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The purpose of this work is to present some results about improper affine hyperspheres
(in short IA-hyperspheres) in the unimodular affine real (n + 1)-space A"*!. The study
of IA-hypersheres is locally equivalent (see [C1],[C2]) to the study of convex solutions of
the Monge-Ampere equation

Pf N
(P) det (8:61-8333') =1,

on a domain in R".

In this paper we show some properties of existence and uniqueness of compact IA-
hyperspheres in A"t (Sect. 2) and we apply these properties to the study of the solutions
of (P) on a ring-shaped domain.

In Sect. 3 we tackle the case of non compact TA-spheres with compact boundary in
A3. We introduce a special class of such spheres which are said regular at infinity and
give a Maximum Principle at infinity for them.

1 Some Notations

Throughout M will be a smooth locally strongly convex IA-hypersphere in A" with
a C?-boundary B, that is, M is smooth in the interior and C? at the boundary B.
We shall denote by (x1,22,...,7,41) a rectangular coordinate system in A"l and by
{e1, €3, ...,eny1} the canonical base of R,

We observe that by an unimodular affine transformation we can assume that the affine
normal vector of M is § = e, y1. If Iy = {x,+1 = k}, then the projection on Il parallel
to &, pe : M — Ilp, is an immersion and so M is, locally, the graph of a strictly convex
function f : Q2 — R, which is a solution of the Monge-Ampere equation (P) on a domain
Q2 in Iy (see [LSZ]).

Conversely, the graphs of convex solutions of (P) on a domain  in Ily, are IA-
hyperspheres with affine normal vector field £ = e,,41.

Furthermore, if f and g are two convex solutions of (P) on €, the function u = f — g
satisfies Lu = 0, where L is a linear elliptic operator (see [B]). Using this linear elliptic
operator, we can give the following Maximum Principle:

*Research partially supported by DGICYT Grant No. PB94-0796.



Proposition 1. Let My and My be compact [A-hyperspheres with boundaries By and Ba,
respectively, and with the same affine normal vector field & = & = epy1.

(a) Suppose p is an interior point of both My and M. If My > Ms near p, then My = My
in a neighbourhood of p.

(b) Suppose p is an interior point of By and Bs such that
i) T,M, = T,M,.
i1) By and By have the same euclidean conormal vector in p.
ii1) My > My near of p.

Then My = Ms in a neighbourhood of p.

2 The Compact case

The aim of this section is to generalize the results obtained by the authors in [FMM] for
compact IA-spheres in A43. Because of the similarity of the proofs we shall omit most of
them.

We observe that if M is an IA-hypersphere and B is a compact (n — 1)-hypersurface
of M such that B C II for some II hyperplane of A"*!, then B lies on the boundary of a
convex set of II.

If we assume that B C I, and we denote by I(B), E(B) the bounded and nonbounded
regions of Il — B, then one can prove that the tangent hyperplane to M at every point
of B is always transversal to II;. Moreover we have:

(A) If M > IIj near of B, then in a neighbourhood U of B in M, we have p¢(U) C
pe(E(B)).

(B) If II; > M near of B, then in a neighbourhood U of B in M, we have p¢(U) C
pe(1(B)),

where by bar we indicate the closure of the corresponding subset.

Hence, using a topological argument, we obtain the following description of a compact
IA-hypersphere.
Proposition 2. Let M be a compact TA-hypersphere with affine normal vector € = en41
and with boundary B. If B = By U By, with By C Ily, and By C Ily,, k1 > k2. Then B
and By must be connected and pg(1(B2)) C pe(I(B1)). Moreover M is globally the graph
of the function f defined on the ring-shaped bounded domain given by

Q = pe(I(B1)) — pe(I(B2))

which satisfies

0% f
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Remark 1. Tt is easy to see from here that if M is as in Proposition 2, then M lies on
the boundary of a convex body. Therefore the shape of these hyperspheres is strongly
determinated.

Since (P) is invariant under unimodular linear transformations of {x1, zo, ..., z, }, us-
ing Proposition 2 and the Maximum Principle we have the following basic properties of
Symmetry.

Corollary 1. Let By and By be compact (n — 1)-hypersurfaces lying on two different
parallel hyperplanes 11y and 1ly. We assume there is a hyperplane ¥ and a unit vector
7 e Iy (which is transversal to ¥) such that B = By U By is invariant by the reflection
through X parallel to 7. If € € S s a fixed vector transversal to 11y, then any compact
IA-hypersphere M with boundary B and with affine normal vector & must be invariant by
the reflection through X parallel to 7.

Remark 2. The Corollary 1 says that M inherits the symmetry of its boundary. In par-
ticular, if By and Bs are two (n — 1)-hyperspheres contained in two parallel hyperplanes
we have

Corollary 2. If By and By are two (n — 1)-hyperspheres lying on two different parallel
hyperplanes 111 and Ils, then any compact 1A-hypersphere with boundary B1U By and with
affine normal vector in the direction of the line joining the centers of the two hyperspheres
is affinely equivalent to an IA-hypersphere of rotation.

Now we are going to describe IA-hyperspheres of rotation with affine normal vector
€ = enp1. We denote by 8"~ the euclidean sphere of radius one with local parame-
ters u = (u',u?,...,u" 1) and position vector w = w (u',u?,...,u""!). With this notation

we can parametrized affine hyperspheres of rotation in the following way
z(u, R) = (Rw(u),g(R))

where . € S"~! and R > 0.
The affine metric for these affine hypersurfaces is given by

g’RhZ‘» 0

where by prime we denote the derivative with respect to R and h;; are the components
of the euclidean metric on S®~!. If we impose on M the condition of IA-hypersphere
with affine normal vector £ = e,11, we find that ¢ must be a curve of the family G =
{90} U{gc,c > 0} U{gc,c > 0}, where
RZ
QO(R) = 7, R >0,

R
ge(R) = / (t"—i—c")l/"dt, R>0, ¢>0,
0

R
W(R) = / (" — Mrdt, R> e 0.



Remark 3. The curve gy generates the elliptic paraboloid. The curves g, satisfy ¢.(0) =
¢ > 0, thus these curves generate TA-hyperspheres of rotation with a vertex. Finally, we
remark that limg_. g.(R) = 0 but g, is not C? in [c, o), thus g. generate IA-hyperspheres
of rotation with C!'-boundary.

Then we have in a similar way to Theorem 2 in [FMM] the following result:

Theorem 1 (Existence and Elasticity). Let Ry, Re and r be positive real numbers
with Ry < Ry. Then there exists a curve g in G with g(Ra) — g(R1) = r, if and only if

r > d(R1, Rg), where
Ro
d(R1, Ry) = / (" — RMY™ gt
Ry

Remark 4. Theorem 1 says that for any positive real numbers Ry, Ro, r, with Ry < Ry
and r > d(Ry, R2), we can always find an TA-hypersphere of rotation with affine normal
vector & = e,41 which is bounded by the (n — 1)-hyperspheres of radios R; and Ry lying
on parallel hyperplanes separated to a distance r. Furthermore, we observe that the affine
volume of these hypersurfaces is
R3 — R?
VOl(Sn_l) ( 2 1)
n

which is independent of r. This property states an important difference between euclidean
minimal surfaces and IA-hyperspheres.

Corollary 3. In the ring-shaped domain ) given by

Q= {(z1,22,....,2,) € R"|R} < 2? + 23 + ... + 22 < R%},
there is a C?-solution f of the problem

det (ﬁ) =1 on Q

axiazj
f=k in 23+23+..+22=R? i=12,

where k1 and ko are positive constants, if and only if ki < ko and ko — k1 > d(R1, R2).
In this case we have that f must be a radial function.

The last result in this part is a theorem about non existence of certain IA-hyperspheres
whose boundary are not necessarily two (n — 1)-hyperspheres.

Theorem 2 (Non existence). Let By and Bs be two compact (n— 1)-hypersurfaces such
that By C Ilyg = {xp41 = 0} and By C HS‘ = {(x1,22, sy Tnt1) | Tny1 > 0}. Assume
that R is a positive number such that By is contained in I(Sg), where Sg is the (n — 1)-
hypersphere with center at (0,0, ...,0) and radius R in Iy and that By is contained in the
exterior of the IA-hypersphere of rotation Mp generated by the curve gr (see Fig. 1).
Then every compact IA-hypersphere M with affine normal £ = ep+1 and boundary By U By
must be disconnected.



Figure 1:

Proof. Suppose that M is connected. Then, for each » > 0 we are going to consider
Toe : A" — A" the translation of vector ¢ and we denote £, = T,.¢ (Mg U I(Sg)). It
is clear that the set @ = {r > 0|£, > M} is closed and non empty. Thus there exists 7
minimum of  and £,, N M is not empty.

If we take p € £,, N M, since M lies on a convex body (see Remark 1) we have only
two posibilities:

(a) p is interior to M and to Z,,¢(Mg).

(b) p is in 7,,¢(Sr) and it is an interior point of M.

If (a) happens, from Proposition 1, M coincides with 7,,¢(Mg), which contradicts the
assumption on By .

If we have (b), then from Remark 2, T,M must be an horizontal hyperplane which
contradicts Remark 1 and the proof is finished.

3 Non compact IA-spheres with compact boundary

We refer the reader to [FMM] for proofs and more details about this section.
Definition 1. A non compact IA-sphere M with compact boundary OM is said to be
regular at infinity if there exists a compact subset K of M such that M — K lies on the
boundary of a convex set in A>.

If M is regular at infinity it is easy to prove that M is the graph of a convex function
f on Q, where € is the exterior of a closed curve in IIy. We are going to denote by My
the graph of a function f and Qr = {z € C | |z| > R}, that is, the exterior of a complex
disk of radius R.

We are going to define global isothermal coordinates for the affine metric of M. For it
we consider the following transformation Ly : 2 — C, known as the Lewy transformation,



given by
B B of . 0
Ly(z1,22) = (u,v) = (acl + 8561) +1 (xg + 8332) .

2
Since M is locally strongly convex we can supose that 83 5;, are positive functions for

t =1,2. Then the Jacobian of Ly has determinant

2 2 2
»*f O f
1+Zaxia -+det<8xi8x]~> > 2,

i=1 Li

and so Ly is an immersion.
Using that My lies on the boundary of a convex set in A? we can prove that L 7 is
distance increasing and so, Ly : ) — Q is a diffeomorphism, where L #(Q) = Q.
Moreover it is easy to prove that there exists R > 0 such that Qr C Q. It allows us to
define the function F : Q r — C, given by

Ay _OFN (. O
P = (o) +i (et ).
where z = v + iv.

We have the following expression which relates f and F' :

) fw) = 5l2 = GIFGIE + REF(E) - 3% [ PO

8

where w = x1 + iz and R denotes real part.
From this expression and the definition of F' we have that F'is an holomorphic function
satisfying

(A) |F'(z)] <1, z€Qpg

(B) |l|im F(z) = p, |l|im Fiz)—pz=v, pveC
(C) Residue[F, 00| is a real number.

Moreover, after an affine transformation we can get that F' verifies:

(B lim F(z)= lim F'(z) =0.
|2|—00 |2|—00
We shall call F' the Lewy function of f. N
Conversely, if we have an holomorphic function F' : Qg — C satisfying (A),(B’) and
(C) we can define the transformation T : g — C given by

WMp(z)=z+F(z), z€Qg.

The expression (1) gives us a function f such My is an IA-sphere with affine normal
vector £ = (0,0, 1) and which is regular at infinity.



In this way we have an identification between this special type of IA-spheres and
holomorphic functions on the exterior of a disk satisfying (A),(B’) and (C).
In the general case, if (A),(B) and (C) happen, F' writes as:

o0
G, ~
F(z) = tn 0
(2) MZ+V+TLE:1 o z € Qg,

where a1 € R.
For TA-spheres of rotation this function F' is the simplest that we can hope. If M is
generated by g., then the expression of F is:

F.(z) = 1, z € ﬁc,

F.(z) = C—, z €.

We have seen that [A-spheres which are regular at infinity are given by the graph of
a convex function on the whole exterior of a disk. Therefore, if M is regular at infinity,
M can not be asymptotic to an horizontal plane and it can not tend to infinity in a finite
time.
After some calculations f can be expressed:

flw) = Q(f(w)) +

{m+bx2+M}_
! 2 1
- —log(lzl) o(1),

where

1

Q(f(w)) = 0= ) {(1 + |pf® - 2#1) x%} +

+ m {(1 + |p + 2#1) xi + 4#2561902} ;
with v = vy +ive, u = p1 +ipg, a = —vy + pivy + pova, b = vy — povy + p1ve and o(1)
denotes a term which tends to a constant when |w| tends to infinity.

By using this expression and a similar technique to [LR] we can prove (see [FMM)]),
the following results
Theorem 3 (Maximum Principle at infinity). Let f1 and fa be convex solutions of
(P) on Qr with fi = fo in 8Qr. Suppose that the graphs My, and My, of fi and fa,
respectively, are regqular at infinity and f1 > fo on Qg for some S > R. If there exists a
sequence {w”}neN in Qg with lim,_ |wy| = oo and

nhj%o |f1(wn) - f2(wn)| =0,



then f1 = fo.
Let G be as in Sect. 2 and ¢ : R?> — R the function given by ¢(z1,z3) = /22 + 23

Then one has,

Theorem 4. Let f a conver solution of (P) on Qr. Suppose that the graph My of f
is reqular at infinity and f > gy on Qg for some S > R, where g € G. If there exists a
sequence {wn}, N N Qpr with lim, .« |wy| = 0o and

lim |f(wn) — g¥(wn)| =0,

n—oo

then f = gi.
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