IMPROPER AFFINE HYPERSPHERES

L. Ferrer ${ }^{*}$
A. Martínez *
F. Milán*

The purpose of this work is to present some results about improper affine hyperspheres (in short IA-hyperspheres) in the unimodular affine real $(n+1)$-space \mathcal{A}^{n+1}. The study of IA-hypersheres is locally equivalent (see [C1],[C2]) to the study of convex solutions of the Monge-Ampère equation

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=1 \tag{P}
\end{equation*}
$$

on a domain in \mathbb{R}^{n}.
In this paper we show some properties of existence and uniqueness of compact IAhyperspheres in \mathcal{A}^{n+1} (Sect. 2) and we apply these properties to the study of the solutions of (\mathbf{P}) on a ring-shaped domain.

In Sect. 3 we tackle the case of non compact IA-spheres with compact boundary in \mathcal{A}^{3}. We introduce a special class of such spheres which are said regular at infinity and give a Maximum Principle at infinity for them.

1 Some Notations

Throughout M will be a smooth locally strongly convex IA-hypersphere in \mathcal{A}^{n+1} with a C^{2}-boundary B, that is, M is smooth in the interior and C^{2} at the boundary B. We shall denote by $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ a rectangular coordinate system in \mathcal{A}^{n+1} and by $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ the canonical base of \mathbb{R}^{n+1}.

We observe that by an unimodular affine transformation we can assume that the affine normal vector of M is $\xi=e_{n+1}$. If $\Pi_{k} \equiv\left\{x_{n+1}=k\right\}$, then the projection on Π_{0} parallel to $\xi, p_{\xi}: M \longrightarrow \Pi_{0}$, is an immersion and so M is, locally, the graph of a strictly convex function $f: \Omega \longrightarrow \mathbb{R}$, which is a solution of the Monge-Ampère equation (\mathbf{P}) on a domain Ω in Π_{0} (see [LSZ]).

Conversely, the graphs of convex solutions of (\mathbf{P}) on a domain Ω in Π_{0}, are IAhyperspheres with affine normal vector field $\xi=e_{n+1}$.

Furthermore, if f and g are two convex solutions of (\mathbf{P}) on Ω, the function $u=f-g$ satisfies $L u=0$, where L is a linear elliptic operator (see [B]). Using this linear elliptic operator, we can give the following Maximum Principle:

[^0]Proposition 1. Let M_{1} and M_{2} be compact IA-hyperspheres with boundaries B_{1} and B_{2}, respectively, and with the same affine normal vector field $\xi_{1}=\xi_{2}=e_{n+1}$.
(a) Suppose p is an interior point of both M_{1} and M_{2}. If $M_{1} \geq M_{2}$ near p, then $M_{1}=M_{2}$ in a neighbourhood of p.
(b) Suppose p is an interior point of B_{1} and B_{2} such that
i) $T_{p} M_{1}=T_{p} M_{2}$.
ii) B_{1} and B_{2} have the same euclidean conormal vector in p.
iii) $M_{1} \geq M_{2}$ near of p.

Then $M_{1}=M_{2}$ in a neighbourhood of p.

2 The Compact case

The aim of this section is to generalize the results obtained by the authors in [FMM] for compact IA-spheres in \mathcal{A}^{3}. Because of the similarity of the proofs we shall omit most of them.

We observe that if M is an IA-hypersphere and B is a compact $(n-1)$-hypersurface of M such that $B \subset \Pi$ for some Π hyperplane of \mathcal{A}^{n+1}, then B lies on the boundary of a convex set of Π.

If we assume that $B \subset \Pi_{k}$, and we denote by $I(B), E(B)$ the bounded and nonbounded regions of $\Pi_{k}-B$, then one can prove that the tangent hyperplane to M at every point of B is always transversal to Π_{k}. Moreover we have:
(A) If $M \geq \Pi_{k}$ near of B, then in a neighbourhood U of B in M, we have $p_{\xi}(U) \subset$ $p_{\xi}(\overline{E(B)})$.
(B) If $\Pi_{k} \geq M$ near of B, then in a neighbourhood U of B in M, we have $p_{\xi}(U) \subset$ $p_{\xi}(\overline{I(B)})$,
where by bar we indicate the closure of the corresponding subset.
Hence, using a topological argument, we obtain the following description of a compact IA-hypersphere.
Proposition 2. Let M be a compact IA-hypersphere with affine normal vector $\xi=e_{n+1}$ and with boundary B. If $B=B_{1} \cup B_{2}$, with $B_{1} \subset \Pi_{k_{1}}$ and $B_{2} \subset \Pi_{k_{2}}, k_{1}>k_{2}$. Then B_{1} and B_{2} must be connected and $p_{\xi}\left(\overline{I\left(B_{2}\right)}\right) \subset p_{\xi}\left(I\left(B_{1}\right)\right)$. Moreover M is globally the graph of the function f defined on the ring-shaped bounded domain given by

$$
\Omega=p_{\xi}\left(I\left(B_{1}\right)\right)-\overline{p_{\xi}\left(I\left(B_{2}\right)\right)}
$$

which satisfies

$$
\begin{aligned}
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) & =1, \quad \text { on } \Omega \\
f & =k_{i}, \quad \text { in } p_{\xi}\left(B_{i}\right), \quad i=1,2
\end{aligned}
$$

Remark 1. It is easy to see from here that if M is as in Proposition 2, then M lies on the boundary of a convex body. Therefore the shape of these hyperspheres is strongly determinated.

Since (\mathbf{P}) is invariant under unimodular linear transformations of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, using Proposition 2 and the Maximum Principle we have the following basic properties of symmetry.

Corollary 1. Let B_{1} and B_{2} be compact ($n-1$)-hypersurfaces lying on two different parallel hyperplanes Π_{1} and Π_{2}. We assume there is a hyperplane Σ and a unit vector $\vec{\gamma} \in \vec{\Pi}_{1}$ (which is transversal to Σ) such that $B=B_{1} \cup B_{2}$ is invariant by the reflection through Σ parallel to $\vec{\gamma}$. If $\xi \in \vec{\Sigma}$ is a fixed vector transversal to Π_{1}, then any compact IA-hypersphere M with boundary B and with affine normal vector ξ must be invariant by the reflection through Σ parallel to $\vec{\gamma}$.

Remark 2. The Corollary 1 says that M inherits the symmetry of its boundary. In particular, if B_{1} and B_{2} are two $(n-1)$-hyperspheres contained in two parallel hyperplanes we have

Corollary 2. If B_{1} and B_{2} are two ($n-1$)-hyperspheres lying on two different parallel hyperplanes Π_{1} and Π_{2}, then any compact IA-hypersphere with boundary $B_{1} \cup B_{2}$ and with affine normal vector in the direction of the line joining the centers of the two hyperspheres is affinely equivalent to an IA-hypersphere of rotation.

Now we are going to describe IA-hyperspheres of rotation with affine normal vector $\xi=e_{n+1}$. We denote by \mathcal{S}^{n-1} the euclidean sphere of radius one with local parameters $u=\left(u^{1}, u^{2}, \ldots, u^{n-1}\right)$ and position vector $\omega=\omega\left(u^{1}, u^{2}, \ldots, u^{n-1}\right)$. With this notation we can parametrized affine hyperspheres of rotation in the following way

$$
x(u, R)=(R \omega(u), g(R))
$$

where $u \in \mathcal{S}^{n-1}$ and $R>0$.
The affine metric for these affine hypersurfaces is given by

$$
G=\left(\begin{array}{c|c}
g^{\prime} R h_{i j} & 0 \\
\hline 0 & g^{\prime \prime}
\end{array}\right)
$$

where by prime we denote the derivative with respect to R and $h_{i j}$ are the components of the euclidean metric on \mathcal{S}^{n-1}. If we impose on M the condition of IA-hypersphere with affine normal vector $\xi=e_{n+1}$, we find that g must be a curve of the family $\mathcal{G}=$ $\left\{g_{0}\right\} \cup\left\{\widetilde{g}_{c}, c>0\right\} \cup\left\{g_{c}, c>0\right\}$, where

$$
\begin{aligned}
& g_{0}(R)=\frac{R^{2}}{2}, \quad R>0, \\
& g_{c}(R)=\int_{0}^{R}\left(t^{n}+c^{n}\right)^{1 / n} d t, \quad R>0, \quad c>0, \\
& \tilde{g}_{c}(R)=\int_{c}^{R}\left(t^{n}-c^{n}\right)^{1 / n} d t, \quad R>c>0 .
\end{aligned}
$$

Remark 3. The curve g_{0} generates the elliptic paraboloid. The curves g_{c} satisfy $g_{c}^{\prime}(0)=$ $c>0$, thus these curves generate IA-hyperspheres of rotation with a vertex. Finally, we remark that $\lim _{R \rightarrow c} \widetilde{g}_{c}^{\prime}(R)=0$ but \widetilde{g}_{c} is not C^{2} in $[c, \infty)$, thus \widetilde{g}_{c} generate IA-hyperspheres of rotation with C^{1}-boundary.
Then we have in a similar way to Theorem 2 in [FMM] the following result:
Theorem 1 (Existence and Elasticity). Let R_{1}, R_{2} and r be positive real numbers with $R_{1}<R_{2}$. Then there exists a curve g in \mathcal{G} with $g\left(R_{2}\right)-g\left(R_{1}\right)=r$, if and only if $r>d\left(R_{1}, R_{2}\right)$, where

$$
d\left(R_{1}, R_{2}\right)=\int_{R_{1}}^{R_{2}}\left(t^{n}-R_{1}^{n}\right)^{1 / n} d t
$$

Remark 4. Theorem 1 says that for any positive real numbers R_{1}, R_{2}, r, with $R_{1}<R_{2}$ and $r>d\left(R_{1}, R_{2}\right)$, we can always find an IA-hypersphere of rotation with affine normal vector $\xi=e_{n+1}$ which is bounded by the ($n-1$)-hyperspheres of radios R_{1} and R_{2} lying on parallel hyperplanes separated to a distance r. Furthermore, we observe that the affine volume of these hypersurfaces is

$$
\operatorname{Vol}\left(\mathcal{S}^{n-1}\right) \frac{\left(R_{2}^{2}-R_{1}^{2}\right)}{n}
$$

which is independent of r. This property states an important difference between euclidean minimal surfaces and IA-hyperspheres.

Corollary 3. In the ring-shaped domain Ω given by

$$
\Omega=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid R_{1}^{2} \leq x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq R_{2}^{2}\right\},
$$

there is a C^{2}-solution f of the problem

$$
\begin{array}{ll}
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=1 & \text { on } \Omega \\
f=k_{i} & \text { in } \\
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=R_{i}^{2}, \quad i=1,2
\end{array}
$$

where k_{1} and k_{2} are positive constants, if and only if $k_{1}<k_{2}$ and $k_{2}-k_{1}>d\left(R_{1}, R_{2}\right)$. In this case we have that f must be a radial function.

The last result in this part is a theorem about non existence of certain IA-hyperspheres whose boundary are not necessarily two ($n-1$)-hyperspheres.

Theorem 2 (Non existence). Let B_{1} and B_{2} be two compact ($n-1$)-hypersurfaces such that $B_{1} \subset \Pi_{0}=\left\{x_{n+1}=0\right\}$ and $B_{2} \subset \Pi_{0}^{+}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid x_{n+1}>0\right\}$. Assume that R is a positive number such that B_{1} is contained in $I\left(S_{R}\right)$, where S_{R} is the $(n-1)$ hypersphere with center at $(0,0, \ldots, 0)$ and radius R in Π_{0} and that B_{2} is contained in the exterior of the IA-hypersphere of rotation M_{R} generated by the curve \widetilde{g}_{R} (see Fig. 1). Then every compact IA-hypersphere M with affine normal $\xi=e_{n+1}$ and boundary $B_{1} \cup B_{2}$ must be disconnected.

Figure 1:

Proof. Suppose that M is connected. Then, for each $r>0$ we are going to consider $\mathcal{T}_{r \xi}: \mathcal{A}^{n+1} \longrightarrow \mathcal{A}^{n+1}$ the translation of vector $r \xi$ and we denote $\mathcal{L}_{r}=\mathcal{T}_{r \xi}\left(M_{R} \cup \overline{I\left(\mathcal{S}_{R}\right)}\right)$. It is clear that the set $Q=\left\{r>0 \mid \mathcal{L}_{r} \geq M\right\}$ is closed and non empty. Thus there exists r_{0} minimum of Q and $\mathcal{L}_{r_{0}} \cap M$ is not empty.

If we take $p \in \mathcal{L}_{r_{0}} \cap M$, since M lies on a convex body (see Remark 1) we have only two posibilities:
(a) p is interior to M and to $\mathcal{T}_{r_{0} \xi}\left(M_{R}\right)$.
(b) p is in $\mathcal{T}_{r_{0} \xi}\left(\mathcal{S}_{R}\right)$ and it is an interior point of M.

If (a) happens, from Proposition $1, M$ coincides with $\mathcal{T}_{r_{0} \xi}\left(M_{R}\right)$, which contradicts the assumption on B_{2}.

If we have (b), then from Remark $2, T_{p} M$ must be an horizontal hyperplane which contradicts Remark 1 and the proof is finished.

3 Non compact IA-spheres with compact boundary

We refer the reader to [FMM] for proofs and more details about this section.
Definition 1. A non compact IA-sphere M with compact boundary ∂M is said to be regular at infinity if there exists a compact subset K of M such that $M-K$ lies on the boundary of a convex set in \mathcal{A}^{3}.

If M is regular at infinity it is easy to prove that M is the graph of a convex function f on Ω, where Ω is the exterior of a closed curve in Π_{0}. We are going to denote by M_{f} the graph of a function f and $\widetilde{\Omega}_{R}=\{z \in \mathbb{C}| | z \mid>R\}$, that is, the exterior of a complex disk of radius R.

We are going to define global isothermal coordinates for the affine metric of M_{f}. For it we consider the following transformation $L_{f}: \Omega \longrightarrow \mathbb{C}$, known as the Lewy transformation,
given by

$$
L_{f}\left(x_{1}, x_{2}\right)=(u, v)=\left(x_{1}+\frac{\partial f}{\partial x_{1}}\right)+\mathrm{i}\left(x_{2}+\frac{\partial f}{\partial x_{2}}\right)
$$

Since M is locally strongly convex we can supose that $\frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}$ are positive functions for $i=1,2$. Then the Jacobian of L_{f} has determinant

$$
1+\sum_{i=1}^{2} \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}+\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)>2
$$

and so L_{f} is an immersion.
Using that M_{f} lies on the boundary of a convex set in \mathcal{A}^{3} we can prove that L_{f} is distance increasing and so, $L_{f}: \Omega \longrightarrow \widetilde{\Omega}$ is a diffeomorphism, where $L_{f}(\Omega)=\widetilde{\Omega}$.

Moreover it is easy to prove that there exists $R>0$ such that $\widetilde{\Omega}_{R} \subset \widetilde{\Omega}$. It allows us to define the function $F: \widetilde{\Omega}_{R} \longrightarrow \mathbb{C}$, given by

$$
F(z)=\left(x_{1}-\frac{\partial f}{\partial x_{1}}\right)+\mathrm{i}\left(-x_{2}+\frac{\partial f}{\partial x_{2}}\right)
$$

where $z=u+\mathrm{i} v$.
We have the following expression which relates f and F :

$$
\begin{equation*}
f(w)=\frac{1}{8}|z|^{2}-\frac{1}{8}|F(z)|^{2}+\frac{1}{4} \Re(z F(z))-\frac{1}{2} \Re \int_{z_{0}}^{z} F(\zeta) d \zeta \tag{1}
\end{equation*}
$$

where $w=x_{1}+\mathrm{i} x_{2}$ and \Re denotes real part.
From this expression and the definition of F we have that F is an holomorphic function satisfying

$$
\begin{array}{ll}
\text { (A) } & \left|F^{\prime}(z)\right|<1, \quad z \in \widetilde{\Omega}_{R} \\
\text { (B) } & \lim _{|z| \rightarrow \infty} F(z)=\mu, \quad \lim _{|z| \rightarrow \infty} F(z)-\mu z=\nu, \mu, \nu \in \mathbb{C} \\
\text { (C) } & \text { Residue }[F, \infty] \text { is a real number. }
\end{array}
$$

Moreover, after an affine transformation we can get that F verifies:
$\left(\mathbf{B}^{\prime}\right) \quad \lim _{|z| \rightarrow \infty} F(z)=\lim _{|z| \rightarrow \infty} F^{\prime}(z)=0$.
We shall call F the Lewy function of f.
Conversely, if we have an holomorphic function $F: \widetilde{\Omega}_{R} \longrightarrow \mathbb{C}$ satisfying $(\mathbf{A}),\left(\mathbf{B}^{\prime}\right)$ and (\mathbf{C}) we can define the transformation $T_{F}: \widetilde{\Omega}_{R} \longrightarrow \mathbb{C}$ given by

$$
2 T_{F}(z)=z+\overline{F(z)}, \quad z \in \widetilde{\Omega}_{R}
$$

The expression (1) gives us a function f such M_{f} is an IA-sphere with affine normal vector $\xi=(0,0,1)$ and which is regular at infinity.

In this way we have an identification between this special type of IA-spheres and holomorphic functions on the exterior of a disk satisfying $(\mathbf{A}),\left(\mathbf{B}^{\prime}\right)$ and (\mathbf{C}).

In the general case, if $(\mathbf{A}),(\mathbf{B})$ and (\mathbf{C}) happen, F writes as:

$$
F(z)=\mu z+\nu+\sum_{n=1}^{\infty} \frac{a_{n}}{z^{n}}, \quad z \in \widetilde{\Omega}_{S}
$$

where $a_{1} \in \mathbb{R}$.
For IA-spheres of rotation this function F is the simplest that we can hope. If M is generated by g_{c}, then the expression of F is:

$$
F_{c}(z)=\frac{-c^{2}}{z}, \quad z \in \widetilde{\Omega}_{c}
$$

and if M is generated by \widetilde{g}_{c}, then the expression of F is:

$$
F_{c}(z)=\frac{c^{2}}{z}, \quad z \in \tilde{\Omega}_{\lambda} .
$$

We have seen that IA-spheres which are regular at infinity are given by the graph of a convex function on the whole exterior of a disk. Therefore, if M is regular at infinity, M can not be asymptotic to an horizontal plane and it can not tend to infinity in a finite time.
After some calculations f can be expressed:

$$
\begin{aligned}
f(w) & =Q(f(w))+\frac{1}{1-|\mu|^{2}}\left\{a x_{1}+b x_{2}+\frac{\nu_{2} b-\nu_{1} a}{4}\right\}- \\
& -\frac{a_{1}}{4} \log \left(|z|^{2}\right)+o(1)
\end{aligned}
$$

where

$$
\begin{aligned}
Q(f(w)) & =\frac{1}{2\left(1-|\mu|^{2}\right)}\left\{\left(1+|\mu|^{2}-2 \mu_{1}\right) x_{1}^{2}\right\}+ \\
& +\frac{1}{2\left(1-|\mu|^{2}\right)}\left\{\left(1+|\mu|^{2}+2 \mu_{1}\right) x_{2}^{2}+4 \mu_{2} x_{1} x_{2}\right\}
\end{aligned}
$$

with $\nu=\nu_{1}+\mathrm{i} \nu_{2}, \mu=\mu_{1}+\mathrm{i} \mu_{2}, a=-\nu_{1}+\mu_{1} \nu_{1}+\mu_{2} \nu_{2}, b=\nu_{2}-\mu_{2} \nu_{1}+\mu_{1} \nu_{2}$ and $o(1)$ denotes a term which tends to a constant when $|w|$ tends to infinity.

By using this expression and a similar technique to [LR] we can prove (see [FMM]), the following results
Theorem 3 (Maximum Principle at infinity). Let f_{1} and f_{2} be convex solutions of (\mathbf{P}) on $\widetilde{\Omega}_{R}$ with $f_{1}=f_{2}$ in $\partial \widetilde{\Omega}_{R}$. Suppose that the graphs $M_{f_{1}}$ and $M_{f_{2}}$ of f_{1} and f_{2}, respectively, are regular at infinity and $f_{1} \geq f_{2}$ on $\widetilde{\Omega}_{S}$ for some $S>R$. If there exists a sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ in $\widetilde{\Omega}_{R}$ with $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$ and

$$
\lim _{n \rightarrow \infty}\left|f_{1}\left(w_{n}\right)-f_{2}\left(w_{n}\right)\right|=0,
$$

then $f_{1}=f_{2}$.
Let \mathcal{G} be as in Sect. 2 and $\psi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ the function given by $\psi\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Then one has,
Theorem 4. Let f a convex solution of (\mathbf{P}) on $\widetilde{\Omega}_{R}$. Suppose that the graph M_{f} of f is regular at infinity and $f \geq g \psi$ on $\widetilde{\Omega}_{S}$ for some $S>R$, where $g \in \mathcal{G}$. If there exists a sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ in $\widetilde{\Omega}_{R}$ with $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$ and

$$
\lim _{n \rightarrow \infty}\left|f\left(w_{n}\right)-g \psi\left(w_{n}\right)\right|=0,
$$

then $f=g \psi$.

References

[B] Backelman, I. J.: Convex analysis and nonlinear geometric elliptic equations, SpringerVerlag Berlin Heidelberg, 1994.
[C1] Calabi, E.: Complete affine hyperspheres I, Ist. Naz. Alta MAt. Sym. Mat. Vol. X, 19-38 (1972).
[C2] Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J. 5, 108-126 (1958).
[FMM] Ferrer, L., Martínez, A. and Milán, F.: Symmetry and Uniqueness of Parabolic Affine Spheres, to appear in Math. Ann. (1996).
[LR] Langevin, R. and Rosenberg, H.: A Maximum principle at infinity for minimal surfaces and applications, Duke Math. J., Vol. 57, No.3, 819-828 (1988).
[LSZ] Li, A. M., Simon, U. and Zhao, Z.: Global affine differential geometry of hypersurfaces, Walter de Gruyter, Berlin. New York, 1993.
[NS] Nomizu K. and Sasaki, T.: Affine Differential Geometry, Cambridge Univ. Press, 1994.

Leonor Ferrer, Antonio Martínez and Francisco Milán
Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071 GRANADA. SPAIN
(e-MAIL: lferrer@goliat.ugr.es; amartine@goliat.ugr.es; milan@goliat.ugr.es)

[^0]: *Research partially supported by DGICYT Grant No. PB94-0796.

