CONVEX AFFINE SURFACES WITH CONSTANT AFFINE MEAN CURVATURE

A. Martinez and F. Milan"’
An interesting (open) problem in Affine Differential Geometry is, (see
[S1]): the classification of all affine complete, noncompact, locally
strongly convex surfaces M, with constant affine mean curvature H, in
the unimodular real affine 3-space a°.

The compact case was studied by Blaschke, he could prove: "Every
ovaloid in A’ with constant affine mean curvature is an ellipsoid”.

Blaschke’s assertion holds true for affine complete, locally
strongly convex surfaces with positive constant affine mean curvature
in 4°, (see [B] and [S2]).

The problem for affine-maximal surfaces, that is, H = 0 on M, is
called Affine Bernstein Problem (see [Ch]) and states:

"Any locally strongly convex, affine complete, affine-maximal surface M
in A° is an elliptic paraboloid”.

Partial solutions to this problem have been obtained with
additional assumptions involving M (affine sphere, ([C1],[CY¥Y2],[{J]
[(P]), global graph, ({C2]), or some conditions in the image of the
conormal map, ({C3}, [L1]), and Gauss map, ([L2]}).

When H=constant<0 there are known results which characterize the
hyperboloid and the surface Q(a,2)={(xl,x2,x3)eA3| x1x2x3=a>0, x1>0,

x2>0, x3>0} as complete hyperbolic affine spheres with Pick invariant

satisfying some additional assumptions, ([LP], [K]).
In this communication, we give a step in the classification of the
affine complete, locally strongly convex surfaces in 2° with constant

affine mean curvature. We obtain the following result,

THEOREM .- Let M be a locally strongly convex, affine complete surface
in 2° with constant affine mean curvature H. Denote by T, x and J the
affine Gauss-Kronecker curvature of M, the intrinsic Gaussian curvature
of the affine metric and the Pick invariant, respectively. If
(I) J - cB® = d, for some real numbers c¢ and d, ¢ > ﬁ, and
(II) 3Jk + 2HB =z 0,

where B° = H® - ©. Then M is one of the following surfaces:
i) an ellipsoid,

ii) an elliptic paraboloid,

iii) an hyperboloid,

iv) an affine image of the surface Q(a,2), a>0.
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Notes:

It is known the affine egregium theorem: k = J + H. Then we have

1.- A locally strongly convex, affine complete surface in 2’ with
positive constant affine mean curvature has k =z H > 0 and, from
Bonnet’s Theorem, is compact. Then, assumptions (I) and (II), in
the Theorem hold and Blaschke’s result is a corollary.

2.- If M is an affine-maximal surface, then assumption (II) in Theorem
holds. Thus, we obtain the following partial solution of the Affine
Bernstein Problem (see [MM]):

"d locally strongly convex, affine complete, affine-maximal surface in
2°, with k + ct bounded from below by a constant, for some real number
c > g, is an elliptic paraboloid”.

In particular:

If the affine Gauss-Kronecker curvature is bounded from below, we

obtain that M is an elliptic paraboloid.

3.- In the case that H < 0 we do not assume that M is an affine sphere
(52 vanishes identically on M, see {S3]). However, we need to assume
some growth conditions for B, (expressions (I) and (II)). Using this
Theorem one can obtain the following result concerning Q(a,2):

"Let M be a locally strongly convex, affine complete surface in 2° with
=constant<0. If the affine Gauss-Kronecker curvature is bounded from
below and 3k = 2B, then M is an affine image of the affine sphere
Q(a,2)".

Proof of the Theorem,

Let A be the Laplacian of the affine metric. If the affine mean
curvature is constant, using the integrability conditions and the basic

formulas for affine surfaces one gets (see appendix)

(F1) A3 + B%) = 3¢ + 103B% + 4HB® - 17 + B® - 4B,
2 2

(F2) A(3J + B) = 33k + 2HB.

If H > 0, then M is compact and, from (F2), one gets J = 0 and B=0,
consequently M is an ellipsoid.

If H = 0, then, from (II), either J = 0 (and we have a quadric) or
k =2 0. Assume H=<0 and k20 on M. Then, from (I) and (Fl) one gets,

A(33+B%) = 33% + 3JH + 10JB® + 4HB® - J + B° - 4B' =

_ 10c-4 ,1 2,2 28d 1 2
=—1ve GIB) * (gmrey 7 6H-1) (3J+B%) +
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10c-4 2 10c-4 2
+ (3 - —Z—(—H_c) )J + (10 - _]._’;‘E_ )JB -
10c-4 4 14d 28d 2
-t OB - rEey U (M ey )BT
= 2002 (15.p%)2 4 (‘E%%%ET’ + 6H-1) (L3+8%) +
14 l4c _2. .2 14d o
*l1ed - 1B - s v
10c-4 1. .22 28d 1., 02 14d°
= “Tee (39B)7 + (Shrey *H-1) (39BY) - F1rey

that is, Av = f(v), where v = %J + B® and f:R—> R is a polynomial of
degree 2 with positive principal coefficient. Using Theorem 8 of [CY1l],
we conclude that %J + B® is bounded from above by a constant, and %J +
B must be bounded from above also.

One can supposes that M is simply connected (otherwise we may pass
to the universal covering surface of M). As M is affine complete with «k
=z 0 and there is no compact affine surface in A with H s 0 (see
{CY¥2]), then M is conformally eguivalent to C.

From (II) and (F2), %J + B is a bounded subharmonic function on
the Riemann surface M=C which implies that %J + B is constant, and 3Jk
+ 2HB = 0. Thus, the intrinsic Gaussian curvature k is a nonnegative
constant. As M is not compact, one gets k = 0 on M, J = -H and HB = 0.
Therefore, if H=0, then J = 0 and M is an elliptic paraboloid and if H
< 0, then B=0 and M is an affine sphere with J = -H > 0 that is, an
affine image of the surface Q(a,2), a>0, (see [LP]).

Appendix.

- .
Let M be an oriented, connected and convex affine surface immersed in

2. 1f € is the affine normal of the immersion and we denote by V, h

and S the induced connection, the affine metric and the affine
Weingarten operator associated to &, respectively, then the equations
of the immersion are given by:

(1) R(X,Y)Z = h(Y,2)SX-h(X,2)SY (Gauss)
(2) (Vh)(X,Y,2) = (Vh)(Y,X,2) (Codazzi)
(3) (VS)(X,Y) = (VUS)(Y,X) {Codazzi)
(4) h(sxX,Y) = h(X,5Y) (Ricci)

for any X, Y, 2 tangent vector fields to M, (X,Y,2 € TM), where R is

the curvature tensor of V.
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A
Let Vv be the Levi-Civita connection for the affine metric h.

A
If we denote the difference tensor between V and V by K, then
A
(5) K(X,Y) = EXY - WY, X,YeTM

and one obtains the following relations

(6) h(X(X,Y),%) = -(1/2)(Yh)(X,Y,%), X,Y, 2eT™M

(7) trace Kx =0 XeTM

where KgyY = K(X,Y) for any X,YeTM.

From (1), (5) and (7) it follows that the intrinsic Gaussian
curvature k of the affine metric h is given by
(8) kh(X,Y) = h(X,Y)H + trace(KyKy), X,YeTM

where

H = % traceS

is the affine mean curvature of the immersion.

Let {E1’E2} be an orthonormal frame with respect to the affine
metric and parallel at a point xeM. One writes:
A

Vg E = DE

A
E ' VL E_ = qu

E "2
1 2

(9) K(E,E ) = aE + bE,

SE, = (H+a)E + BE,
for some functions p, g, a, b, «, and B defined on a neighbourhood of
x, then from (2), (4), (6) and (7) one gets

p{x}) = q(x) = 0,
(10) K(E ,E)) = bE -aE_, K(E,,E,) = -aE - bE,

SE, = BE, + (H-o)E,.

From (1), (8), (9) and (10),

(11) k= H+ 2@4p%) =q +p,-p -q, J= 2%,

(12) b -a, = -g - 3(pa-gb), a, + b, = -a+ 3(bptqa),

where by ( )1 and ( ), we denote the covariant derivatives respect to
E1 and E2 respectively.

In the rest we suppose that H is constant. Then from (3), (9) and
(10),
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(13) B,- «, = 2(ab-patqB-pa), B+ a = 2(Bb+aa+pptqa).

If we denote by A and Vv the Laplacian and the Gradient of the
affine metric h, respectively, then (making the calculations at the
point xeM), (11) and (12) gives

2
(14) aba+bAb = a(a +a,) + b(b +b_ ) = 3(a’+b*)k + a(B,-« )-b(B +a,)
and
(15) o*+g% = [val® + |vb|*- 2ba + 2ab .

From {11), (14) and (15} one has
(16) ZAJ = 3Jk + (a”+g%) + (a -b,)® + (b +a ) + 2a(B,-a )-2b(B +a,).
Now, using (11) and (13)
(17) alAox + BAB = a(au+aa) + B(B,,*B) =
= 8(a’+b”)B” + 2HB® + 4Ba(b +a ) + 2(a*-8%)(a,-b,)
where B® = (a2+32) = H® - detS, thus adding the squares in (13)

4(a®+p*)B® = (val® + V1% - 2B, + 2B
and

(18) Bl (1val® + 1V8I%) - B |ava + BVBIZ =

= (a®+b%)B + ig'l[(ql-sz)z + (Bx+“2)23_
- B[ (%) (1Val®-1981%) + 2ag(a,B,+aB,)],
and from (17) and (18) one gets

(19) AB = 9(a%+b%)B + B_1{4Ba(b1+a2)+2(a2—82)(al—bz)}—
-BT(5(o®-8%) (1VaI®-1VBI%) + 20B(a B +aB,)} + 2HB +
+ 3870 (a,-B,)  + (B, % )°1,

Furthermore from (13)

b = 2(a™+8°) ' [a(B,-a,)+B(B,+a )],
(20) 1 2 2,-1
a = 2(a®+8%)[a(B,ta,)-B(B,-2,) 1,

and one gets
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(21) («-B,)[a(a’-308%)+b(3a’8-8)] + (B *+a,)[a(3a’8-B’)-b(a’-3a8")] =
= 2(a®-6%) (191~ 1V81%) + 20B(a B +aB,).
Using (16), (19), (20) and (21), one has

(F2) A(%J + B) = 3Jk + 2HB +[}3"2Boc+(};>1+a2)]2 + [B_i(a2-82)+(a1—b2)]2 +

172

+ %B'l{[Z'l/z(al—Bz)-3a2 B]® + [2'“2(31+a2)-3b2“25]2} +

2
+ %B“{[z‘“z(al-faz) - 3B7%2"%[a(a’-3ap®) + b(3a28-83)]]+

~2~1/2

2
+ [2"”2(31+a2)—3B 2 [a(3a23—33)—b(a3-3a62)1] } >

z 3Jk + 2HB
In a similar way, from (13), (16) and (17), one can gets

(F1) A(33 + B%) = 3Jx + B® + 1038% + 4mp® - 48" - 15 +

2

+ [4th+(b1+a2)]2+[2(a2—82)+(a1-b2)]2+ [a+(32-oc1)] +[b-(Bl+a2)]2 =

= 3Jk + B® + 10JB® + 4HB® - 4B® - %J.
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