
CONVEX AFFINE SURFACES WITH CONSTANT AFFINE MEAN CURVATURE 

A. Mart~nez and F. Milan (I~ 

An interesting (open) problem in Affine Differential Geometry is, (see 

[SI]): the classification of all affine complete, noncompact, locally 

strongly convex surfaces M, with constant affine mean curvature H, in 

the unimodular real affine 3-space A 3. 

The compact case was studied by Blaschke, he could prove: "Every 

ovaloid in A 3 with constant affine mean curvature is an ellipsoid". 

Blaschke's assertion holds true for affine complete, locally 

strongly convex surfaces with positive constant affine mean curvature 

in A 3, (see [B] and [$2]). 

The problem for affine-maximal surfaces, that is, H = 0 on M, is 

called Affine Bernstein Problem (see [Ch]) and states: 

"Any locally strongly convex, affine complete, affine-maximal surface M 

in A 3 is an elliptic paraboloid". 

Partial solutions to this problem have been obtained with 

additional assumptions involving M (affine sphere, ([CI],[CY2],[J] 

[P]), global graph, ([C2]), or some conditions in the image of the 

conormal map, ([C3], [LI]), and Gauss map, ([L2]). 

When H=constant<0 there are known results which characterize the 

(x I ,x2,x3)~A3 >0, hyperboloid and the surface Q(a,2)={ I xlx2x3 =a>0, x 1 

x2>0, x3>0 } as complete hyperbolic affine spheres with Pick invariant 

satisfying some additional assumptions, ([LP], [K]). 

In this communication, we give a step in the classification of the 

affine complete, locally strongly convex surfaces in A 3 with constant 

affine mean curvature. We obtain the following result, 

THEOREM .- Let M be a locally strongly convex, affine complete surface 

in A 3 with constant affine mean curvature H. Denote by r, ~ and J the 

affine Gauss-Kronecker curvature of M, the intrinsic Gaussian curvature 

of the affine metric and the Pick invariant, respectively. If 
2 

(I) J - cB 2 a d, for some real numbers c and d, c > ~, and 

(II) 3JK + 2HB a 0, 

where B 2 = H a - r. Then M is one of the following surfaces: 

i) an ellipsoid, 

ii) an elliptic paraboloid, 

iii) an hyperboloid, 

iv) an affine image of the surface Q(a,2), a>O. 
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Notes : 

It is known the affine egregium theorem: ~ = J + H. Then we have 

i.- A locally strongly convex, a f fine complete surface in A 3 with 

positive constant a f fine mean curvature has ~ z H > 0 and, from 

Bonnet' s Theorem, is compact. Then, assumptions ( I ) and ( II ), in 

the Theorem hold and Blaschke's result is a corollary. 

2.- If M is an affine-maximal surface, then assumption (II) in Theorem 

holds. Thus, we obtain the following partial solution of the Affine 

Bernstein Problem (see [MM] ) : 

"A locally strongly convex, affine complete, affine-maximal surface in 

A 3, with ~ + cr bounded from below by a constant, for some real number 

c> 2- 5" is an elliptic paraboloid". 

In particular: 

If the a f fine Gauss-Kronecker curvature i_~s bounded from below, w_ee 

obtain that M is an elliptic paraboloid. 

3.- In the case that H < 0 we do not assume that M is an affine sphere 

(B 2 vanishes identically on M, see [$3]). However, we need to assume 

some growth conditions for B, (expressions (I) and (II)). Using this 

Theorem one can obtain the following result concerning Q(a,2): 

"Let M be a locally strongly convex, affine complete surface in A 3 with 

H=constant<O. If the affine Gauss-Kronecker curvature is bounded from 

below and 3~ z 2B, then M is an affine image of the affine sphere 

Q(a,2)". 

Proof of the Theorem. 

Let A be the Laplacian of the affine metric. If the affine mean 

curvature is constant, using the integrability conditions and the basic 

formulas for affine surfaces one gets (see appendix) 

(FI) A(~J + B 2) a 3J~ + 10JB 2 + 4HB 2 - !j + B 2 _ 4B 4 
2 

A(~J + B) z 3J~ + 2HB. (F2) 

If H > 0, then M is compact and, from (F2), one gets J = 0 and B=0, 

consequently M is an ellipsoid. 

If H s 0, then, from (II), either J = 0 (and we have a quadric) or 

z 0. Assume Hs0 and £z0 on M. Then, from (I) and (FI) one gets, 

A(~J+B 2) z 3J 2 + 3JH + 10JB 2 + 4HB 2 - !j2 + B2 - 4B4 = 

= 10c-41+c (~ J+B2)2 + ( c(i+c128d + 6H_I)(~j+B 2) + 
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10c-4 10c-4 
+ (3 - ~ )jz + (i0 l+c )jB2 - 

- (4 + 10c-4 14d 28d B 2 
l+c )B4 c(l+c) J + (2-2H- c(l+c----------~ ) a 

i0c-41+c (~ J÷B2)2 + ( c(i÷c)28d + 6H_I)(½j+B 2) ÷ 
14 14c 14d 

+ ( l-i~ J - l-i~c B2)B2 c(l+c) J a 

i0c-4 (~j+S2)2 28d +6H_I)(~j+B 2) 14d 2 
l+c + (c(l+c) c(l+c) 

that is, Av a f(v), where v = !j + B 2 and f:~ ~ ~ is a polynomial of 
2 

degree 2 with positive principal coefficient. Using Theorem 8 of [CYI], 

we conclude that !j + B 2 is bounded from above by a constant, and !j + 
2 2 

B must be bounded from above also. 

One can supposes that M is simply connected (otherwise we may pass 

to the universal covering surface of M). As M is affine complete with 

z 0 and there is no compact affine surface in A 3 with H ~ 0 (see 

[CY2]), then M is conformally equivalent to C. 

!j + B is a bounded subharmonic function on From (II) and (F2), 2 

the Riemann surface M~t which implies that !j + B is constant, and 3J~ 
2 

+ 2HB = 0. Thus, the intrinsic Gaussian curvature ~ is a nonnegative 

constant. As M is not compact, one gets K = 0 on M, J = -H and HB = 0. 

Therefore, if H=0, then J = 0 and M is an elliptic paraboloid and if H 

< 0, then B=0 and M is an affine sphere with J = -H > 0 that is, an 

affine image of the surface Q(a,2), a>0, (see [LP]). 

Appendix. 

Let M be an oriented, connected and convex affine surface immersed in 

A 3. If ~ is the affine normal of the immersion and we denote by V, h 

and S the induced connection, the affine metric and the affine 

Weingarten operator associated to ~, respectively, then the equations 

of the immersion are given by: 

(i) R(X,Y)Z = h(Y,Z)SX-h(X,Z)SY (Gauss) 

(2) (Vh)(X,Y,Z) = (Vh)(Y,X,Z) (Codazzi) 

(3) (VS)(X,Y) = (VS)(Y,X) (Codazzi) 

(4) h(SX,Y) = h(X,SY) (Ricci) 

for any X, Y, Z tangent vector fields to M, (X,Y,Z ~ TM), where R is 

the curvature tensor of V. 
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A 
Let V be the Levi-Civita connection for the affine metric h. 

A 
If we denote the difference tensor b e t w e e n  V and V by K, t h e n  

A 
(5) K(X,Y) = VX x - VxY , X,YETM 

and one o b t a i n s  t h e  f o l l o w i n g  r e l a t i o n s  

(6) h(K(X,Y),Z) = -(I/2)(Vh)(X,Y,Z), X,Y,Z~TM 

(7) trace K x = 0 XETM 

where KxY = K(X,Y) for any X,Y~TM. 

From (i), (5) and (7) it follows that the intrinsic Gaussian 

curvature K of the affine metric h is given by 

(8) Kh(X,Y) = h(X,Y)H + trace(KxKy) , X,Y~TM 

where 

H = ! traceS 
2 

is the affine mean curvature of the immersion. 

Let {EI,E2} be an orthonormal frame with respect to the affine 

metric and parallel at a point xeM. One writes: 

A A 

V E E I = pE 2 , V E E 2 = qE I 
1 2 

= + bE (9) K(EI'EI) aEi 2 

SE I = (H+~)E i + ~E 2 

for some functions p, q, a, b, ~, and B defined on a neighbourhood of 

x, then from (2), (4), (6) and (7) one gets 

p(x) = q(x) = 0, 

(i0) K(EI,E2) = bE1-aE 2 , K(E2,E2) = -aE I - bE 2 

SE 2 = ~E I + (H-~)E 2. 

From (i), (8), (9) and (i0), 

(ii) K = H + 2(a2+b 2) = ql + Pz - p2 _ q2, J = 2(a2+b 2), 

= + b = -~ + 3(bp+qa), (12) b I - a 2 -6 - 3(pa-qb), al 2 

where by ( )I and ( )2 we denote the covariant derivatives respect to 

E i and E 2 respectively. 

In the rest we suppose that H is constant. Then from (3), (9) and 

(10), 
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(13) ~I- a2 = 2(ab-Ba+q~-p~), ~2 + ~i = 2(~b+ga+p~+qa). 

If we denote by A and v the Laplacian and the Gradient of the 

affine metric h, respectively, then (making the calculations at the 

point xEM), (ii) and (12) gives 

(14) aAa+bAb = a(al1+aaa) + b(b11+ba2) = 3(aa+ba)K + a(~a-~l)-b(~t+~a) 

and 

= - + 2a b . (15) a2+~2 IVala + IVbla 2blaa I 2 

From (Ii), (14) and (15) one has 

(16) ~AJ = 3JK + (az+B a) + (al-ba) a + (bl+a2)2 + 2a(~a-~1)-2b(~l+aa). 

Now, using (ii) and (13) 

( 1 7 )  a A ~  + ~A~ = a ( a l l + a a a )  + ~ ( ~ i I + ~ 2 2 )  = 

= 8 ( a a + b 2 ) B  a + 2HB a + 4 B a ( b i + a a )  + 2 ( a a - B 2 ) ( a - b a  ) 

w h e r e  B a = ( 2 + ~ a )  = H a - d e t S ,  t h u s  a d d i n g  t h e  s q u a r e s  i n  ( 1 3 )  

4(aa+b2)B 2 JVal 2 + lV~l 2 
= _ 2~1~ 2 + 2~2~ 1 

and 

(18) B-z(  iVc~l 2 + IV/~l 2) - S-31~xWx + /3V/912 = 

tB -Z .  2 = ( a 2 + b 2 ) B  + ~ t ( ~ 1 - ~  2) + ( ~ 1 + a 2 ) 2 ]  - 

- B - 3 [ ~ ( a 2 _ ~  2 ) ( t V ~ 1 2 _ t v ~ [  2) + 2 a ~ ( a 1 ~ i + ~ 2 ~ 2 ) ] ,  

a n d  f r o m  ( 1 7 )  a n d  ( 1 8 )  o n e  g e t s  

(19) AB = 9(aZ+b2)B + B-i{4~a(bl+a2)+2(~2-~2)(az-b2) }- 

-B-3{~(a2-R2)(IVal2-lVBi2) + 2a{9(at{J1+aJ92)} + 2HB + 

1B-1" 
+ ~ t(~-~2)2+(~I+~2) 2] 

Furthermore from (13) 

b = I((I2+~2)-l[c~(~l--a2)+~(~2+(X1) ]1 

(20) 
a = ~(~2+~2)-I[~(~2+~)-~(~i-~a)], 

and one gets 
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(21) (~1-~2)[a(~3-3~B2)+b(3~2~-~3)] + (~1+~2)[a(3~2~-~3)-b(~3-3~2)] = 

-- 1 2_~2 
- 3( )(IV~I2-1V~I 2) + 2~(~i~I+~2~2) 

Using (16), (19), (20) and (21), one has 

-1 2 2 ]2 (F2) A(~J + B) = 3JK + 2HB +[B-12~+(b1+a2)] 2 + [B (=-~ )+(al-b2) + 

+ IB-i(. ~-i/2 . . . . .  I/2_. 2 t[z (~l-~2)-Jaz sJ + [2-1/2(B1+~2)-3b21/2B]2 } + 

z 3J~ + 2HB . 

In a similar way, from (13), (16) and (17), one can gets 

(FI) A(~J + B 2) = 3J~ + B 2 + 10JB 2 + 4HB 2 - 4B 4 - !j + 
2 

e 3 J K  + B 2 + 1 0 J B  2 + 4 H B  2 - 4 B  4 - ! j .  
2 
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