hyperplane Σ and a unit vector
�γ ∈ �Π1 (which is transversal to Σ) such that B = B1 ∪ B2 is invariant by the reflection
through Σ parallel to �γ. If ξ ∈ �Σ is a fixed vector transversal to Π1, then any compact
IA-hypersphere M with boundary B and with affine normal vector ξ must be invariant by
the reflection through Σ parallel to �γ.

Remark 2. The Corollary 1 says that M inherits the symmetry of its boundary. In par-
ticular, if B1 and B2 are two (n − 1)-hyperspheres contained in two parallel hyperplanes
we have

Corollary 2. If B1 and B2 are two (n − 1)-hyperspheres lying on two different parallel
hyperplanes Π1 and Π2, then any compact IA-hypersphere with boundary B1∪B2 and with
affine normal vector in the direction of the line joining the centers of the two hyperspheres
is affinely equivalent to an IA-hypersphere of rotation.

Now we are going to describe IA-hyperspheres of rotation with affine normal vector
ξ = en+1. We denote by Sn−1 the euclidean sphere of radius one with local parame-
ters u = (u1, u2, ..., un−1) and position vector ω = ω (u1, u2, ..., un−1). With this notation
we can parametrized affine hyperspheres of rotation in the following way

x(u,R) = (R ω(u), g(R))

where u ∈ Sn−1 and R > 0.
The affine metric for these affine hypersurfaces is given by

G =

(
g′ R hij 0

0 g′′

)
where by prime we denote the derivative with respect to R and hij are the components
of the euclidean metric on Sn−1. If we impose on M the condition of IA-hypersphere
with affine normal vector ξ = en+1, we find that g must be a curve of the family G =
{g0} ∪ {g̃c, c > 0} ∪ {gc, c > 0}, where

g0(R) =
R2

2
, R > 0,

gc(R) =
∫ R

0
(tn + cn)1/ndt, R > 0, c > 0,

g̃c(R) =
∫ R

c
(tn − cn)1/ndt, R > c > 0.
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Remark 3. The curve g0 generates the elliptic paraboloid. The curves gc satisfy g′c(0) =
c > 0, thus these curves generate IA-hyperspheres of rotation with a vertex. Finally, we
remark that limR→c g̃

′
c(R) = 0 but g̃c is not C2 in [c,∞), thus g̃c generate IA-hyperspheres

of rotation with C1-boundary.
Then we have in a similar way to Theorem 2 in [FMM] the following result:

Theorem 1 (Existence and Elasticity). Let R1, R2 and r be positive real numbers
with R1 < R2. Then there exists a curve g in G with g(R2) − g(R1) = r, if and only if
r > d(R1, R2), where

d(R1, R2) =
∫ R2

R1

(tn −Rn
1 )1/n dt

Remark 4. Theorem 1 says that for any positive real numbers R1, R2, r, with R1 < R2

and r > d(R1, R2), we can always find an IA-hypersphere of rotation with affine normal
vector ξ = en+1 which is bounded by the (n − 1)-hyperspheres of radios R1 and R2 lying
on parallel hyperplanes separated to a distance r. Furthermore, we observe that the affine
volume of these hypersurfaces is

V ol(Sn−1)
(R2

2 −R2
1)

n

which is independent of r. This property states an important difference between euclidean
minimal surfaces and IA-hyperspheres.

Corollary 3. In the ring-shaped domain Ω given by

Ω = {(x1, x2, ..., xn) ∈ R
n|R2

1 ≤ x2
1 + x2

2 + ...+ x2
n ≤ R2

2},

there is a C2-solution f of the problem

det
(

∂2f
∂xi∂xj

)
= 1 on Ω

f = ki in x2
1 + x2

2 + ...+ x2
n = R2

i , i = 1, 2 ,

where k1 and k2 are positive constants, if and only if k1 < k2 and k2 − k1 > d(R1, R2).
In this case we have that f must be a radial function.

The last result in this part is a theorem about non existence of certain IA-hyperspheres
whose boundary are not necessarily two (n − 1)-hyperspheres.

Theorem 2 (Non existence). Let B1 and B2 be two compact (n−1)-hypersurfaces such
that B1 ⊂ Π0 = {xn+1 = 0} and B2 ⊂ Π+

0 = {(x1, x2, ..., xn+1) | xn+1 > 0}. Assume
that R is a positive number such that B1 is contained in I(SR), where SR is the (n − 1)-
hypersphere with center at (0, 0, ..., 0) and radius R in Π0 and that B2 is contained in the
exterior of the IA-hypersphere of rotation MR generated by the curve g̃R (see Fig. 1).
Then every compact IA-hypersphere M with affine normal ξ = en+1 and boundary B1∪B2

must be disconnected.
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Figure 1:

Proof. Suppose that M is connected. Then, for each r > 0 we are going to consider
Trξ : An+1 −→ An+1 the translation of vector rξ and we denote Lr = Trξ(MR ∪ I(SR)). It
is clear that the set Q = {r > 0|Lr ≥ M} is closed and non empty. Thus there exists r0
minimum of Q and Lr0 ∩M is not empty.

If we take p ∈ Lr0 ∩M , since M lies on a convex body (see Remark 1) we have only
two posibilities:

(a) p is interior to M and to Tr0ξ(MR).
(b) p is in Tr0ξ(SR) and it is an interior point of M .
If (a) happens, from Proposition 1, M coincides with Tr0ξ(MR), which contradicts the

assumption on B2 .
If we have (b), then from Remark 2, TpM must be an horizontal hyperplane which

contradicts Remark 1 and the proof is finished.

3 Non compact IA-spheres with compact boundary

We refer the reader to [FMM] for proofs and more details about this section.
Definition 1. A non compact IA-sphere M with compact boundary ∂M is said to be
regular at infinity if there exists a compact subset K of M such that M −K lies on the
boundary of a convex set in A3.

If M is regular at infinity it is easy to prove that M is the graph of a convex function
f on Ω, where Ω is the exterior of a closed curve in Π0. We are going to denote by Mf

the graph of a function f and Ω̃R = {z ∈ C | |z| > R}, that is, the exterior of a complex
disk of radius R.

We are going to define global isothermal coordinates for the affine metric of Mf . For it
we consider the following transformation Lf : Ω −→ C, known as the Lewy transformation,
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given by

Lf (x1, x2) = (u, v) =
(
x1 +

∂f

∂x1

)
+ i
(
x2 +

∂f

∂x2

)
.

Since M is locally strongly convex we can supose that ∂2f
∂xi∂xi

are positive functions for
i = 1, 2. Then the Jacobian of Lf has determinant

1 +
2∑

i=1

∂2f

∂xi∂xi
+ det

(
∂2f

∂xi∂xj

)
> 2,

and so Lf is an immersion.
Using that Mf lies on the boundary of a convex set in A3 we can prove that Lf is

distance increasing and so, Lf : Ω −→ Ω̃ is a diffeomorphism, where Lf (Ω) = Ω̃.
Moreover it is easy to prove that there exists R > 0 such that Ω̃R ⊂ Ω̃. It allows us to

define the function F : Ω̃R −→ C, given by

F (z) =
(
x1 −

∂f

∂x1

)
+ i
(
−x2 +

∂f

∂x2

)
,

where z = u+ iv.
We have the following expression which relates f and F :

f(w) =
1
8
|z|2 − 1

8
|F (z)|2 +

1
4

(zF (z)) − 1

2


∫ z

z0

F (ζ)dζ,(1)

where w = x1 + ix2 and 
 denotes real part.
From this expression and the definition of F we have that F is an holomorphic function

satisfying

(A) |F ′(z)| < 1, z ∈ Ω̃R

(B) lim
|z|→∞

F (z) = µ, lim
|z|→∞

F (z) − µ z = ν, µ, ν ∈ C

(C) Residue[F,∞] is a real number.

Moreover, after an affine transformation we can get that F verifies:

(B′) lim
|z|→∞

F (z) = lim
|z|→∞

F ′(z) = 0.

We shall call F the Lewy function of f .
Conversely, if we have an holomorphic function F : Ω̃R −→ C satisfying (A),(B’) and

(C) we can define the transformation TF : Ω̃R −→ C given by

2TF (z) = z + F (z), z ∈ Ω̃R.

The expression (1) gives us a function f such Mf is an IA-sphere with affine normal
vector ξ = (0, 0, 1) and which is regular at infinity.
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In this way we have an identification between this special type of IA-spheres and
holomorphic functions on the exterior of a disk satisfying (A),(B’) and (C).

In the general case, if (A),(B) and (C) happen, F writes as:

F (z) = µz + ν +
∞∑

n=1

an

zn
, z ∈ Ω̃S ,

where a1 ∈ R.
For IA-spheres of rotation this function F is the simplest that we can hope. If M is

generated by gc, then the expression of F is:

Fc(z) =
−c2
z
, z ∈ Ω̃c,

and if M is generated by g̃c, then the expression of F is:

Fc(z) =
c2

z
, z ∈ Ω̃λ.

We have seen that IA-spheres which are regular at infinity are given by the graph of
a convex function on the whole exterior of a disk. Therefore, if M is regular at infinity,
M can not be asymptotic to an horizontal plane and it can not tend to infinity in a finite
time.
After some calculations f can be expressed:

f(w) = Q(f(w)) +
1

1 − |µ|2
{
ax1 + bx2 +

ν2b− ν1a

4

}
−

− a1

4
log(|z|2) + o(1),

where

Q(f(w)) =
1

2(1 − |µ|2)
{(

1 + |µ|2 − 2µ1

)
x2

1

}
+

+
1

2(1 − |µ|2)
{(

1 + |µ|2 + 2µ1

)
x2

2 + 4µ2x1x2

}
,

with ν = ν1 + iν2, µ = µ1 + iµ2, a = −ν1 + µ1ν1 + µ2ν2, b = ν2 − µ2ν1 + µ1ν2 and o(1)
denotes a term which tends to a constant when |w| tends to infinity.

By using this expression and a similar technique to [LR] we can prove (see [FMM]),
the following results
Theorem 3 (Maximum Principle at infinity). Let f1 and f2 be convex solutions of
(P) on Ω̃R with f1 = f2 in ∂Ω̃R. Suppose that the graphs Mf1 and Mf2 of f1 and f2,
respectively, are regular at infinity and f1 ≥ f2 on Ω̃S for some S > R. If there exists a
sequence {wn}n∈N in Ω̃R with limn→∞ |wn| = ∞ and

lim
n→∞ |f1(wn) − f2(wn)| = 0,
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then f1 = f2.

Let G be as in Sect. 2 and ψ : R
2 −→ R the function given by ψ(x1, x2) =

√
x2

1 + x2
2.

Then one has,
Theorem 4. Let f a convex solution of (P) on Ω̃R. Suppose that the graph Mf of f
is regular at infinity and f ≥ gψ on Ω̃S for some S > R, where g ∈ G. If there exists a
sequence {wn}n∈N in Ω̃R with limn→∞ |wn| = ∞ and

lim
n→∞ |f(wn) − gψ(wn)| = 0,

then f = gψ.
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