CONVEX AFFINE SURFACES WITH CONSTANT AFFINE MEAN CURVATURE

$$
\text { A. Martínez and F. Milán }{ }^{(1)}
$$

An interesting (open) problem in Affine Differential Geometry is, (see [Sl]): the classification of all affine complete, noncompact, locally strongly convex surfaces M, with constant affine mean curvature H, in the unimodular real affine 3 -space A^{3}.

The compact case was studied by Blaschke, he could prove: "Every ovaloid in A^{3} with constant affine mean curvature is an ellipsoid".

Blaschke's assertion holds true for affine complete, locally strongly convex surfaces with positive constant affine mean curvature in A^{3}, (see [B] and [S2]).

The problem for affine-maximal surfaces, that is, $H=0$ on M, is called Affine Bernstein Problem (see [Ch]) and states:
"Any locally strongly convex, affine complete, affine-maximal surface M in A^{3} is an elliptic paraboloid".

Partial solutions to this problem have been obtained with additional assumptions involving M (affine sphere, ([C1],[CY2],[J] [P]), global graph, ([C2]), or some conditions in the image of the conormal map, ([C3], [LI]), and Gauss map, ([L2]).

When $H=$ constant<0 there are known results which characterize the hyperboloid and the surface $Q(a, 2)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in A^{3} \mid \quad x_{1} x_{2} x_{3}=a>0, \quad x_{1}>0\right.$, $\left.x_{2}>0, x_{3}>0\right\}$ as complete hyperbolic affine spheres with Pick invariant satisfying some additional assumptions, ([LP], [K]).

In this communication, we give a step in the classification of the affine complete, locally strongly convex surfaces in A^{3} with constant affine mean curvature. We obtain the following result,

THEOREM .- Let M be a locally strongly convex, affine complete surface in A^{3} with constant affine mean curvature H. Denote by τ, k and J the affine Gauss-Kronecker curvature of M, the intrinsic Gaussian curvature of the affine metric and the Pick invariant, respectively. If
(I) $J-c B^{2} \geq d, \quad$ for some real numbers c and $d, c>\frac{2}{5}$, and
(II) $3 J K+2 H B \geq 0$,
where $B^{2}=H^{2}-\tau$. Then M is one of the following surfaces:
i) an ellipsoid,
ii) an elliptic paraboloid,
iii) an hyperboloid,
iv) an affine image of the surface $Q(a, 2), a>0$.

[^0]Notes:
It is known the affine egregium theorem: $\kappa=J+H$. Then we have
1.- A locally strongly convex, affine complete surface in A^{3} with positive constant affine mean curvature has $K \geq H>0$ and, from Bonnet's Theorem, is compact. Then, assumptions (I) and (II), in the Theorem hold and Blaschke's result is a corollary.
2.- If M is an affine-maximal surface, then assumption (II) in Theorem holds. Thus, we obtain the following partial solution of the Affine Bernstein Problem (see [MM]):
"A locally strongly convex, affine complete, affine-maximal surface in A^{3}, with $k+c \tau$ bounded from below by a constant, for some real number $c>\frac{2}{5}$, is an elliptic paraboloid".
In particular:
If the affine Gauss-Kronecker curvature is bounded from below, we obtain that M is an elliptic paraboloid.
3.- In the case that $H<0$ we do not assume that M is an affine sphere (B^{2} vanishes identically on M, see [S3]). However, we need to assume some growth conditions for B, (expressions (I) and (II)). Using this Theorem one can obtain the following result concerning $Q(a, 2)$:
"Let M be a locally strongly convex, affine complete surface in A^{3} with $H=c o n s t a n t<0$. If the affine Gauss-Kronecker curvature is bounded from below and $3 k \geq 2 B$, then M is an affine image of the affine sphere $Q(a, 2)^{\prime \prime}$.

Proof of the Theorem.

Let Δ be the Laplacian of the affine metric. If the affine mean curvature is constant, using the integrability conditions and the basic formulas for affine surfaces one gets (see appendix)

$$
\begin{align*}
& \Delta\left(\frac{1}{2} J+B^{2}\right) \geq 3 J \kappa+10 J B^{2}+4 H B^{2}-\frac{1}{2} J+B^{2}-4 B^{4}, \tag{F1}\\
& \Delta\left(\frac{1}{2} J+B\right) \geq 3 J \kappa+2 H B
\end{align*}
$$

If $H>0$, then M is compact and, from (F2), one gets $J=0$ and $B=0$, consequently M is an ellipsoid.

If $H \leq 0$, then, from (II), either $J=0$ (and we have a quadric) or $\kappa \geq 0$. Assume $H \leq 0$ and $k \geq 0$ on M. Then, from (I) and (F1) one gets,

$$
\begin{aligned}
\Delta\left(\frac{1}{2} J+B^{2}\right) & \geq 3 J^{2}+3 J H+10 J B^{2}+4 H B^{2}-\frac{1}{2} J+B^{2}-4 B^{4}= \\
& =\frac{10 \mathrm{C}-4}{1+C}\left(\frac{1}{2} J+B^{2}\right)^{2}+\left(\frac{28 d}{C(1+C)}+6 H-1\right)\left(\frac{1}{2} J+B^{2}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +\left(3-\frac{10 \mathrm{C}-4}{4(1+\mathrm{C})}\right) \mathrm{J}^{2}+\left(10-\frac{10 \mathrm{C}-4}{1+\mathrm{C}}\right) \mathrm{JB}^{2}- \\
& -\left(4+\frac{10 \mathrm{C}-4}{1+\mathrm{C}}\right) \mathrm{B}^{4}-\frac{14 \mathrm{~d}}{\mathrm{C}(1+\mathrm{C})} \mathrm{J}+\left(2-2 \mathrm{H}-\frac{28 \mathrm{~d}}{\mathrm{C}(1+\mathrm{C})}\right) \mathrm{B}^{2} \geq \\
& \geq \frac{10 \mathrm{C}-4}{1+\mathrm{C}}\left(\frac{1}{2} J+\mathrm{B}^{2}\right)^{2}+\left(\frac{28 \mathrm{~d}}{\mathrm{C}(1+\mathrm{C})}+6 \mathrm{H}-1\right)\left(\frac{1}{2} J+\mathrm{B}^{2}\right)+ \\
& +\left(\frac{14}{1+\mathrm{C}} \mathrm{~J}-\frac{14 \mathrm{C}}{1+\mathrm{C}} \mathrm{~B}^{2}\right) \mathrm{B}^{2}-\frac{14 \mathrm{~d}}{\mathrm{C}(1+\mathrm{C})} \mathrm{J} \geq \\
& \geq \frac{10 \mathrm{C}-4}{1+\mathrm{C}}\left(\frac{1}{2} J+\mathrm{B}^{2}\right)^{2}+\left(\frac{28 \mathrm{~d}}{\mathrm{C}(1+\mathrm{C})}+6 \mathrm{H}-1\right)\left(\frac{1}{2} \mathrm{~J}+\mathrm{B}^{2}\right)-\frac{14 \mathrm{~d}^{2}}{\mathrm{C}(1+\mathrm{C})}
\end{aligned}
$$

that is, $\Delta v \geq f(v)$, where $v=\frac{1}{2} J+B^{2}$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a polynomial of degree 2 with positive principal coefficient. Using Theorem 8 of [CY1], we conclude that $\frac{1}{2} J+B^{2}$ is bounded from above by a constant, and $\frac{1}{2} J+$ B must be bounded from above also.

One can supposes that M is simply connected (otherwise we may pass to the universal covering surface of M). As M is affine complete with k ≥ 0 and there is no compact affine surface in A^{3} with $H \leq 0$ (see [CY2]), then M is conformally equivalent to \mathbb{C}.

From (II) and (F2), $\frac{1}{2} J+B$ is a bounded subharmonic function on the Riemann surface $M \equiv \mathbb{C}$ which implies that $\frac{1}{2} J+B$ is constant, and $3 J K$ $+2 \mathrm{HB}=0$. Thus, the intrinsic Gaussian curvature κ is a nonnegative constant. As M is not compact, one gets $\kappa=0$ on $M, J=-H$ and $H B=0$. Therefore, if $H=0$, then $J=0$ and M is an elliptic paraboloid and if H <0, then $B=0$ and M is an affine sphere with $J=-H>0$ that is, an affine image of the surface $Q(a, 2), a>0$, (see [LP]).

Appendix.

Let M be an oriented, connected and convex affine surface immersed in A^{3}. If ξ is the affine normal of the immersion and we denote by $\bar{\nabla}, h$ and S the induced connection, the affine metric and the affine Weingarten operator associated to ξ, respectively, then the equations of the immersion are given by:

$$
\begin{align*}
& \bar{R}(X, Y) Z=h(Y, Z) S X-h(X, Z) S Y \tag{1}\\
& (\bar{\nabla} h)(X, Y, Z)=(\bar{\nabla} h)(Y, X, Z) \tag{2}\\
& (\bar{\nabla} S)(X, Y)=(\bar{\nabla} S)(Y, X) \tag{3}\\
& h(S X, Y)=h(X, S Y) \tag{4}
\end{align*}
$$

(Gauss)
(Codazzi)
(Codazzi)
(Ricci)
for any X, Y, Z tangent vector fields to $M,(X, Y, Z \in T M)$, where \bar{R} is the curvature tensor of $\bar{\nabla}$.

Let $\hat{\nabla}$ be the Levi-Civita connection for the affine metric h. If we denote the difference tensor between $\bar{\nabla}$ and $\hat{\nabla}$ by K, then

$$
\begin{equation*}
K(X, Y)=\bar{\nabla}_{X} Y-\hat{\nabla}_{X} Y, \quad X, Y \in T M \tag{5}
\end{equation*}
$$

and one obtains the following relations

$$
\begin{array}{lr}
h(K(X, Y), Z)=-(1 / 2)(\bar{\nabla} h)(X, Y, Z), & X, Y, Z \in T M \\
\text { trace } K_{X}=0 & X \in T M \tag{7}
\end{array}
$$

where $\mathrm{K}_{\mathrm{X}} \mathrm{Y}=\mathrm{K}(\mathrm{X}, \mathrm{Y})$ for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$.
From (1), (5) and (7) it follows that the intrinsic Gaussian curvature κ of the affine metric h is given by

$$
\begin{equation*}
\kappa h(X, Y)=h(X, Y) H+\operatorname{trace}\left(K_{X} K_{Y}\right), \quad X, Y \in T M \tag{8}
\end{equation*}
$$

where

$$
\mathrm{H}=\frac{1}{2} \text { traces }
$$

is the affine mean curvature of the immersion.
Let $\left\{E_{1}, E_{2}\right\}$ be an orthonormal frame with respect to the affine metric and parallel at a point $x \in M$. One writes:

$$
\begin{align*}
& \hat{\nabla}_{E_{1}} E_{1}=p E_{2}, \quad \hat{\nabla}_{E_{2}} E_{2}=q E_{1} \\
& K\left(E_{1}, E_{1}\right)=a E_{1}+b E_{2} \tag{9}\\
& S E_{1}=(H+\alpha) E_{1}+\beta E_{2}
\end{align*}
$$

for some functions p, q, a, b, α, and β defined on a neighbourhood of x, then from (2), (4), (6) and (7) one gets

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\mathrm{q}(\mathrm{x})=0, \\
& \mathrm{~K}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)=b E_{1}-a E_{2}, \quad \mathrm{~K}\left(\mathrm{E}_{2}, E_{2}\right)=-a E_{1}-b E_{2} \\
& S E_{2}=\beta E_{1}+(H-\alpha) E_{2} .
\end{aligned}
$$

From (1), (8), (9) and (10),

$$
\begin{align*}
& k=H+2\left(a^{2}+b^{2}\right)=q_{1}+p_{2}-p^{2}-q^{2}, \quad J=2\left(a^{2}+b^{2}\right), \tag{11}\\
& b_{1}-a_{2}=-\beta-3(p a-q b), \quad a_{1}+b_{2}=-\alpha+3(b p+q a), \tag{12}
\end{align*}
$$

where by ()$_{1}$ and ()$_{2}$ we denote the covariant derivatives respect to E_{1} and E_{2} respectively.

In the rest we suppose that \underline{H} is constant. Then from (3), (9) and (10),
(13)

$$
\beta_{1}-\alpha_{2}=2(\alpha \mathrm{~b}-\beta \mathrm{a}+\mathrm{q} \beta-\mathrm{p} \alpha), \quad \beta_{2}+\alpha_{1}=2(\beta \mathrm{~b}+\alpha \mathrm{a}+\mathrm{p} \beta+\mathrm{q} \alpha)
$$

If we denote by Δ and ∇ the Laplacian and the Gradient of the affine metric h, respectively, then (making the calculations at the point $x \in M$), (11) and (12) gives
(14) $a \Delta a+b \Delta b=a\left(a_{11}+a_{22}\right)+b\left(b_{11}+b_{22}\right)=3\left(a^{2}+b^{2}\right) \kappa+a\left(\beta_{2}-\alpha_{1}\right)-b\left(\beta_{1}+\alpha_{2}\right)$ and

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=|\nabla a|^{2}+|\nabla b|^{2}-2 b_{1} a_{2}+2 a_{1} b_{2} \tag{15}
\end{equation*}
$$

From (11), (14) and (15) one has
(16) $\frac{1}{2} \Delta J=3 J \kappa+\left(\alpha^{2}+\beta^{2}\right)+\left(a_{1}-b_{2}\right)^{2}+\left(b_{1}+a_{2}\right)^{2}+2 a\left(\beta_{2}-\alpha_{1}\right)-2 b\left(\beta_{1}+\alpha_{2}\right)$.

Now, using (11) and (13)

$$
\begin{align*}
& \alpha \Delta \alpha+\beta \Delta \beta=\alpha\left(\alpha_{11}+\alpha_{22}\right)+\beta\left(\beta_{11}+\beta_{22}\right)= \tag{17}\\
& =8\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{B}^{2}+2 \mathrm{HB}^{2}+4 \beta \alpha\left(\mathrm{~b}_{1}+\mathrm{a}_{2}\right)+2\left(\alpha^{2}-\beta^{2}\right)\left(\mathrm{a}_{1}-\mathrm{b}_{2}\right)
\end{align*}
$$

where $\mathrm{B}^{2}=\left(\alpha^{2}+\beta^{2}\right)=\mathrm{H}^{2}-\operatorname{det}$, thus adding the squares in (13)

$$
4\left(a^{2}+b^{2}\right) B^{2}=|\nabla \alpha|^{2}+|\nabla \beta|^{2}-2 \beta_{1} \alpha_{2}+2 \beta_{2} \alpha_{1}
$$

and

$$
\begin{align*}
& \mathrm{B}^{-1}\left(|\nabla \alpha|^{2}+|\nabla \beta|^{2}\right)-\mathrm{B}^{-3}|\alpha \nabla \alpha+\beta \nabla \beta|^{2}= \tag{18}\\
& =\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{B}+\frac{1}{4} \mathrm{~B}^{-1}\left[\left(\alpha_{1}-\beta_{2}\right)^{2}+\left(\beta_{1}+\alpha_{2}\right)^{2}\right]- \\
& -\mathrm{B}^{-3}\left[\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)\left(|\nabla \alpha|^{2}-|\nabla \beta|^{2}\right)+2 \alpha \beta\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\right]
\end{align*}
$$

and from (17) and (18) one gets

$$
\begin{align*}
& \Delta B=9\left(a^{2}+b^{2}\right) B+B^{-1}\left\{4 \beta \alpha\left(b_{1}+a_{2}\right)+2\left(\alpha^{2}-\beta^{2}\right)\left(a_{1}-b_{2}\right)\right\}- \tag{19}\\
& -B^{-3}\left\{\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)\left(|\nabla \alpha|^{2}-|\nabla \beta|^{2}\right)+2 \alpha \beta\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\right\}+2 H B+ \\
& +\frac{1}{4} B^{-1}\left[\left(\alpha_{1}-\beta_{2}\right)^{2}+\left(\beta_{1}+\alpha_{2}\right)^{2}\right],
\end{align*}
$$

Furthermore from (13)

$$
\mathrm{b}=\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right)^{-1}\left[\alpha\left(\beta_{1}-\alpha_{2}\right)+\beta\left(\beta_{2}+\alpha_{1}\right)\right]
$$

$$
\begin{equation*}
a=\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right)^{-1}\left[\alpha\left(\beta_{2}+\alpha_{1}\right)-\beta\left(\beta_{1}-\alpha_{2}\right)\right], \tag{20}
\end{equation*}
$$

and one gets
(21) $\left(\alpha_{1}-\beta_{2}\right)\left[\mathrm{a}\left(\alpha^{3}-3 \alpha \beta^{2}\right)+\mathrm{b}\left(3 \alpha^{2} \beta-\beta^{3}\right)\right]+\left(\beta_{1}+\alpha_{2}\right)\left[\mathrm{a}\left(3 \alpha^{2} \beta-\beta^{3}\right)-\mathrm{b}\left(\alpha^{3}-3 \alpha \beta^{2}\right)\right]=$

$$
=\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)\left(|\nabla \alpha|^{2}-|\nabla \beta|^{2}\right)+2 \alpha \beta\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)
$$

Using (16), (19), (20) and (21), one has
(F2) $\Delta\left(\frac{1}{2} J+B\right)=3 J K+2 H B+\left[B^{-1} 2 \beta \alpha+\left(b_{1}+a_{2}\right)\right]^{2}+\left[B^{-1}\left(\alpha^{2}-\beta^{2}\right)+\left(a_{1}-b_{2}\right)\right]^{2}+$ $+\frac{1}{3} B^{-1}\left\{\left[2^{-1 / 2}\left(\alpha_{1}-\beta_{2}\right)-3 a 2^{1 / 2} B\right]^{2}+\left[2^{-1 / 2}\left(\beta_{1}+\alpha_{2}\right)-3 b 2^{1 / 2} B\right]^{2}\right\}+$ $+\frac{1}{6} \mathrm{~B}^{-1}\left\{\left[2^{-1 / 2}\left(\alpha_{1}-\beta_{2}\right)-3 \mathrm{~B}^{-2} 2^{1 / 2}\left[\mathrm{a}\left(\alpha^{3}-3 \alpha \beta^{2}\right)+\mathrm{b}\left(3 \alpha^{2} \beta-\beta^{3}\right)\right]\right]^{2}+\right.$ $\left.+\left[2^{-1 / 2}\left(\beta_{1}+\alpha_{2}\right)-3 B^{-2} 2^{1 / 2}\left[\mathrm{a}\left(3 \alpha^{2} \beta-\beta^{3}\right)-\mathrm{b}\left(\alpha^{3}-3 \alpha \beta^{2}\right)\right]\right]^{2}\right\} \geq$ $\geq 3 \mathrm{JK}+2 \mathrm{HB}$.

In a similar way, from (13), (16) and (17), one can gets
(F1) $\Delta\left(\frac{1}{2} J+B^{2}\right)=3 J K+B^{2}+10 J B^{2}+4 \mathrm{HB}^{2}-4 B^{4}-\frac{1}{2} J+$ $+\left[4 \beta \alpha+\left(b_{1}+a_{2}\right)\right]^{2}+\left[2\left(\alpha^{2}-\beta^{2}\right)+\left(a_{1}-b_{2}\right)\right]^{2}+\left[a+\left(\beta_{2}-\alpha_{1}\right)\right]^{2}+\left[b-\left(\beta_{1}+\alpha_{2}\right)\right]^{2} \geq$ $\geq 3 J K+B^{2}+10 J B^{2}+4 H B^{2}-4 B^{4}-\frac{1}{2} J$.

References.

[B] Blaschke, W.: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie. Berlin J. Springer 1923
[C1] Calabi, E.: The improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J., 5(1958), 105-126
[C2] Calabi, E.: Hypersurfaces with maximal affinely invariant area. Amer. Jour. of Math., 104(1982), 91-126
[C3] Calabi, E.: Convex affine-maximal surfaces. Results in Math., vol. 13(1988), 199-223
[CY1]Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. on Pure and Applied Math., 28(1975), 333-354
[CY2]Cheng, S.Y., Yau, S.T., Complete affine hypersurfaces, Part I. The completeness of Affine Metrics. Comm. on Pure and Applied Math., 39(1986), 839-866
[Ch] Chern, S.S., Affine minimal hypersurfaces, Minimal Submanifolds and Geodesic., Kagai Publ., Ltd. Tokyo 1978, 17-30
[J] Jörgens, K.: Über die Lösungen der Differentialgleichung rt-s ${ }^{2}$. Math. Ann., 127(1954), 180-184
[K] Kurose, T.: Two results in the affine hypersurface theory. J. Math. Soc. Japan, vol. 41, 3(1989), 539-548
[L1] Li, A.M.: Affine maximal surfaces and harmonic functions. Lec. Notes, n. 1369(1986-87), 142-151
[L2] Li, A.M.: Some theorems in affine differential geometry. Acta Math. Sinica. To appear
[LP] Li, A.M., Penn, G.: Uniquess theorems in affine differential geometry, Part II. Results in Math., vol. 13(1988), 308-317
[MM] Martinez, A., Milan, F.: On the affine Bernstein Problem. Geom. Dedicata 37, No. 3, 295-302(1991)
[P] Pogorelov, A. V.: On the improper affine hyperspheres. Geometriae Dedicata, $1(1972), 33-46$
[S1] Simon, U.: Affine differential geometry. Proceedings Conf. Math. Reasearch Institute at Oberwolfach, Nov. 2-8, 1986
[S2] Simon, U.: Hypersurfaces in equiaffine differential geometry and eigenvalue problems. Proceedings Conf. Diff. Geom. Nové Mesto(CSSR) 1983; Part I, 127-136(1984)
[S3] Simon, U.: Hypersurfaces in equiaffine differential geometry, Geometriae Dedicata, 17(1984), 157-168

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA
UNIVERSIDAD DE GRANADA
18071 GRANADA. SPAIN.

This paper is in final form and no version will appear elsewhere.

[^0]: (1) Research partially supported by DGICYT Grant PS87-0115-C03-02

